JPS6050717A - Metallic thin film magnetic tape - Google Patents

Metallic thin film magnetic tape

Info

Publication number
JPS6050717A
JPS6050717A JP15940883A JP15940883A JPS6050717A JP S6050717 A JPS6050717 A JP S6050717A JP 15940883 A JP15940883 A JP 15940883A JP 15940883 A JP15940883 A JP 15940883A JP S6050717 A JPS6050717 A JP S6050717A
Authority
JP
Japan
Prior art keywords
layer
magnetic
thin film
tape
polymer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15940883A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Hideki Yoshida
秀樹 吉田
Toshiaki Kunieda
国枝 敏明
Takashi Fujita
藤田 隆志
Akio Hogo
蓬郷 章郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15940883A priority Critical patent/JPS6050717A/en
Publication of JPS6050717A publication Critical patent/JPS6050717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To maintain the short wavelength record preservation characteristics of a magnetic tape even through it is preserved for a long period in a wide range of temperatures of low and high levels, by providing a magnetic recording layer made of a ferromagnetic metallic thin film on a single side of a polymer substrate together with a soft magnetic layer formed on the other side of the substrate. CONSTITUTION:A magnetic recording layer 6 is formed with a ferromagnetic metallic thin film on a polymer substrate 5, and a protecting layer 7 is formed on the layer 6. At the same time, a soft magnetic layer 8 is formed on the other side of the substrate 5. Thus a metallic thin film magnetic tape is obtained. The layer 7 has about 100Angstrom thickness at most in order to reduce the spacing loss with the short wavelength recording, and the average roughness of the layer 6 is set at about <=100Angstrom . As a result, both layers 6 and 8 are set adjacent to each other in a range of about 200Angstrom -1,000Angstrom and therefore a leakage magnetic flux given from the layer 6 by a record pattern is closed by the layer 8. This increases the energy stability and improves the demagnetization when the magnetic tape is preserved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は短波長記録に適した強磁性金属薄膜を磁気記録
層とする金属薄膜型磁気テープに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a metal thin film type magnetic tape having a magnetic recording layer made of a ferromagnetic metal thin film suitable for short wavelength recording.

従来例の構成とその問題点 近年、短波長記録特性の優れた媒体として強磁性金属薄
膜を磁気記録層とする金属薄膜型磁気テープが注目され
ている。この金属薄膜型磁気テープは、回転磁気ヘッド
によるビデオテープレコーダ(以下V、T、 Rと呼ぶ
)による記録再生で、従来の塗布型媒体での記録密度の
約6倍の画質が得られることが確認されていることが報
告されている0 以下図面を参照しながら、上述したような従来の金属薄
膜型磁気テープについて説明する。
Conventional Structures and Problems In recent years, metal thin film magnetic tapes having a ferromagnetic metal thin film as a magnetic recording layer have attracted attention as a medium with excellent short wavelength recording characteristics. When recorded and reproduced using a video tape recorder (hereinafter referred to as V, T, or R) using a rotating magnetic head, this thin metal film magnetic tape can provide image quality approximately six times higher than the recording density of conventional coated media. It has been reported that the above-mentioned conventional metal thin film magnetic tape will be described below with reference to the drawings.

第1図は従来の金属薄膜型磁気テープの断面図を示すも
のであり、高分子基板1上に直接又は図示せぬ非磁性層
或いは軟磁性層を介1〜て強磁性金属薄膜から成る磁気
記録層2を配し、その上に保護層3を配し、高分子基板
1のもう一方の面に走行性を改良するだめの背面塗布層
4を配したものである。
FIG. 1 shows a cross-sectional view of a conventional metal thin film type magnetic tape, in which a magnetic tape consisting of a ferromagnetic metal thin film is deposited directly on a polymer substrate 1 or via a non-magnetic layer or a soft magnetic layer (not shown). A recording layer 2 is disposed, a protective layer 3 is disposed thereon, and a back coating layer 4 for improving running properties is disposed on the other side of the polymer substrate 1.

しかしながら上記のような構成において、本発明者等は
、Co −N i−0系の斜め蒸着膜、Co−Ni−0
r系の垂直磁化膜についてビデオ信号を記録し、長時間
の保存特性を調べたところ、予想以上の再生出力低下が
あることを見出した。
However, in the above configuration, the present inventors have developed a Co-Ni-0 based obliquely deposited film, a Co-Ni-0
When a video signal was recorded on an r-based perpendicular magnetization film and its long-term storage characteristics were investigated, it was found that the playback output decreased more than expected.

この原因として考えられることは、(イ)磁気記録層2
が金属であることから腐蝕してフラックスが減少したこ
と、(ロ)磁気テープとして巻回して保存するため背面
塗布層4から構成材料の一部又は分解生成物等が転写し
てスペース損失が生じたこと、3 ′、−ゾ (ハ)前記(イ)と(ロ)の両者が同時に起ったことで
ある。
Possible causes of this are (a) magnetic recording layer 2
(2) Since the tape is made of metal, it corrodes and the flux decreases. (b) Since it is stored by winding it as a magnetic tape, some of the constituent materials or decomposition products are transferred from the back coating layer 4, resulting in space loss. 3', -zo (c) Both (a) and (b) above occurred at the same time.

しかし以上の(イ)〜(−9のことを予測してひとつひ
とつ吟味したところ、再度記録すれば同一の出力が得ら
れることによって前述の(イ)から09のいずれにも該
当しないことが明らかとなり、減磁と考えざるを得ない
ものである。この減磁は磁化単位となっている永久磁石
の一端又は両端の磁極が開放されていることによるもの
と考えられる問題であり、改良が望まれている。
However, when we predicted the above (a) to (-9) and examined them one by one, it became clear that the same output could be obtained if we recorded again, so it became clear that none of the above (b) and 09 did not apply. This problem must be considered as demagnetization.This demagnetization is thought to be caused by the magnetic poles at one or both ends of the permanent magnet, which is the unit of magnetization, being open, and improvements are desired. ing.

発明の目的 本発明は短波長記録保存特性を改良した金属薄膜型磁気
テープを提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a metal thin film type magnetic tape with improved short wavelength recording storage characteristics.

発明の構成 本発明の金属薄膜型磁気テープは高分子基板の一方の面
に強磁性金属薄膜から成る磁気記録層を配し、他方の面
に軟磁性層を配する構成であり、記録した状態で巻回さ
れると、記録された記録層と軟磁性層とは隣接すること
により、磁気記録層からの記録パターンの作る漏れ磁束
は軟磁性層で閉じられることにより、長期保存しても安
定に記特開昭GO−50717(2) 録磁化量を維持できるものである。
Structure of the Invention The metal thin film magnetic tape of the present invention has a structure in which a magnetic recording layer made of a ferromagnetic metal thin film is arranged on one side of a polymer substrate and a soft magnetic layer is arranged on the other side, and the recorded state When the magnetic recording layer is wound with the soft magnetic layer, the recorded recording layer and the soft magnetic layer are adjacent to each other, and the leakage magnetic flux generated by the recording pattern from the magnetic recording layer is closed by the soft magnetic layer, making it stable even during long-term storage. JP-A-Sho GO-50717 (2) The amount of recorded magnetization can be maintained.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の実施例の金属薄膜型磁気テープの断面
図を示すものである。第2図において、6は高分子基板
で、高分子基板5−ヒに強磁性金属薄膜から成る磁気記
録層6を配し、その上に保護層7を配し、高分子基板6
のもう一方の而に軟磁性層8が配されて、金属薄膜型磁
気テープが構成されている。
FIG. 2 shows a sectional view of a metal thin film magnetic tape according to an embodiment of the present invention. In FIG. 2, reference numeral 6 denotes a polymer substrate, on which a magnetic recording layer 6 made of a ferromagnetic metal thin film is arranged, a protective layer 7 is arranged on top of the magnetic recording layer 6, and a protective layer 7 is arranged on the polymer substrate 5-A.
A soft magnetic layer 8 is disposed on the other side to constitute a metal thin film type magnetic tape.

他の構成として非磁性下地層、軟磁性下地層を磁気記録
層6と高分子基板6の間に配するもの、軟磁性層8の上
に保護層を配するものも当然考えられるが、本発明の作
用効果については第2図の構成で代表できるものである
As other configurations, it is naturally possible to arrange a non-magnetic underlayer or a soft magnetic underlayer between the magnetic recording layer 6 and the polymer substrate 6, or to arrange a protective layer on the soft magnetic layer 8, but this is not the case. The effects of the invention can be represented by the configuration shown in FIG.

磁気記録再生装置、例えばV、 T、 )tで本発明の
金属薄膜型磁気テープを利用する場合、記録した磁気テ
ープはカセットに巻き込まれた状態で保存される。この
時第2図の矢印A 、 A’で示された磁5ベーノ 気記録層6側の面と軟磁性層8の而は向い合う。
When the metal thin film magnetic tape of the present invention is used in a magnetic recording/reproducing device, for example, V, T, )t, the recorded magnetic tape is stored in a cassette. At this time, the surface of the magnetic recording layer 6 side indicated by arrows A and A' in FIG. 2 and the surface of the soft magnetic layer 8 face each other.

保護層7は、短波長記録でのスペーシングロスを減らす
ために高々100人程度の厚みで構成されるものであり
、磁気記録層6の表面も平均粗さは100Å以下と平滑
であるから、テープが巻回された状態において磁気記録
層6と軟磁性層8は2o〇八〜へ000人の範囲で隣接
することになり、磁気記録層6からの記録パターンの作
る漏れ磁束は軟磁性層8で閉じられエネルギー的に安定
し、保存時での減磁を改良できることになるのである。
The protective layer 7 is constructed with a thickness of about 100 Å at most in order to reduce spacing loss during short wavelength recording, and the surface of the magnetic recording layer 6 is also smooth with an average roughness of 100 Å or less. When the tape is wound, the magnetic recording layer 6 and the soft magnetic layer 8 are adjacent to each other within a range of 208 to 000, and the leakage magnetic flux generated by the recording pattern from the magnetic recording layer 6 is absorbed by the soft magnetic layer. 8 and is energetically stable, making it possible to improve demagnetization during storage.

更に本発明の構成の金属薄膜型磁気テープの高分子基板
5をエレクトレット化されたものを用いると保存時での
減磁がより少なくできることが実験的に確認できている
が、このメカニズムについては明らかにできていない0 本発明の作用効果は高分子基板6の材質、厚み。
Furthermore, it has been experimentally confirmed that demagnetization during storage can be reduced by using an electret polymer substrate 5 of the metal thin film magnetic tape constructed according to the present invention, but this mechanism is not clear. The effect of the present invention is the material and thickness of the polymer substrate 6.

機械特性等には無関係であり、磁気記録層6の材料、製
造条件、厚み、保磁力、飽和磁束密度にあわせて軟磁性
層を設計すれば良い。
The soft magnetic layer may be designed in accordance with the material, manufacturing conditions, thickness, coercive force, and saturation magnetic flux density of the magnetic recording layer 6, regardless of mechanical properties and the like.

磁気記録層6の飽和磁束密度をBs [ガウス]。The saturation magnetic flux density of the magnetic recording layer 6 is Bs [Gauss].

厚みをδ[l1m]、保磁力をHc〔エルステッド〕。The thickness is δ [l1m], and the coercive force is Hc [Oersted].

軟磁性層8の飽和磁束密度をB s ’ (ガウス〕、
厚みをδ米〔μtnl、保磁力をHc ’ [エルステ
ッド〕とするとBTP・δ’/Bs・δは1以上で好ま
しくは2以上でHc /Hc米は60以上、好ましくは
100以上になるよう選べば良好な効果を得ることが出
来る。
The saturation magnetic flux density of the soft magnetic layer 8 is B s ' (Gauss),
If the thickness is δ [μtnl] and the coercive force is Hc' [Oersted], BTP・δ′/Bs・δ is selected to be 1 or more, preferably 2 or more, and Hc/Hc is 60 or more, preferably 100 or more. good effects can be obtained.

本発明に用いられる高分子基板5は、ポリエチレン−7
L/フタレート、ポリエチレンナフタレート。
The polymer substrate 5 used in the present invention is polyethylene-7
L/phthalate, polyethylene naphthalate.

ポリアミド、ポリイミド、ポリカーボネート、等あるい
は、これら高分子基板6−ヒに非磁性下地層。
A non-magnetic underlayer is formed on a polyamide, polyimide, polycarbonate, etc. or polymer substrate.

軟磁性下地層を配したものか、前記高分子基板6をエレ
クトレット化したもののいずれかである。
Either a soft magnetic underlayer is provided or the polymer substrate 6 is made into an electret.

尚、非磁性下地層、軟磁性下地層の製法については特別
の限定はなく、公知の電子ビーノ・蒸着法。
There is no particular limitation on the manufacturing method of the non-magnetic underlayer and the soft magnetic underlayer, and the well-known electronic vino vapor deposition method can be used.

スパッタリング法、イオンブレーティング法、湿式めっ
き法、湿式コーティング方法等が適宜用いられる。
A sputtering method, an ion blating method, a wet plating method, a wet coating method, etc. are used as appropriate.

又、高分子基板6のエレクトレット化手段、エレクトレ
ット化する時期についても適宜選択され7 で ・′ るもので熱エレクトレット、エレクトロエレクトレット
、メカノエレクトレフト等が良く知られるものであり、
本発明の実施には高エネルギー電子線の高分子基板への
注入が最も優れた効果を発揮できるものである。
In addition, the means for converting the polymer substrate 6 into an electret and the timing of converting the polymer substrate 6 into an electret are appropriately selected.
In carrying out the present invention, injection of a high-energy electron beam into a polymer substrate can exhibit the most excellent effect.

本発明に用いられる磁気記録層6を形成する強磁性金属
薄膜の材料はCo 、 Co−Ni 、 Co−Cr 
The material of the ferromagnetic metal thin film forming the magnetic recording layer 6 used in the present invention is Co, Co-Ni, Co-Cr.
.

Co−8i 、Co −MO、Co−W、Co−Ti 
、Co−V、Co −Ce 、Co−Ru 、Co−N
i−0,Go−Cr−0,Co −Mo −0、Co−
Ni−Cr、Co−Mn−Mg等である。
Co-8i, Co-MO, Co-W, Co-Ti
, Co-V, Co-Ce, Co-Ru, Co-N
i-0, Go-Cr-0, Co-Mo-0, Co-
These include Ni-Cr, Co-Mn-Mg, etc.

前記した材料の強磁性金属薄膜を得る方法は、真空蒸着
法、スパッタリング法、イオンブレーティング法、湿式
めっき法等の中より適宜用いることができる。
A method for obtaining a ferromagnetic metal thin film of the above-mentioned material can be appropriately selected from vacuum evaporation, sputtering, ion blating, wet plating, and the like.

本発明に用いることのできる軟磁性層8はN i −F
e 、Ni−Ti −Fe 、Ni −Mn−Ei 、
Ni −Fe−0,等でCo−Ni−○ でも製造条件
を工夫すれば本発明の作用効果を有する軟磁性層とする
ことができる。
The soft magnetic layer 8 that can be used in the present invention is N i -F
e, Ni-Ti-Fe, Ni-Mn-Ei,
Even with Co-Ni-○ such as Ni-Fe-0, a soft magnetic layer having the effects of the present invention can be obtained by devising manufacturing conditions.

前記軟磁性層8の製造は強磁性金属薄膜の製法と同類の
ものの中から選ぶことができる。
The method for manufacturing the soft magnetic layer 8 can be selected from methods similar to those for manufacturing ferromagnetic metal thin films.

特開昭GO−50717(3) 強磁性金属薄膜の形成と軟磁性層8の形成を連続して行
うか、別々の工程として行うかは経済性も含めて検討を
加え当業者であれば適宜選択されるものである。
JP-A-Sho GO-50717 (3) Whether the formation of the ferromagnetic metal thin film and the formation of the soft magnetic layer 8 are carried out consecutively or as separate steps can be determined by those skilled in the art after consideration including economic considerations. It is selected.

本発明の磁気テープにより実用信頼性を高めるために軟
磁性層8の上に保護層を配することができるのは勿論で
あり、保護層の材料の種類や、厚み、製法等も当業者の
知識の範囲で実施できるものである。
It is of course possible to arrange a protective layer on the soft magnetic layer 8 in order to improve the practical reliability of the magnetic tape of the present invention, and the type of material, thickness, manufacturing method, etc. of the protective layer can be determined by those skilled in the art. It is something that can be implemented within the scope of knowledge.

以下本発明の実施例を図面に基すいてさらに詳細に説明
する。
Embodiments of the present invention will be described in more detail below with reference to the drawings.

第3図は第2図の構成の金属薄膜型磁気テープを得るた
めに用いた巻取り蒸着装置の要部構成図である。第3図
において、高分子基板9は回転支持体に沿って移動する
際蒸着を受けるよう構成されており、ここで回転支持体
は回転冷却ローラ10゜11と金属製エンドレスベルト
12とで構成され、エンドレスベルト12は矢印で示す
方向に一定速度で回転駆動されている。
FIG. 3 is a diagram showing the main part of a winding vapor deposition apparatus used to obtain the metal thin film type magnetic tape having the structure shown in FIG. In FIG. 3, a polymeric substrate 9 is configured to undergo deposition as it moves along a rotating support, where the rotating support is comprised of rotating cooling rollers 10° 11 and an endless metal belt 12. , the endless belt 12 is driven to rotate at a constant speed in the direction indicated by the arrow.

又、エンドレスベルト12の傾きは調節可能の構9べ一
゛ 成をとることもできるし、マスク13の位置調整による
か、いずれかで蒸気流の入射角を調整することで所望の
磁気特性を得ることができる。
Further, the inclination of the endless belt 12 can be configured to be adjustable, and desired magnetic characteristics can be obtained by adjusting the position of the mask 13 or by adjusting the incident angle of the vapor flow. Obtainable.

なお高分子基板9は送り出し軸14よりエンドレスベル
ト12に沿って巻き取シ軸15へ移動するよう配設され
ている。高分子基板9と対向して。
Note that the polymer substrate 9 is arranged to move from the feed shaft 14 to the winding shaft 15 along the endless belt 12. facing the polymer substrate 9;

前記蒸気流を発生する合金蒸発源が配設され、両者の中
間イオンブレーティングのだめの高周波コイル16が配
設されている。合金蒸発源の蒸発源容器17は2槽式で
A元素18とB元素19がチャージされており、A元素
18とB元素19をそれぞれ電子銃20.21からの電
子ビームで別々に衝撃加熱できるよう構成されている。
An alloy evaporation source for generating the vapor flow is provided, and a high frequency coil 16 for ion brating is provided between the two. The evaporation source container 17 of the alloy evaporation source is a two-tank type and is charged with the A element 18 and the B element 19, and the A element 18 and the B element 19 can be separately impact-heated by electron beams from the electron guns 20 and 21. It is configured like this.

なお、A元素18とB元素19は必ずしも単一元素でな
くても蒸気圧の近い元素で構成されている合金であれば
よく、別個の電子銃によらずに1ケの電子銃を走査方法
により、へ元素、B元素の蒸発量を調節しても良いのは
勿論である。
Note that the A element 18 and the B element 19 are not necessarily a single element, but may be an alloy composed of elements with similar vapor pressures. Of course, the amount of evaporation of the He element and the B element may be adjusted by the following.

これらの系は、真空槽22の内部に配設されており、真
空槽22の内部は排気系23によシ排気1o ・−゛ され必要に応じて図示してないガス導入系よりガスを導
入できるよう構成される。24は高周波電源、26は絶
縁導入端子である。
These systems are arranged inside a vacuum chamber 22, and the inside of the vacuum chamber 22 is evacuated by an exhaust system 23, and gas is introduced from a gas introduction system (not shown) as necessary. It is configured so that it can be done. 24 is a high frequency power supply, and 26 is an insulation introduction terminal.

〔実施例−1〕 第3図の装置でA元素18をCr としB元素19をC
Oとし高分子基板9としての厚さ1ol1mのポリエチ
レンテレフタレート上に高周波イオンブレーティングに
より厚さ0.2 /1 mのCo −Cr膜を得た。高
周波電力は650W投入し、蒸着速度はCOが800人
/sec、Crが206人/就とした。
[Example-1] In the apparatus shown in Fig. 3, A element 18 is Cr and B element 19 is C
A Co--Cr film with a thickness of 0.2/1 m was obtained by high-frequency ion blasting on a polyethylene terephthalate with a thickness of 1 ol and 1 m as a polymer substrate 9. High-frequency power was input at 650 W, and the deposition rate was 800 people/sec for CO and 206 people/sec for Cr.

とのCo −Cr膜は垂直方向の保磁力が1Q60〔エ
ルステッド〕の垂直磁化膜である。
The Co-Cr film is a perpendicularly magnetized film with a perpendicular coercive force of 1Q60 [Oersted].

高分子基板9としてのポリエチレンテレフタレートのも
う一方の面に蒸着できるように第3図の装置で前記処理
を終えた高分子基板9を再び送り出し軸14にかけ直し
て軟磁性層の形成を行った。
The polymer substrate 9 that had been subjected to the above treatment using the apparatus shown in FIG. 3 was reattached to the delivery shaft 14 so that a soft magnetic layer could be formed on the other surface of the polyethylene terephthalate as the polymer substrate 9.

第3図の装置でA元素18をNi としB元素19をF
eとして蒸着速度をNiが880人/5(5)。
In the apparatus shown in Figure 3, A element 18 is replaced with Ni and B element 19 is replaced with F.
Ni is 880 people/5 (5) with the vapor deposition rate as e.

Feが210八/%として厚さが0.3μm のN i
 −Fe膜を得た。
Ni with Fe content of 210%/% and thickness of 0.3 μm
A -Fe film was obtained.

11 ゛ 〜゛ このNi−Fe膜の保磁力は0.6〔エルステッド〕で
あった。
11゛~゛The coercive force of this Ni-Fe film was 0.6 [Oersted].

尚、Co−Cr膜の飽和磁束密度Bsは3000〔ガウ
ス]Ni−Fe膜の飽和磁束密度は6800〔ガウス〕
でCo−Cr膜の形成は真空槽内をあらかじめ1×1σ
6Torrまで排気したのち、Arを導入し7X10−
”Torrでイオンブレーティングすることで行ったが
、Ni−Fe膜の形成は、真空槽内をあらかじめ1×1
σ’Torrに排気したのち酸素を導入し8 X 10
−” Torrで電子ビームに蒸着した0電子分光分析
、X線電子分光分析の結果、Ni−Fe膜は柱状結晶か
らなり柱状結晶の表面はFeが偏析しFe3O4膜の保
護膜が生成されていた。
The saturation magnetic flux density Bs of the Co-Cr film is 3000 [Gauss], and the saturation magnetic flux density of the Ni-Fe film is 6800 [Gauss].
To form the Co-Cr film, the inside of the vacuum chamber was heated to 1×1σ in advance.
After exhausting to 6 Torr, Ar was introduced and 7X10-
”This was done by ion blating with Torr, but the formation of the Ni-Fe film was performed using a 1×1 vacuum chamber in advance.
After exhausting to σ'Torr, oxygen was introduced to 8 x 10
-” As a result of 0-electron spectroscopy and X-ray electron spectroscopy of the Ni-Fe film deposited with an electron beam at Torr, it was found that the Ni-Fe film was composed of columnar crystals, and Fe was segregated on the surface of the columnar crystals, forming a protective film of Fe3O4 film. .

本発明品としてCo−Cr強磁性層とNi−Fe軟磁性
層とを高分子基板9としてのポリエチレンテレフタレー
トの両面に各々配したものを8mn幅に裁断したものを
テープAとし、Co−Cr層、Ni−Fe層の上に夫々
メチルエチルケトンに溶かした300ppmのミリスチ
ン酸溶液を厚さ10μmに塗布し、乾燥したものをテー
プBとし、比較例と特開昭GO−50717(4) してNi−Fe層をもたないものでCo−Cr層のみの
ものをテープC,Co−Cr層上に前記したミリスチン
酸溶液を同量塗布したものをテープDとした。
Tape A is a product of the present invention in which a Co-Cr ferromagnetic layer and a Ni-Fe soft magnetic layer are respectively arranged on both sides of polyethylene terephthalate as a polymer substrate 9 and cut into a width of 8 mm. , a 300 ppm myristic acid solution dissolved in methyl ethyl ketone was applied on the Ni-Fe layer to a thickness of 10 μm, and the dried product was used as Tape B. Tape C had no Fe layer and had only a Co--Cr layer, and Tape D had the Co--Cr layer coated with the same amount of the above-mentioned myristic acid solution.

〔実施例−2〕 高分子基板9としてポリアミド基板(厚さ8μm)を、
あらかじめXeイオンボンバード処理、(Xeイオン電
流密度10 lt A/crtt 、 X e+イオン
エネルギーIKeV)l、、A元素18をCr としB
元素19をC080%、Ni2O%(7)合金とし、蒸
着速度をOrは200人/n、CoNiは700人/渡
として、厚さが0.18μmのCo−Ni−Cr膜を得
た。
[Example-2] A polyamide substrate (thickness: 8 μm) was used as the polymer substrate 9,
Xe ion bombardment treatment (Xe ion current density 10 lt A/crtt,
Element 19 was an alloy of CO80% and Ni2O% (7), and the deposition rate was 200 people/n for Or and 700 people/n for CoNi to obtain a Co-Ni-Cr film with a thickness of 0.18 μm.

このCo−Ni−Cr膜は面内磁化膜で、面内の保磁力
が1200 (エルステッド〕で飽和磁束密度B8は3
400[ガウス〕であった。
This Co-Ni-Cr film is an in-plane magnetized film with an in-plane coercive force of 1200 (Oersted) and a saturation magnetic flux density B8 of 3.
It was 400 [Gauss].

蒸着時の真空度は酸素外IE 1.5 X 10−5(
Tory、]。
The degree of vacuum during vapor deposition was IE 1.5 x 10-5 (excluding oxygen).
Tory, ].

水分圧a x 1o−6(Torr、)、水素分圧7×
1σ6[Tart) 、窒素分圧5 X 10−’ (
To’rr)、他の残留ガス成分を含めてa、s x 
1o−5[Tor r ] であった。
Water pressure a x 1o-6 (Torr, ), hydrogen partial pressure 7 x
1σ6 [Tart), nitrogen partial pressure 5 x 10-' (
To'rr), including other residual gas components a, s x
It was 1o-5 [Torr].

13ページ 次に、高分子基板9としてのポリアミド基板のもう一方
の面に蒸着できるように第3図の装置に装着し直して、
軟磁性層の形成を行った。
Page 13 Next, it was reinstalled into the apparatus shown in FIG. 3 so that it could be deposited on the other side of the polyamide substrate as the polymer substrate 9.
A soft magnetic layer was formed.

第3図の装置でへ元素18をMnとしB元素19をNi
−Fe (Ni80%)として蒸着速度をMnが360
人/sec 、 Ni−Feが1100八/secとし
て厚さが0.317zmのMn−Ni−Fe膜を得た。
In the apparatus shown in Fig. 3, the element 18 is Mn and the element B 19 is Ni.
- Fe (Ni80%) and Mn deposition rate is 360%
A Mn-Ni-Fe film having a thickness of 0.317 zm was obtained by setting the Ni-Fe film to 1,100 m/sec and 1,100 m/sec.

このMn −N i −F e膜の保磁力は0.3〔エ
ルステンド〕で飽和磁束密度Bsは6000〔ガウス〕
であった。
The coercive force of this Mn-Ni-Fe film is 0.3 [Oerstende] and the saturation magnetic flux density Bs is 6000 [Gauss].
Met.

尚、Mn−Ni−Fe膜の形成時の真空度は2.5 X
 10 [Torr〕 で酸素分圧が最大で1.8 X
 10 [:Torr、] の分圧で制御した。
The degree of vacuum during the formation of the Mn-Ni-Fe film was 2.5
10 [Torr] and oxygen partial pressure up to 1.8X
It was controlled at a partial pressure of 10 [:Torr,].

電子分光分析、X線電子分光分析の結果、Mn −Ni
−Fe膜は柱状結晶から成シ、その柱状結晶の表面はM
 n O2とFe5o4膜の混合層が約120人形成さ
れておl) M n O2とFe3O4の比率はMnと
Feの元素比率で2:3であることがわかった。
As a result of electron spectroscopy and X-ray electron spectroscopy, Mn-Ni
-The Fe film is formed from columnar crystals, and the surface of the columnar crystals is M
It was found that about 120 mixed layers of nO2 and Fe5o4 films were formed, and the ratio of MnO2 and Fe3O4 was 2:3 in terms of the elemental ratio of Mn and Fe.

両面に蒸着しただけの8喘幅のテープをテープEとし、
Co−Ni−Cr層、 Mn −N i −F e層の
表面に夫々トルエンに溶かしたステアリン酸IIF鉛溶
液を厚みが10 pmに塗布し乾燥したものをテープF
とし、比較例としてMn−Ni−Fe層をもたないもの
でCo−NiC1層のみのテープをテープG、同じ(M
n −N i −F e層を形成しないでCo−Ni 
−Cr層上に前記したステアリン酸亜鉛溶液を同量塗布
したものをテープHとした。
Tape E is a tape with a width of 8 mm that is simply vapor-deposited on both sides.
A solution of lead stearate IIF dissolved in toluene was applied to the surface of the Co-Ni-Cr layer and the Mn-Ni-Fe layer to a thickness of 10 pm and dried to form tape F.
As a comparative example, a tape with only one Co-NiC layer but without an Mn-Ni-Fe layer was used as tape G, which was the same (M
Co-Ni without forming n-Ni-Fe layer
Tape H was prepared by applying the same amount of the above zinc stearate solution onto the -Cr layer.

以上述べたテープAからテープHまでの8種類のテープ
にギャップ長が0.3μm のセンダストヘッドで記録
波長0.66μmを飽和記録した。
On the eight types of tapes from Tape A to Tape H described above, saturation recording was performed at a recording wavelength of 0.66 μm using a Sendust head with a gap length of 0.3 μm.

この記録レベルを記録直後に確昭した。即ち0.3μm
のギャップのフェライトヘッドで再生した時のヘッド出
力を夫々基準にし、特定の環境における1ケ月保存後の
再生出力を相対比較した。
This record level was confirmed immediately after recording. That is, 0.3μm
Based on the head output when playing with a ferrite head with a gap of 1, the playback output after storage for one month in a specific environment was compared relative to each other.

その結果をデシベルで表示し、まとめたものを次表に示
した。
The results are expressed in decibels and summarized in the table below.

以下余白 16ベ〜・ 上表から明らかなように本発明品はテープとして巻回し
て保存した時に記録レベルを安定に保持できるものであ
り、この効果は更に記録波長を短かくするとより顕著で
あり、例えばテープBで0.4μmを記録して保存環境
を前述した3環境で比較した時、記録レベルはそのまま
初期値を保持したのに対しテープDでは6C)C60%
RH,1ケ月後の出力はedB減少していた。
The following margin is 16 pages. As is clear from the table above, the product of the present invention can stably maintain the recording level when stored as a wound tape, and this effect becomes even more pronounced when the recording wavelength is further shortened. For example, when recording 0.4 μm on tape B and comparing the storage environment in the three environments mentioned above, the recording level remained at the initial value, whereas on tape D, the recording level was 6C60%.
RH, the output after one month had decreased by edB.

特WU口HGO−50717(5) 本発明品は他の構成に比べて、前述した保存特性の出力
面での保存性の良好さと同時に、カッピングが両面金属
薄膜であることから変化しにくいことやくり返し使用で
のドロップアウトの異常増加がないなどの特長も併せ持
っている。
Special WU Mouth HGO-50717 (5) Compared to other configurations, the product of the present invention has good storage stability in terms of output as described above, and is less likely to change because the cupping is a thin metal film on both sides. It also has features such as no abnormal increase in dropouts due to repeated use.

特にこの効果は酸素雰囲気で薄膜形成したため柱状構造
の結晶表面が酸化物で被覆され、硬くかつ、環境の影響
を受けにくいことによる効果と思われるものである。
In particular, this effect is thought to be due to the fact that the thin film was formed in an oxygen atmosphere, so the crystal surface of the columnar structure was coated with oxide, making it hard and less susceptible to environmental influences.

他の実施例として実施例−1と実施例−2と同様のテー
プ試作をそれぞれの高分子基板を3゜KeV、12μA
/ctAの電子注入でエレクトレット化して比較した。
As another example, tape prototypes similar to those in Example-1 and Example-2 were manufactured with each polymer substrate heated at 3°KeV and 12μA.
/ctA was made into an electret by electron injection and compared.

エレクトレット化した高分子基板について前述した保存
特性を詳細に検討したが、更に保存特性が改善されてい
た。
The storage characteristics of the electret polymer substrate were examined in detail, and the storage characteristics were further improved.

即ちテープAとテープ八条件で高分子基板が前記条件で
エレクトレット化されたものを6o℃60%RHに3ケ
月保存したところ、テープAは、再生出力が約1dB低
下していたが、エレクトレ17ページ ソト化された高分子基板による本発明の構成品は、初期
の再生出力が保持されていた。
That is, when tape A and tape 8, in which the polymer substrate was made into electret under the above conditions, were stored at 6oC and 60% RH for 3 months, the playback output of tape A decreased by about 1 dB, but with electret 17. The component of the present invention using a page-sorted polymer substrate maintained its initial playback output.

この効果については再現性良く得ることができるが、エ
レクトレット化されることでの高分子基板内の空間電荷
分布が磁化された状態の保存にどう作用するかについて
はまだ明確に理解できない部分が多いので検討中である
Although this effect can be obtained with good reproducibility, there are still many aspects that are not clearly understood as to how the space charge distribution within the polymer substrate after being made into an electret affects the preservation of the magnetized state. Therefore, it is currently under consideration.

尚、本発明の効果は保存期間が短かくても確認されてい
る。
Note that the effects of the present invention have been confirmed even when the storage period is short.

発明の効果 以上のように本発明の金属薄膜型磁気テープによると、
高分子基板の一方の面に強磁性金属薄膜から成る磁気記
録層を配し、他方の面に軟磁性層を配する構成にしたた
め、記録した状態で巻き取られることにより、記録され
た記録層と軟磁性層が隣接するため、記録単位である永
久磁石の漏れ磁束が軟磁性層で効率よく閉じられるため
、外部磁界の影響を受けに<<、低温から高温捷での保
存環境に長期保存しても安定に記録磁化量を維持できる
効果を有するものである。
Effects of the Invention According to the metal thin film magnetic tape of the present invention, as described above,
Since the magnetic recording layer made of a ferromagnetic metal thin film is arranged on one side of the polymer substrate and the soft magnetic layer is arranged on the other side, the recorded recording layer can be wound up in the recorded state. Since the magnetic layer and the soft magnetic layer are adjacent to each other, the leakage magnetic flux of the permanent magnet, which is the recording unit, is efficiently closed by the soft magnetic layer. This has the effect of stably maintaining the amount of recorded magnetization even when the magnetic field is used.

18 ′ この効果は短波長になる程大きいので、消去してくり返
し使用する用途でも若干改良されるが、記録として長期
保存する上で、より高密度記録が望まれる磁気記録分野
に於て、信頼性を確保できるものでその産業性は大きい
18' This effect becomes larger as the wavelength becomes shorter, so it is slightly improved even in applications where it is erased and used repeatedly, but it is not reliable in the field of magnetic recording where higher density recording is desired for long-term storage. It has great industrial potential as it can ensure safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属薄膜型磁気テープの断面図、第2図
は本発明の一実施例における金属薄膜型磁気テープの断
面図、第3図は第2図の金属薄膜型磁気テープを得るの
に用いた巻取蒸着装置の要部構成図である。 5・・・・・・高分子基板、6・・・・・・磁気記録層
、8・・・・・・軟磁性層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
FIG. 1 is a sectional view of a conventional metal thin film magnetic tape, FIG. 2 is a sectional view of a metal thin film magnetic tape according to an embodiment of the present invention, and FIG. 3 is a sectional view of the metal thin film magnetic tape obtained in FIG. 2. FIG. 2 is a configuration diagram of main parts of a winding vapor deposition apparatus used in the above. 5...Polymer substrate, 6...Magnetic recording layer, 8...Soft magnetic layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 高分子基板の一方の而に強磁性金属薄膜から成る磁気記
録層を配し、他方の面に軟磁性層を配したことを特徴と
する金属薄膜型磁気テープ。
A metal thin film type magnetic tape characterized in that a magnetic recording layer made of a ferromagnetic metal thin film is arranged on one side of a polymer substrate, and a soft magnetic layer is arranged on the other side.
JP15940883A 1983-08-31 1983-08-31 Metallic thin film magnetic tape Pending JPS6050717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15940883A JPS6050717A (en) 1983-08-31 1983-08-31 Metallic thin film magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15940883A JPS6050717A (en) 1983-08-31 1983-08-31 Metallic thin film magnetic tape

Publications (1)

Publication Number Publication Date
JPS6050717A true JPS6050717A (en) 1985-03-20

Family

ID=15693107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15940883A Pending JPS6050717A (en) 1983-08-31 1983-08-31 Metallic thin film magnetic tape

Country Status (1)

Country Link
JP (1) JPS6050717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099037A1 (en) 2008-02-08 2009-08-13 Wako Pure Chemical Industries, Ltd. Primer and probe for detecting chlamydophila caviae, as well as a chlamydophila caviae detection method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099037A1 (en) 2008-02-08 2009-08-13 Wako Pure Chemical Industries, Ltd. Primer and probe for detecting chlamydophila caviae, as well as a chlamydophila caviae detection method using the same
EP2546344A2 (en) 2008-02-08 2013-01-16 Wako Pure Chemical Industries, Ltd. Primer and probe for detecting chlamydophilia caviae, as well as chlamydophilia caviae detection method using the same

Similar Documents

Publication Publication Date Title
Bate Magnetic recording materials since 1975
EP0573026B1 (en) Magnetic recording medium and method for producing the same
US4604293A (en) Process for producing magnetic recording medium
JPH0328735B2 (en)
JPS6050717A (en) Metallic thin film magnetic tape
JPH0576703B2 (en)
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JP3206322B2 (en) Magnetic head and magnetic recording / reproducing device
JPS6194239A (en) Preparation of magnetic recording medium
JPH0341899B2 (en)
JPS61284829A (en) Magnetic recording medium
EP0653747A1 (en) Magnetic recording medium and manufacturing method thereof
JPS6037528B2 (en) Manufacturing method for magnetic recording media
JPH0418371B2 (en)
JPH01319120A (en) Magnetic recording medium
JPH05159267A (en) Magnetic recording medium and production of the medium
JPH061550B2 (en) Method of manufacturing magnetic recording medium
JPS615424A (en) Magnetic recording medium
JPH0473215B2 (en)
JPH01319119A (en) Magnetic recording medium
JPH054724B2 (en)
Tsutsumi et al. Fabrication and Properties of Double Layer Perpendicular Rigid Disks
JPH01205713A (en) Magnetic recording medium
JPS62219317A (en) Thin metallic film type magnetic recording medium
JPH0473213B2 (en)