JPH0121535B2 - - Google Patents

Info

Publication number
JPH0121535B2
JPH0121535B2 JP19000181A JP19000181A JPH0121535B2 JP H0121535 B2 JPH0121535 B2 JP H0121535B2 JP 19000181 A JP19000181 A JP 19000181A JP 19000181 A JP19000181 A JP 19000181A JP H0121535 B2 JPH0121535 B2 JP H0121535B2
Authority
JP
Japan
Prior art keywords
substrate
film
conductor
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19000181A
Other languages
Japanese (ja)
Other versions
JPS58105432A (en
Inventor
Ryuji Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19000181A priority Critical patent/JPS58105432A/en
Publication of JPS58105432A publication Critical patent/JPS58105432A/en
Publication of JPH0121535B2 publication Critical patent/JPH0121535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は磁気記録媒体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a magnetic recording medium.

短波長記録特性の優れた磁気記録方式として、
垂直記録方式がある。この方式においては磁気記
録媒体の膜面に垂直方向が磁化容易軸である垂直
記録媒体が必要となる。このような磁気記録媒体
に信号を記録すると、残留磁化は媒体の膜面に垂
直方向を向き、従つて信号が短波長になる程媒体
内反磁界は減少し、優れた再生出力が得られる。
As a magnetic recording method with excellent short wavelength recording characteristics,
There is a perpendicular recording method. This method requires a perpendicular recording medium whose axis of easy magnetization is perpendicular to the film surface of the magnetic recording medium. When a signal is recorded on such a magnetic recording medium, the residual magnetization is oriented perpendicular to the film surface of the medium, and therefore, the shorter the wavelength of the signal, the smaller the demagnetizing field within the medium, and excellent reproduction output can be obtained.

現在用いられている垂直記録媒体は、非磁性基
板上に直接に、あるいはパーマロイ等の軟磁性薄
膜を介して、CoとCrを主成分とし、垂直方向に
磁化容易軸を有する磁性層をスパツタリング法に
より形成したものである。CoとCrを主成分とし
たスパツタ膜は、Crの量が約30重量%以下の範
囲では結晶系が稠密六方構造であり、そのc軸を
膜面に対して垂直方向に配向させることができ、
かつ垂直方向の異方性磁界が反磁界よりも大きく
なるまで飽和磁化を低下させることが可能である
ので、垂直磁化膜を実現できる。
Currently used perpendicular recording media are made by sputtering a magnetic layer containing Co and Cr as main components and having an axis of easy magnetization in the perpendicular direction, either directly on a non-magnetic substrate or through a soft magnetic thin film such as permalloy. It was formed by A sputtered film mainly composed of Co and Cr has a close-packed hexagonal crystal structure when the amount of Cr is approximately 30% by weight or less, and its c-axis can be oriented perpendicularly to the film surface. ,
In addition, since it is possible to reduce the saturation magnetization until the perpendicular anisotropic magnetic field becomes larger than the demagnetizing field, a perpendicularly magnetized film can be realized.

しかし、スパツタリング法によれば磁性薄膜の
形成速度が遅いので、低コストで垂直磁化膜を生
産することが困難である。
However, since the sputtering method slows down the formation speed of the magnetic thin film, it is difficult to produce a perpendicularly magnetized film at low cost.

このスパツタリング法に対し、真空蒸着法(イ
オンプレーテイング法のように蒸発原子の一部を
イオン化する方法も含む)によれば、数1000Å/
秒という速い形成速度でCo−Cr垂直磁化膜が得
られることが発明者により見い出された。真空蒸
着法においては、基板を円筒状キヤンの周側面に
沿つて移動させつつ、薄膜の形成を行なうと、テ
ープ状の垂直記録媒体が非常に生産性よく得られ
る。第1図にこのような真空蒸着装置の内部構造
の概略を示す。高分子材料よりなる基板1は円筒
状キヤン2に沿つて矢印Aの向きに走行する。蒸
発源3と円筒状キヤン2との間にはマスク4が配
置されており、蒸発原子はスリツトSを通つて基
板1に付着する。5,6はそれぞれ基板1の供給
ロールと巻取りロールである。
In contrast to this sputtering method, the vacuum evaporation method (including methods that ionize some of the evaporated atoms, such as the ion plating method) has a thickness of several thousand Å/
The inventors have discovered that a Co--Cr perpendicularly magnetized film can be obtained at a formation speed as fast as seconds. In the vacuum evaporation method, a tape-shaped perpendicular recording medium can be obtained with high productivity by forming a thin film while moving the substrate along the circumferential side of a cylindrical can. FIG. 1 schematically shows the internal structure of such a vacuum evaporation apparatus. A substrate 1 made of a polymeric material runs along a cylindrical can 2 in the direction of arrow A. A mask 4 is placed between the evaporation source 3 and the cylindrical can 2, and the evaporated atoms pass through the slit S and adhere to the substrate 1. 5 and 6 are a supply roll and a take-up roll for the substrate 1, respectively.

Co−Cr蒸着膜が垂直磁化膜になるためには、
稠密六方構造のc軸が膜面に垂直方向に配向し、
垂直方向の異方性磁界が反磁界よりも大きくなる
ことが必要である。すなわち、垂直異方性エネル
ギーKuが正になることが必要である。実験の結
果、Kuは蒸着時の基板温度Tsに依存し、さらに
膜面に垂直方向の保磁力(以下単にHcで表わす)
も蒸着時の基板温度に依存することが明らかにな
つた。
In order for the Co-Cr vapor deposited film to become a perpendicular magnetization film,
The c-axis of the dense hexagonal structure is oriented perpendicular to the film surface,
It is necessary that the anisotropic magnetic field in the perpendicular direction be larger than the demagnetizing field. That is, it is necessary that the vertical anisotropy energy Ku becomes positive. As a result of experiments, we found that Ku depends on the substrate temperature Ts during deposition, and also on the coercive force in the direction perpendicular to the film surface (hereinafter simply expressed as Hc).
It was also revealed that the temperature depended on the substrate temperature during deposition.

第2図に蒸着時の基板温度TsとKu、Hcとの
関係を示す。図の曲線AはKuとTsとの関係を、
また曲線BはHcとTsとの関係をそれぞれ示す。
これからKu、HcはいずれもTsが高くなると大
きくなることがわかる。
Figure 2 shows the relationship between the substrate temperature Ts and Ku and Hc during vapor deposition. Curve A in the figure shows the relationship between Ku and Ts,
Further, curve B shows the relationship between Hc and Ts.
It can be seen from this that both Ku and Hc increase as Ts increases.

第1図の装置を用いてCo−Cr垂直磁化膜を作
製すると、幅方向および長さ方向に特性がばらつ
き安定な膜が得られなかつた。この原因を調べた
結果、基板のキヤンへの密着が均一でなく、基板
にキヤンと密着している部分と、そうでない部分
ができるために、特性のばらつきが生じることが
明らかになつた。すなわち、第3図に示したよう
に、基板1の、キヤン2に密着した部分7とキヤ
ン2から浮いている部分8とが形成される。蒸着
時に密着部分7については熱がキヤン2に拡散す
るために、基板2の温度はあまり上昇しないが、
浮いている部分8では熱が拡散できないために、
基板2の温度が上昇する。その結果、密着部分7
のKuおよびHcは浮いている部分8よりも大きな
値となる。
When a Co--Cr perpendicularly magnetized film was produced using the apparatus shown in FIG. 1, the properties varied in the width direction and the length direction, and a stable film could not be obtained. An investigation into the cause of this revealed that the adhesion of the substrate to the can is not uniform, with some parts adhering closely to the can and others not, resulting in variations in characteristics. That is, as shown in FIG. 3, a portion 7 of the substrate 1 that is in close contact with the can 2 and a portion 8 that is floating from the can 2 are formed. During vapor deposition, the temperature of the substrate 2 does not rise much because the heat diffuses into the can 2 in the contact area 7;
Because heat cannot diffuse in the floating part 8,
The temperature of the substrate 2 increases. As a result, the contact area 7
Ku and Hc have larger values than the floating part 8.

本発明は高分子材料よりなる基板のキヤンへの
密着状態を均一にすることにより、長手方向およ
び幅方向に特性のばらつきの少ないCo−Cr垂直
磁化膜を形成する方法を提供することを目的とす
るものである。
An object of the present invention is to provide a method for forming a Co-Cr perpendicularly magnetized film with less variation in properties in the longitudinal and width directions by uniformly adhering a substrate made of a polymeric material to a can. It is something to do.

本発明の方法を実施するための装置の基本構成
を第4図に示す。図において、21は、キヤン2
2と接する反対側の表面に導体膜が形成されてい
る、高分子材料よりなる基板である。金属ローラ
23とキヤン22との間には電源24により直流
電圧が印加される。なお印加電圧の極性は図と逆
でもよいし、また直流ではなく交流でもよい。金
属ローラ23に導体膜が接して基板21が走行す
るために、導体膜とキヤン22との間には静電気
による引力が発生し、そのため基板21はキヤン
22に均一に密着する。この状態でCo−Cr膜を
形成すると、長手方向および幅方向に特性のばら
つきの少ないCo−Cr垂直磁化膜が得られる。
FIG. 4 shows the basic configuration of an apparatus for carrying out the method of the present invention. In the figure, 21 is the can 2
This is a substrate made of a polymeric material and has a conductive film formed on the opposite surface in contact with 2. A DC voltage is applied between the metal roller 23 and the can 22 by a power source 24. Note that the polarity of the applied voltage may be opposite to that shown in the figure, or may be alternating current instead of direct current. Since the substrate 21 runs with the conductive film in contact with the metal roller 23, an attractive force due to static electricity is generated between the conductive film and the can 22, so that the substrate 21 is evenly adhered to the can 22. If a Co--Cr film is formed in this state, a Co--Cr perpendicularly magnetized film with less variation in properties in the longitudinal and width directions can be obtained.

なお、図において、25は蒸発源、26はマス
ク、27,28はそれぞれ供給ロール、巻取りロ
ールである。
In the figure, 25 is an evaporation source, 26 is a mask, and 27 and 28 are a supply roll and a take-up roll, respectively.

第5図に、金属ローラ23とキヤン22との間
の印加電圧と、Hcの長手方向の変動との関係の
一例を示す。ただし、Hcの長さ1mの領域の長
手方向における最大値をHcmaxとし、最小値を
Hcminとした場合に Hcmax−Hcmin/Hcmax をHcの長手方向の変動と定義する。この図より、
印加電圧が30V以上になると、Hcの変動が急激
に少なくなつていることがわかる。また、印加電
圧が200V以上になると、金属ローラ22と導体
膜が形成された基板21との間や、キヤン22と
基板21との間において放電を生じるために、得
られる磁気記録媒体にはピンホールが多数発生す
る。したがつて、印加電圧は30〜200Vの範囲内
に設定することが好ましい。
FIG. 5 shows an example of the relationship between the voltage applied between the metal roller 23 and the can 22 and the longitudinal variation of Hc. However, the maximum value of Hc in the longitudinal direction of a 1 m long area is defined as Hcmax, and the minimum value is
When Hcmin is set, Hcmax−Hcmin/Hcmax is defined as the longitudinal variation of Hc. From this figure,
It can be seen that when the applied voltage exceeds 30V, the fluctuation in Hc decreases rapidly. Furthermore, when the applied voltage exceeds 200 V, electric discharge occurs between the metal roller 22 and the substrate 21 on which the conductive film is formed, and between the can 22 and the substrate 21, so that the resulting magnetic recording medium has no pins. Many holes occur. Therefore, it is preferable to set the applied voltage within the range of 30 to 200V.

以下、本発明の方法の実施例について説明す
る。
Examples of the method of the present invention will be described below.

実施例 1 ポリアミド系の耐熱性高分子材料よりなる厚み
10μmの基板上に、厚み700ÅのCu膜を蒸着法に
より形成し、第4図の装置において、キヤンに対
して金属ローラに60Vの電圧を印加して厚さ1500
ÅのCo−Cr膜を蒸着した結果、長手方向および
幅方向に特性の均一なCo−Cr垂直磁化膜が得ら
れた。第6図に上述のようにして得られた磁気記
録媒体の構造を示す。図において、31は基板、
32,33はそれぞれCu膜およびCo−Cr垂直磁
化膜である。
Example 1 Thickness made of polyamide heat-resistant polymer material
A Cu film with a thickness of 700 Å was formed on a 10 μm substrate by vapor deposition, and a voltage of 60 V was applied to the metal roller with respect to the can using the apparatus shown in Figure 4 to form a Cu film with a thickness of 1500 Å.
As a result of depositing a Co--Cr film with a thickness of .ANG., a Co--Cr perpendicularly magnetized film with uniform properties in the longitudinal and width directions was obtained. FIG. 6 shows the structure of the magnetic recording medium obtained as described above. In the figure, 31 is a substrate;
32 and 33 are a Cu film and a Co-Cr perpendicular magnetization film, respectively.

実施例 2 ポリアミド系の耐熱性高分子材料よりなる厚み
10μmの基板上に、厚み1500Åのパーマロイ膜を
蒸着法により形成し、第4図の装置において、キ
ヤンに対して金属ローラに60Vの電圧を印加して
厚み1500ÅのCo−Cr膜を蒸着した結果、長手方
向および幅方向に特性の均一なCo−Cr垂直磁化
膜がパーマロイ膜上に得られた。
Example 2 Thickness made of polyamide heat-resistant polymer material
A permalloy film with a thickness of 1500 Å was formed on a 10 μm substrate by vapor deposition, and a 1500 Å thick Co-Cr film was deposited using the apparatus shown in Figure 4 by applying a voltage of 60 V to the metal roller relative to the can. A Co-Cr perpendicular magnetization film with uniform properties in the longitudinal and width directions was obtained on the permalloy film.

以上のように、本発明の方法によれば、一方の
両側に導体膜が形成されている高分子材料よりな
る基板を、他方の面を導電体に接触させて移動さ
せながら、前記基板の一方の面側に磁化容易軸が
膜面に垂直な方向にあるCoとCrを主成分とする
磁性層を真空蒸着法により形成するに際して、前
記基板上の導電膜と導電体との間に電圧を印加す
るため、前記基板が導電体に均一に接触する。こ
れにより、長手方向および幅方向に特性の均一な
Co−Cr垂直磁化膜を得ることができる。
As described above, according to the method of the present invention, one side of the substrate made of a polymeric material having a conductive film formed on both sides is moved while the other side is brought into contact with the conductor. When forming a magnetic layer mainly composed of Co and Cr whose axis of easy magnetization is perpendicular to the film surface on the side of the substrate by vacuum evaporation, a voltage is applied between the conductive film on the substrate and the conductor. To apply the voltage, the substrate uniformly contacts the conductor. This ensures uniform properties in the longitudinal and width directions.
A Co-Cr perpendicular magnetization film can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は真空蒸着法により垂直記録媒体を製造
するための装置の基本的な構成を示す図、第2図
はこの装置によつて得られた垂直記録媒体の垂直
異方性エネルギーKu、垂直方向の保磁力Hcと蒸
着時の基板温度Tsとの関係を示す図、第3図は
この装置におけるキヤンへの基板の接触状態を説
明するための要部拡大断面図である。第4図は本
発明の方法を実施するための装置の構成の一例を
示す図、第5図はこの装置のキヤンと基板上の導
電体間に印加した電圧と垂直方向の保磁力Hcの
変動との関係を示す図、第6図は本発明の方法の
実施例により得られた磁気記録媒体の断面図であ
る。 21……キヤンと接する反対側の表面に導体膜
が形成されている高分子材料よりなる基板、22
……キヤン、23……金属ローラ、24……電
源、25……蒸発源。
Figure 1 shows the basic configuration of an apparatus for manufacturing perpendicular recording media using the vacuum evaporation method, and Figure 2 shows the perpendicular anisotropy energy Ku and the perpendicular FIG. 3 is a diagram showing the relationship between the coercive force Hc in the direction and the substrate temperature Ts during vapor deposition, and FIG. 3 is an enlarged sectional view of the main part for explaining the state of contact of the substrate to the can in this apparatus. Fig. 4 shows an example of the configuration of an apparatus for carrying out the method of the present invention, and Fig. 5 shows the voltage applied between the can of this apparatus and the conductor on the substrate and the variation of the coercive force Hc in the perpendicular direction. FIG. 6 is a cross-sectional view of a magnetic recording medium obtained by an example of the method of the present invention. 21...A substrate made of a polymeric material on which a conductive film is formed on the surface opposite to that in contact with the can, 22
...Can, 23...metal roller, 24...power supply, 25...evaporation source.

Claims (1)

【特許請求の範囲】 1 一方の面側に導体膜が形成されている高分子
材料よりなる基板を、その他方の面側を導電体に
接触させて移動させながら、前記基板の一方の面
側に磁化容易軸が膜面に垂直な方向にあるCoと
Crを主成分とする磁性層を真空蒸着法により形
成するに際して、前記基板上の前記導電膜と前記
導電体との間に電圧を印加することを特徴とする
磁気記録媒体の製造方法。 2 導電体が円筒状のキヤンであることを特徴と
する特許請求の範囲第1項記載の磁気記録媒体の
製造方法。
[Scope of Claims] 1. While moving a substrate made of a polymeric material on which a conductor film is formed on one side with the other side in contact with a conductor, one side of the substrate is moved. Co and Co whose axis of easy magnetization is perpendicular to the film surface.
A method for manufacturing a magnetic recording medium, comprising applying a voltage between the conductive film on the substrate and the conductor when forming a magnetic layer containing Cr as a main component by vacuum evaporation. 2. The method for manufacturing a magnetic recording medium according to claim 1, wherein the conductor is a cylindrical can.
JP19000181A 1981-11-26 1981-11-26 Production of magnetic recording medium Granted JPS58105432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19000181A JPS58105432A (en) 1981-11-26 1981-11-26 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19000181A JPS58105432A (en) 1981-11-26 1981-11-26 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58105432A JPS58105432A (en) 1983-06-23
JPH0121535B2 true JPH0121535B2 (en) 1989-04-21

Family

ID=16250725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19000181A Granted JPS58105432A (en) 1981-11-26 1981-11-26 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58105432A (en)

Also Published As

Publication number Publication date
JPS58105432A (en) 1983-06-23

Similar Documents

Publication Publication Date Title
JPH0411625B2 (en)
JPH0121535B2 (en)
JPH02214023A (en) Production of perpendicular magnetic disk
JPS62128019A (en) Magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
EP0227069A2 (en) Middle layer material for magnetic disc
JPS58102333A (en) Manufacture of magnetic recording medium
JP3206322B2 (en) Magnetic head and magnetic recording / reproducing device
JPS58125236A (en) Manufacture of magnetic recording medium
JP2758602B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0219533B2 (en)
JPS60209924A (en) Vertical magnetic recording medium and its production
EP0066146A2 (en) Method for manufacturing magnetic recording medium
JPS6089828A (en) Manufacture of vertical magnetic recording medium
JPS58133637A (en) Manufacture for magnetic recording medium
JPS63308729A (en) Production of magnetic recording medium
JPS55129923A (en) Magnetoresistance effect type magnetic head
JPH0476176B2 (en)
JPS6050717A (en) Metallic thin film magnetic tape
JPH0334131B2 (en)
JPS59169187A (en) Manufacture of magneto-resistance effect element
JPS58137134A (en) Manufacture of magnetic recording medium
JPS60243818A (en) Magnetic recording medium
Tsutsumi et al. Fabrication and Properties of Double Layer Perpendicular Rigid Disks
JPS58102335A (en) Manufacture of magnetic recording medium