JPH01215307A - Hollow yarn membrane made of aromatic polysulfone and production thereof - Google Patents

Hollow yarn membrane made of aromatic polysulfone and production thereof

Info

Publication number
JPH01215307A
JPH01215307A JP4030588A JP4030588A JPH01215307A JP H01215307 A JPH01215307 A JP H01215307A JP 4030588 A JP4030588 A JP 4030588A JP 4030588 A JP4030588 A JP 4030588A JP H01215307 A JPH01215307 A JP H01215307A
Authority
JP
Japan
Prior art keywords
hollow fiber
water
polysulfone
spinning
aromatic polysulfone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4030588A
Other languages
Japanese (ja)
Other versions
JP2533787B2 (en
Inventor
Hiroyuki Nakamura
浩之 中村
Kiyoshi Ishii
清 石井
Akio Kojima
昭男 小島
Hajime Komada
肇 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63040305A priority Critical patent/JP2533787B2/en
Publication of JPH01215307A publication Critical patent/JPH01215307A/en
Application granted granted Critical
Publication of JP2533787B2 publication Critical patent/JP2533787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain a hollow yarn membrane having high water permeability required for ultrafiltration but preventing the permeation of gas from the outer surface owing to the dense outer surface structure by regulating the water permeability of a hollow yarn membrane in water under pressure to a specified value or above and the gas permeability in air under pressure to a specified value or below. CONSTITUTION:A spinning soln. prepd. from polysulfone, a solvent such as N-methyl-2-pyrrolidone or 2-pyrrolidone and additives such as polyethylene glycol is spun into hollow yarn by dry-wet spinning with a tube-in-orifice type nozzle. At this time, an internal solidifying liq. such as an aq. soln. of polyethylene glycol and an external solidifying liq. such as warm water are used and the temp. of the ejected spinning soln. is made higher than the temps. of the solidifying baths. Thus, a hollow yarn membrane made of arom. polysulfone and not having pores of >=0.2mum diameter in the outer surface is obtd. The water permeability of the membrane in water under 1kg/cm<2> pressure is >=600l/m<2>.hr and the gas permeability in air under 1kg/cm<2> pressure is <=0.01ml/m<2>.hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリスルホン系重合体からなる新規な中空糸
分離膜及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel hollow fiber separation membrane made of a polysulfone polymer and a method for producing the same.

(従来技術と問題点) エンジニアリングプラスチックスとして知られているポ
リスルホンは、機械的特性、耐熱性に優れていると同時
に耐薬品性にも優れているところから家庭用品を始めと
して医療機器分野を含む精密部品分野にら広く使用され
ている。
(Prior art and problems) Polysulfone, known as engineering plastics, has excellent mechanical properties, heat resistance, and chemical resistance, so it is used in household products and medical equipment fields. Widely used in precision parts field.

このようなポリスルホンは、中空糸への紡糸が容易であ
るため、気体、液体分離用の中空糸分離膜として使用す
ることができる。特に、高温度、強酸性又は強アルカリ
性条件下におけろ限外r過膜として極めて有用である。
Since such polysulfone can be easily spun into hollow fibers, it can be used as a hollow fiber separation membrane for gas and liquid separation. In particular, it is extremely useful as an ultrafiltration membrane under high temperature, strongly acidic or strongly alkaline conditions.

このようなポリスルホン中空糸分離膜を製造する方法と
しては、例えば特開昭54−145379.56一15
2704.58−8504.58−132112.58
−156018.59−58040.59−58042
.59−62311,59−189903.60−17
2312.60−222112.61−11110.6
1−28409.61〜42307.61−93801
に記載されている方法が知られている。これらの方法に
より、異った膜構造および異った膜性能を有するポリス
ルホン中空糸膜を製造できるが、その表面構造は、内表
面或いは外表面におよそ50λ〜lOμmの孔径の孔を
有するものである。また、これらの中空糸膜の純水透水
速度は内、圧式測定においては100−1200Q/m
”・hr −kg/cm”(内表面積基準)、外圧式測
定においては、50〜700Q/m” ・hr−kg/
c+++”(外表面積基準)程度であるが、生産性の向
上のために高透水性の中空糸膜が望まれている。
As a method for manufacturing such a polysulfone hollow fiber separation membrane, for example, Japanese Patent Application Laid-Open No. 54-145379.56-15
2704.58-8504.58-132112.58
-156018.59-58040.59-58042
.. 59-62311, 59-189903.60-17
2312.60-222112.61-11110.6
1-28409.61 to 42307.61-93801
The method described in is known. By these methods, polysulfone hollow fiber membranes with different membrane structures and different membrane performances can be produced, but the surface structure has pores with a pore size of about 50 λ to 10 μm on the inner or outer surface. be. In addition, the pure water permeation rate of these hollow fiber membranes is 100-1200Q/m in pressure measurement.
"・hr-kg/cm" (inner surface area standard), in external pressure measurement, 50 to 700Q/m"・hr-kg/
c+++'' (based on external surface area), a hollow fiber membrane with high water permeability is desired in order to improve productivity.

しかしながら、上記のような製造方法で得られたポリス
ルホン中空糸膜は、透水性が向上するに従い膜表面の孔
の孔径が大きくなり、外圧式測定で6OOC/m’ −
hr −kg/cm”以上の高透水性の中空糸膜はおよ
そ数μm以上の孔径の孔を外表面に有するのが常である
。特開昭60−222112の方法では内圧式測定で1
00OOC/m″・hr−kg/Cm!以上の高透水性
中空糸膜が得られるが、低ポリマー蟲度の紡糸原液を用
いているために膜の機械的強度が低く、また、内および
外表面に孔径1μmの大きな孔を有する構造になってい
る。
However, in the polysulfone hollow fiber membrane obtained by the above manufacturing method, as the water permeability improves, the pore diameter of the membrane surface increases, and the pore size of the membrane surface increases by 6OOC/m'-
Hollow fiber membranes with high water permeability of hr -kg/cm or more usually have pores with a pore diameter of several μm or more on the outer surface.
Although a highly water permeable hollow fiber membrane of over 00OOC/m''・hr-kg/Cm! can be obtained, the mechanical strength of the membrane is low due to the use of a spinning dope with low polymer density, and the internal and external The structure has large pores with a diameter of 1 μm on the surface.

一般に、紡糸原液をチューブインオリフィス型ノズルよ
り乾部を経て、凝固浴中へ吐出させる乾湿式紡糸におい
て、凝固浴の温度を上げること、或いは、乾部雰囲気の
温湿度を上げることなどが高透水性中空糸膜を得る方法
として知られているが、この方法を用いた場合も、内表
面或いは外表面に大孔径の孔を有する結果となり、膜の
分画性能も変化することが多い。
In general, in wet-dry spinning, in which the spinning stock solution is discharged from a tube-in-orifice nozzle through a dry zone into a coagulation bath, high water permeability can be achieved by increasing the temperature of the coagulation bath or by increasing the temperature and humidity of the dry zone atmosphere. Although this method is known as a method for obtaining hollow fiber membranes, even when this method is used, the result is that the inner or outer surface has large pores, and the fractionation performance of the membrane often changes.

また、水中で中空糸の外表面側を空気または窒素等のガ
スで加圧し、ピンホールの有無を検査できるが、外表面
に大孔径の孔があると、ピンホールとは無関係に外表面
を通過した気体が中空糸の肉厚部分を伝って糸端面から
放出され、ピンホールの有無の判定がしづらいことも問
題点の1つとして挙げられる。従って、高透水性の膜と
して最も望ましいのは、膜表面に小さな孔径の孔を数多
く存在させることである。
In addition, the presence or absence of pinholes can be inspected by pressurizing the outer surface of the hollow fiber with air or gas such as nitrogen in water, but if there are large pores on the outer surface, the outer surface will be inspected regardless of the pinhole. Another problem is that the gas that has passed through the hollow fiber is discharged from the end face of the hollow fiber through its thick wall, making it difficult to determine the presence or absence of pinholes. Therefore, it is most desirable for a highly water-permeable membrane to have a large number of small pores on the membrane surface.

そこで本発明は、限外?過に要求される高透水性を有し
ながら外表面の構造が緻密で、外表面から実質的に気体
を通過させない中空糸膜を得ることを特徴とする 特に本発明においては分画分子量が10万程度の限外を
過を行う場合に、外圧式で測定した純水透水速度が60
0i2/m’ −hr−kg/cm″(外表面積基準)
以上である芳香族ポリスルホン製中空糸膜において上記
条件を満たすことを目的としている。
Therefore, the present invention is limited? In particular, in the present invention, the hollow fiber membrane is characterized in that it has the highly required high water permeability, has a dense structure on the outer surface, and substantially does not allow gas to pass through the outer surface. When passing through the limit of about 10,000, the pure water permeation rate measured using an external pressure method is 60,000 yen.
0i2/m'-hr-kg/cm'' (based on outer surface area)
The purpose of the present invention is to satisfy the above conditions in the hollow fiber membrane made of aromatic polysulfone.

(問題点を解決するための手段) 本発明者らは、上記問題を解決すべく鋭意検討、研究し
た結果、外表面に孔径0,2μm以上の孔を持たない中
空糸膜において、外表面からの気体の透過は数kg/c
m”の加圧ではほとんど不可能であることを見い出し、
本発明に到達した。
(Means for Solving the Problems) As a result of intensive study and research in order to solve the above problems, the present inventors found that in hollow fiber membranes that do not have pores with a pore diameter of 0.2 μm or more on the outer surface, The gas permeation rate is several kg/c.
We discovered that it is almost impossible to apply a pressure of
We have arrived at the present invention.

即ち本発明は、l kg/cm”加圧下において、氷山
での加圧では透水量が600ff/m”・hr以上であ
り、空気中での加圧では、透気量が0.01m12/m
”−hr以下であることを特徴とする芳香族ポリスルホ
ン製中空糸膜およびその製造法を提供するものである。
That is, in the present invention, under a pressure of 1 kg/cm, the water permeability is 600 ff/m"・hr or more when pressurized with an iceberg, and the air permeability is 0.01 m12/m when pressurized in air.
The purpose of the present invention is to provide an aromatic polysulfone hollow fiber membrane characterized in that the heating time is less than -hr, and a method for producing the same.

本発明において使用するポリスルホン系重合体とは以下
の構造式で表わされるポリスルホンを示す。
The polysulfone polymer used in the present invention refers to polysulfone represented by the following structural formula.

CH,O、は整数 紡糸原液組成は、均一に溶解した状態を保てる限り特に
制限はなく、上記重合体とこれを溶解する溶剤、あるい
はさらに上記重合体を溶解しない非溶剤もしくは各種の
添加剤等より調製された原液を用いることができる。
CH, O, are integers The composition of the spinning stock solution is not particularly limited as long as it can be maintained in a uniformly dissolved state, and may include the above polymer and a solvent that dissolves it, or a non-solvent or various additives that do not dissolve the above polymer, etc. A stock solution prepared from the above can be used.

上記重合体を溶解する溶剤としては、2−ピロリドン、
N−メチル−2−ピロリドン、ジメチルホルムアミド、
ジメチルアセトアミド、テトラメチル尿素が一般に用い
られる。また、上記重合体を溶解しない非溶剤および添
加剤としては、ジオキサン、テトラヒドロフラン等の環
状エーテル、アセトン、メチルエチルケトン等の低級脂
肪族ケトン、エチレングリコール、ジェヂレングリコー
ル、プロピレングリコール、ポリエチレングリコール、
グリセリン等の脂肪族多価アルコール、ジメチルスルホ
キシド、水等が一般に用いられるが、これ以外にも脂肪
族エーテル、カルボン酸、アミン等の有機化合物や有機
あるいは無機の各種塩類を用いることもできる。   
 − 紡糸原液中のポリマー濃度は5〜35重量%が好ましい
が10〜30重量%が特に好ましい。原液中のポリマー
濃度が5重量%未満になると得られる中空糸膜の機械的
強度が著しく低下するため好ましくなく、また一方、3
5重量%を超えると、溶液粘度が上昇するため取り扱い
が困難になると同時に、得られる中空糸膜の透水速度が
低下するため好ましくない。
As the solvent for dissolving the above polymer, 2-pyrrolidone,
N-methyl-2-pyrrolidone, dimethylformamide,
Dimethylacetamide and tetramethylurea are commonly used. In addition, examples of non-solvents and additives that do not dissolve the above polymers include cyclic ethers such as dioxane and tetrahydrofuran, lower aliphatic ketones such as acetone and methyl ethyl ketone, ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol,
Aliphatic polyhydric alcohols such as glycerin, dimethyl sulfoxide, water, etc. are generally used, but in addition to these, organic compounds such as aliphatic ethers, carboxylic acids, amines, and various organic or inorganic salts can also be used.
- The polymer concentration in the spinning dope is preferably 5 to 35% by weight, particularly preferably 10 to 30% by weight. If the polymer concentration in the stock solution is less than 5% by weight, the mechanical strength of the hollow fiber membrane obtained will decrease significantly, which is undesirable.
If it exceeds 5% by weight, the viscosity of the solution increases, making it difficult to handle, and at the same time, the water permeation rate of the resulting hollow fiber membrane decreases, which is not preferable.

本発明の方法に従えば、上記のようにして調製された紡
糸原液をチューブインオリフィス型ノズルを使用して水
溶液中へ吐出させるが、この際の紡糸条件が本発明にお
いて極めて重要である。乾湿式または湿式いずれの方法
でも孔径0.2μm以上の孔を外表面に持たない中空糸
を得ることができるが、より高い透水速度を実現するた
めには乾湿式紡糸が最も望ましい。
According to the method of the present invention, the spinning stock solution prepared as described above is discharged into an aqueous solution using a tube-in-orifice type nozzle, and the spinning conditions at this time are extremely important in the present invention. Although it is possible to obtain hollow fibers that do not have pores with a pore size of 0.2 μm or more on the outer surface using either the wet-dry or wet-spinning method, wet-dry spinning is most desirable in order to achieve a higher water permeation rate.

内部および外部凝固液としては、水或いはメタノール、
エタノール、プロパツール、ブタノール等の脂肪族低級
アルコール、前記した環状エーテル、低級脂肪族ケトン
、脂肪族多価アルコール等を単独または2種以上混合し
て用いるが、これに各種の有機溶剤及びその他の添加剤
を加えて用いることもできろ。また、外部凝固液の温度
は、高透水性の中空糸膜を得るためには40℃以上が好
ましい。また、ノズルより吐出される紡糸原液の温度は
、外部凝固液の温度と比較して高いことが不可欠である
。原液の温度が外部凝固液の温度以下であると、中空糸
外表面の孔が大きく成長するので好ましくない。
Internal and external coagulation liquids include water or methanol;
Lower aliphatic alcohols such as ethanol, propatool and butanol, the above-mentioned cyclic ethers, lower aliphatic ketones, aliphatic polyhydric alcohols, etc. are used alone or in combination of two or more, and various organic solvents and other It is also possible to use additives. Further, the temperature of the external coagulation liquid is preferably 40° C. or higher in order to obtain a highly water permeable hollow fiber membrane. Further, it is essential that the temperature of the spinning stock solution discharged from the nozzle is higher than the temperature of the external coagulation liquid. If the temperature of the stock solution is lower than the temperature of the external coagulation liquid, the pores on the outer surface of the hollow fibers will grow large, which is not preferable.

乾湿式紡糸における乾部雰囲気の温度は40℃以上、相
対湿度は80%以上が透水性を上げるために好ましく、
この際、ノズルより吐出される紡糸原液の空中滞留時間
は原液温度が低下して、外部凝固槽温度より低くならな
い時間でなければならない。乾部雰囲気の温度が40℃
未満、或いは相対湿度が80%未満であると、紡糸原液
の温度が空気滞留中に低下し得られる中空糸膜の透水速
度が低下することになり好ましくない。また乾部雰囲気
の温度が40℃以上、相対湿度が80%以上の条件下で
あっても、ノズルより吐出される紡糸原液の空中滞留時
間が0.2秒を超えると中空糸外表面の孔が大きく成長
するので好ましくない。
In dry-wet spinning, the temperature of the dry part atmosphere is preferably 40°C or higher and the relative humidity is preferably 80% or higher in order to increase water permeability.
At this time, the residence time in the air of the spinning stock solution discharged from the nozzle must be such that the temperature of the stock solution does not drop to become lower than the temperature of the external coagulation tank. The temperature of the dry part atmosphere is 40℃
If the relative humidity is less than 80%, the temperature of the spinning stock solution decreases during air retention, and the water permeation rate of the resulting hollow fiber membrane decreases, which is not preferable. In addition, even if the temperature of the dry part atmosphere is 40°C or higher and the relative humidity is 80% or higher, if the residence time in the air of the spinning dope discharged from the nozzle exceeds 0.2 seconds, pores on the outer surface of the hollow fibers It is not desirable because it grows large.

(実施例) 以下、本発明を実施例によりさらに詳細に説明するが、
本発明はこれらに何ら限定されない。なお以下の実施例
および比較例で純水透水速度を測定しているが、これは
全て外圧式測定で外表面積を基準に算出した値である。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these in any way. Note that in the Examples and Comparative Examples below, pure water permeation rates are measured, but these are all values calculated based on the external surface area by external pressure measurement.

実施例1゜ ポリスルホン(U CC社製、ニーデルポリサルホンP
 −1700)20重量部、溶剤としてN−メチル−2
−ピロリドン40重量部、2−ピロリドン20重量部、
および添加剤として平均分子fi 1000のポリエチ
レングリコール(P E G 100G)20重量部よ
り均一に調製した紡糸原液をチューブインオリフィス型
ノズルより水中へ吐出して中空糸を紡糸した。
Example 1 Polysulfone (manufactured by UCC, needle polysulfone P)
-1700) 20 parts by weight, N-methyl-2 as a solvent
- 40 parts by weight of pyrrolidone, 20 parts by weight of 2-pyrrolidone,
A spinning stock solution uniformly prepared from 20 parts by weight of polyethylene glycol (PEG 100G) having an average molecular fi of 1000 as an additive was discharged into water from a tube-in-orifice nozzle to spin hollow fibers.

内部凝固液としては、75%ポリエチレングリコール(
P E G 200)水溶液、外部凝固液としては60
℃の温水を用いた。またノズルより吐出される紡糸原液
の温度は65℃、空中滞留時間は0,15秒、乾部雰囲
気の温度は42℃、相対湿度は95%、紡糸速度は20
m/sinであった。次いで得られた中空糸を完全に脱
溶剤ができるまで60℃の温水で洗浄した。
The internal coagulation liquid is 75% polyethylene glycol (
P E G 200) Aqueous solution, 60 as external coagulation liquid
℃ warm water was used. The temperature of the spinning dope discharged from the nozzle is 65°C, the residence time in the air is 0.15 seconds, the temperature of the dry part atmosphere is 42°C, the relative humidity is 95%, and the spinning speed is 20°C.
m/sin. Next, the obtained hollow fibers were washed with 60° C. warm water until the solvent was completely removed.

このようにして得られた中空糸膜にl kg/cn+2
の水圧で精製水(純水)を通過させて透水速度を測定し
たところ、760I2/m” ・hr −kg/cm”
であり、コンアルブミン(タンパク:分子ffi 87
000)の透過率は23%であった。またl kg/c
m”加圧下での外表面からの空気の透過量は7X10−
3IIIQ/I11″・hr−kg/cm”以下であっ
た。
The hollow fiber membrane obtained in this way has a weight of l kg/cn+2
The water permeability rate was measured by passing purified water (pure water) at a water pressure of 760I2/m"・hr -kg/cm"
and conalbumin (protein: molecule ffi 87
000) had a transmittance of 23%. Also l kg/c
m” The amount of air permeation from the outer surface under pressure is 7X10-
3IIIQ/I11″·hr-kg/cm” or less.

次に、この中空糸膜を用いて外圧全量r過量のモジュー
ルを製作後、水中に浸漬して糸外表面側を2 kg/c
m”の窒素ガスで加圧してピンホールの有無を検査した
ところ、中空′糸端面からの泡の発生は全く認められず
、ピンホールの存在しないことが確認された。
Next, after fabricating a module with a total external pressure r excess using this hollow fiber membrane, it was immersed in water and the outer surface of the fiber was heated to 2 kg/c.
When the sample was inspected for the presence of pinholes by pressurizing it with nitrogen gas, no bubbles were observed at all from the ends of the hollow fibers, and it was confirmed that there were no pinholes.

比較例1 実施例!と同じ紡糸原液を調製し、空中滞留時間を0.
3秒とした以外は実施例1と同様の条件で紡糸を行った
Comparative Example 1 Example! Prepare the same spinning stock solution as above, and set the air residence time to 0.
Spinning was carried out under the same conditions as in Example 1 except that the spinning time was 3 seconds.

得られた中空糸の純水透水速度は750Q/ff11h
r・kg/cn+”であり、コンアルブミン透過率は1
7%であった。また1 kg/cm″加圧下での外表面
からの空気の透過量は90mff/m″・hr−kg/
cI11!以上であった。
The pure water permeability rate of the obtained hollow fiber was 750Q/ff11h.
r・kg/cn+", and the conalbumin permeability is 1
It was 7%. Also, the amount of air permeation from the outer surface under 1 kg/cm'' pressure is 90 mff/m''・hr-kg/
cI11! That was it.

次に、実施例1と同様のピンホール検査を行なったとこ
ろ、中空糸端面から微小な泡か多数発生し、これらの泡
の発生箇所が中空糸中空部分なのか、あるいは肉厚部分
なのか、はとんど判別不可能であった。
Next, when a pinhole inspection similar to that in Example 1 was performed, a large number of minute bubbles were generated from the end face of the hollow fiber, and it was difficult to determine whether these bubbles were generated in the hollow part of the hollow fiber or in the thick part. was almost impossible to distinguish.

比較例2 実施例1と同じ紡糸原液を調製し、ノズルより吐出され
る際の原液温度を58℃とした以外は実施例1と同様の
条件で紡糸を行った。
Comparative Example 2 The same spinning stock solution as in Example 1 was prepared, and spinning was performed under the same conditions as in Example 1, except that the temperature of the stock solution when discharged from the nozzle was 58°C.

得られた中空糸の純水透水速度は650ρ/m”−hr
・kg/cm”であり、コンアルブミン透過率は17%
であった。また1 kg/cm”加圧下での外表面から
の空気の透過量は50m12/I11!・hr−kg/
cm鵞以上であった。
The pure water permeability rate of the obtained hollow fiber was 650ρ/m”-hr
・kg/cm” and conalbumin permeability is 17%
Met. Also, the amount of air permeation from the outer surface under 1 kg/cm" pressure is 50 m12/I11!・hr-kg/
It was larger than a cm parrot.

次に、実施例1と同様のピンホール検査を行なったとこ
ろ、中空糸端面から微小な泡が多数発生し、これらの泡
の発生箇所が中空糸中空部分なのか、あるいは肉厚部分
なのか、はとんど判別不可能であった。
Next, when a pinhole inspection similar to that in Example 1 was performed, many minute bubbles were generated from the end face of the hollow fiber, and it was unclear whether these bubbles were generated in the hollow portion of the hollow fiber or in the thick portion. was almost impossible to distinguish.

(発明の効果) 以上、説明してきたように本発明の製造法により得られ
たポリスルホン系重合体中空糸膜は、極めて高い透水性
を有すると同時に、モジュール化した後行われる、ピン
ホールの検査を容易にするものである。
(Effects of the Invention) As explained above, the polysulfone-based polymer hollow fiber membrane obtained by the production method of the present invention has extremely high water permeability, and at the same time, pinhole inspection is performed after modularization. It facilitates

特、許出願人  ダイセル化学工業株式会社−8・Patent and patent applicant: Daicel Chemical Industries, Ltd.-8.

Claims (4)

【特許請求の範囲】[Claims] (1)1kg/cm^2加圧下において、水中での加圧
では透水量が600l/m^2・hr以上であり、空気
中での加圧では透気量が0.01ml/m^2・hr以
下であることを特徴とする芳香族ポリスルホン製中空糸
膜。
(1) Under a pressure of 1 kg/cm^2, the water permeability is 600 l/m^2 hr or more when pressurized in water, and the air permeability is 0.01 ml/m^2 when pressurized in air.・An aromatic polysulfone hollow fiber membrane characterized by a hr or less.
(2)孔径0.2μm以上の孔を外表面に存在しないこ
とを特徴とする特許請求の範囲第1項記載の芳香族ポリ
スルホン製中空糸膜。
(2) The aromatic polysulfone hollow fiber membrane according to claim 1, characterized in that no pores with a pore diameter of 0.2 μm or more are present on the outer surface.
(3)芳香族ポリスルホン紡糸原液をチューブインオリ
フィス型ノズルより乾部を経て、凝固浴中へ吐出させる
乾湿式紡糸において、紡糸原液の温度が凝固浴の温度と
比較して高いことを特徴とする芳香族ポリスルホン製中
空糸膜の製造法。
(3) In dry-wet spinning in which aromatic polysulfone spinning dope is discharged from a tube-in-orifice type nozzle through a dry section into a coagulation bath, the temperature of the spinning dope is higher than the temperature of the coagulation bath. A method for producing hollow fiber membranes made of aromatic polysulfone.
(4)芳香族ポリスルホンが ▲数式、化学式、表等があります▼ で示す繰返し単位からなるポリスルホンである特許請求
の範囲第3項記載の芳香族ポリスルホン製中空糸膜の製
造法。
(4) The method for producing a hollow fiber membrane made of aromatic polysulfone according to claim 3, wherein the aromatic polysulfone is a polysulfone consisting of a repeating unit represented by ▲a numerical formula, a chemical formula, a table, etc.▼.
JP63040305A 1988-02-23 1988-02-23 Aromatic polysulfone hollow fiber membrane Expired - Fee Related JP2533787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63040305A JP2533787B2 (en) 1988-02-23 1988-02-23 Aromatic polysulfone hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63040305A JP2533787B2 (en) 1988-02-23 1988-02-23 Aromatic polysulfone hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH01215307A true JPH01215307A (en) 1989-08-29
JP2533787B2 JP2533787B2 (en) 1996-09-11

Family

ID=12576906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63040305A Expired - Fee Related JP2533787B2 (en) 1988-02-23 1988-02-23 Aromatic polysulfone hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2533787B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298833A (en) 2006-05-01 2007-11-15 Fujifilm Corp Method for preparing photosensitive resin composition and relief pattern using the same
US10398137B2 (en) * 2017-06-23 2019-09-03 Joseph Patrick Rosier Chumming device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152508A (en) * 1985-12-25 1987-07-07 Asahi Chem Ind Co Ltd Preparation of polysulfone membrane
JPS62171729A (en) * 1986-01-23 1987-07-28 Asahi Chem Ind Co Ltd Gas permselective membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152508A (en) * 1985-12-25 1987-07-07 Asahi Chem Ind Co Ltd Preparation of polysulfone membrane
JPS62171729A (en) * 1986-01-23 1987-07-28 Asahi Chem Ind Co Ltd Gas permselective membrane

Also Published As

Publication number Publication date
JP2533787B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JPS5812932B2 (en) Hollow fiber manufacturing method
JPH05212255A (en) Hollow fiber membrane
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
JP2000325765A (en) Solvent-resistant microporous polybenzoimidazole thin film
JPH0347127B2 (en)
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JPH01215307A (en) Hollow yarn membrane made of aromatic polysulfone and production thereof
JP7516382B2 (en) Porous membranes for high pressure filtration
JPS59166208A (en) Manufacture of gas separating membrane
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
KR20160078322A (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
JPH01210003A (en) Aromatic polysulfone hollow yarn membrane and its manufacture
KR102399330B1 (en) Acetylated alkyl cellulose separation membrane and method for preparing the same
JP3128875B2 (en) Polyphenylene sulfide sulfone hollow fiber membrane and method for producing the same
JP4075236B2 (en) Production method of polyphenylsulfone hollow fiber membrane
JP3422657B2 (en) Hollow fiber membrane for dehumidification
JPH01176407A (en) Production of hollow yarn membrane made of polysulfone
JPH01180207A (en) Production of polysulfone hollow yarn membrane
JPS6329562B2 (en)
JPH0199617A (en) Production of polysulfonic separation membrane
JP2818355B2 (en) Manufacturing method of hollow fiber membrane
JPS621007B2 (en)
JP2022538578A (en) Reactive additives in NMP-based membranes
JPS59112027A (en) Manufacture of hollow polysulfone fiber
JPH01162821A (en) Production of hollow fiber membrane of polysulfone

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees