JPH01214120A - Formation of pattern - Google Patents

Formation of pattern

Info

Publication number
JPH01214120A
JPH01214120A JP3859288A JP3859288A JPH01214120A JP H01214120 A JPH01214120 A JP H01214120A JP 3859288 A JP3859288 A JP 3859288A JP 3859288 A JP3859288 A JP 3859288A JP H01214120 A JPH01214120 A JP H01214120A
Authority
JP
Japan
Prior art keywords
pattern
irradiation
noise
electron beam
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3859288A
Other languages
Japanese (ja)
Inventor
Kazumi Iwatate
岩立 和巳
Korehito Matsuda
松田 維人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3859288A priority Critical patent/JPH01214120A/en
Publication of JPH01214120A publication Critical patent/JPH01214120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To obtain an accurate pattern by conducting n-times of multiple irradiation of an electron beam with the dose of 1/n of a desired total dose to a pattern forming region, and sufficiently lengthening the radiation period in this case as compared with a noise period to be superposed on the electron beam current. CONSTITUTION:An electron beam is radiated in a desired radiation amount to a desired position on a resist which sensitively responds to the electron beam thereby to form a latent image of predetermined storage energy, i.e., pattern in the resist, and a resist pattern is formed by developing on a substrate. Thus, when the pattern is formed, the beam is scanned from a beam scan starting position Ps to its finishing position Pe by dividing the scanning into n times so that the total sum of the beam radiation amount after it is scanned n times coincides with the desired radiation amount. Thus, the variation in the radiation amount due to noise is reduced to 1n<0.5> times by the n-times of multiplex radiations. Thus, when the n is increased more, the storage energy distribution of the pattern region is uniformized, and a pattern of a high dimensional accuracy is obtained after a development.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は、半導体集積回路、光集積回路、ジョセフソ
ン素子などの製造において、電子ビーム描画による微細
で、かつ高精度なパタン形成方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for forming fine and highly accurate patterns by electron beam writing in the manufacture of semiconductor integrated circuits, optical integrated circuits, Josephson devices, etc. It is.

〔従来の技術〕[Conventional technology]

半導体集積回路の高密度化と微細化の傾向は著しく、0
.2μm領域以下のSi、GaAsデバイス等の先端的
デバイスが開発されつつある。今後もこの傾向が続くと
考えられる。高精度に極微細ビームを制御できる電子ビ
ーム描画法は、これらの極微細デバイスのようなノルタ
ンを形成する方法の有力な一手段である。
The trend towards higher density and miniaturization of semiconductor integrated circuits is remarkable.
.. Advanced devices such as Si and GaAs devices in the 2 μm region or less are being developed. This trend is expected to continue in the future. Electron beam lithography, which can control ultrafine beams with high precision, is an effective method for forming nortans such as these ultrafine devices.

電子ビーム描画法では、電子ビームに感応するレジスト
上の所望の位置に電子ビームを所望の照射量だけ照射し
て、レジスト中に一定の蓄積エネルギー分布、すなわち
パターンの潜像を形成し現像することにより基板上にレ
ジストパタンを形成する。
In the electron beam lithography method, a desired amount of electron beam is irradiated onto a desired position on a resist that is sensitive to electron beams to form and develop a certain accumulated energy distribution in the resist, that is, a latent image of a pattern. A resist pattern is formed on the substrate.

極微細パタンの形成には、高精度に照射量を制御するこ
とが重要な条件であり、そのためにはビーム電流値が安
定していることが必要である。しかし、実際には、第4
図に示すように、ビーム電流に熱雑音、ショット雑音、
フリッカ雑音等の雑音が重畳しているためビーム電流は
変動する。雑音量は電子ビーム源の種類によって異なり
、熱陰極の場合は約2〜3%で、電界放射陰極の場合は
約5〜30%である。また、雑音の周波数はおおむね1
0Hz〜100kHz程度であることが知られている。
For the formation of ultra-fine patterns, it is important to control the irradiation amount with high precision, and for this purpose it is necessary that the beam current value be stable. However, in reality, the fourth
As shown in the figure, the beam current contains thermal noise, shot noise,
The beam current fluctuates because noise such as flicker noise is superimposed. The amount of noise varies depending on the type of electron beam source, and is about 2-3% for hot cathodes and about 5-30% for field emission cathodes. Also, the frequency of noise is approximately 1
It is known that the frequency is about 0Hz to 100kHz.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

雑音による照射量の変動のため、従来の描画法では以下
のような問題があった。
Conventional drawing methods have the following problems due to fluctuations in the dose due to noise.

第3図は従来の描画方法および現像後のパタン形状を示
している。通常、所望のパタン領域に照射量りを与えよ
うとする場合、描画開始直前に実測した電流値と次式に
より、ビームの照射時間あるいは走査クロック周波数を
あらかじめ決定する。
FIG. 3 shows a conventional drawing method and a pattern shape after development. Normally, when applying a certain amount of irradiation to a desired pattern area, the beam irradiation time or scanning clock frequency is determined in advance based on the current value actually measured just before the start of writing and the following equation.

D=I−t/S=I/(p2  ・f) ・・・・・・
 (1)ここで、D:照射量、I:ビーム量、t:照射
時間、S:照射面積、p:ビームの照射ピッチ、f:ビ
ームの走査クロック周波数である。
D=I-t/S=I/(p2 ・f) ・・・・・・
(1) Here, D: irradiation amount, I: beam amount, t: irradiation time, S: irradiation area, p: beam irradiation pitch, f: beam scanning clock frequency.

この描画条件で、ポイント・ビームの場合は、第3図(
a)のようにビーム走査開始位置P、(開始の時間11
)からビーム走査終了位置p、(終了の時間ti)まで
をビーム走行することにより描画パターンW1を描く。
Under these drawing conditions, in the case of a point beam, Figure 3 (
As shown in a), the beam scanning start position P, (starting time 11
) to the beam scanning end position p and (end time ti), the drawing pattern W1 is drawn.

第3図(b)はビーム電流Iの変動を示すもので、時間
t、とt2の間に雑音により電流値が11から工2まで
変動しており、この変動に対応して照射量も変動するか
ら、照射領域内の蓄積エネルギー分布が均一とならない
Figure 3(b) shows the fluctuation of the beam current I. The current value fluctuates from 11 to 2 due to noise between times t and t2, and the irradiation amount also fluctuates in response to this fluctuation. Therefore, the accumulated energy distribution within the irradiation area is not uniform.

そのため、現像後のパタンWbは第3図(c)に示すよ
うな形状になり、パタン寸法精度やパタン品質の低下が
生じるという問題があった。特に、高精度な寸法精度が
要求される極微細パタン形成では大きな問題となってい
た。
Therefore, the pattern Wb after development has a shape as shown in FIG. 3(c), and there is a problem in that pattern dimensional accuracy and pattern quality deteriorate. In particular, this has been a big problem in the formation of ultra-fine patterns that require high dimensional accuracy.

この発明は、上記問題点を解決するためになされたもの
で、パタン形成領域を多重照射することにより雑音によ
る照射量の変動を減少させて、極微細、かつ高精度のパ
タン形成を可能ならしめたパタン形成方法を提供するこ
とを目的とするものである。
This invention was made in order to solve the above-mentioned problems, and by irradiating the pattern forming area multiple times, fluctuations in the irradiation amount due to noise are reduced, making it possible to form extremely fine and highly accurate patterns. The object of the present invention is to provide a method for forming a pattern.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかるパタン形成方法は、パタン形成領域を
所望の照射量の1 / nの照射量でn回の多重照射を
行うようにしたものであり、その際、照射周期を電子ビ
ーム電流に重畳する雑音の周期よりも十分長くするもの
である。
In the pattern forming method according to the present invention, multiple irradiation is performed on the pattern forming area n times at a dose of 1/n of the desired dose, and at that time, the irradiation period is superimposed on the electron beam current. The period should be made sufficiently longer than the period of the noise generated.

〔作用〕[Effect]

この発明においては、n回の多重照射により雑音の影響
が抑制され、高精度のパタン形成がなされる。
In this invention, the influence of noise is suppressed by n times of multiple irradiation, and a highly accurate pattern can be formed.

〔実施例〕〔Example〕

以下、図面についてこの発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

まず、この発明の原理について説明する。First, the principle of this invention will be explained.

一般に、信号と雑音の比を改善する方法として時間領域
における同期加算の理論(「ディジタル信号処理」電子
通信学会績、 ANALOG 5IGNAL PRO−
CESSING AND INSTURUMENTAT
ION CAMBRIDGE UNIV−ER5ITY
 PRESS等参照)が知られている。入力信号中の特
定部分の時刻を原点として入力信号を適当な回数だけサ
ンプリングして累積すると、信号は常に同じものが加え
合わされるのに対し、雑音は1回ごとにその値が異なる
から、信号と雑音の比が加算回数の平方根に比例して改
善される。ただし、サンプリング周期はサンプリングさ
れた雑音値が相関関係を持たない程度に十分な長さとす
る。
Generally, the theory of synchronous addition in the time domain ("Digital Signal Processing" IEICE, ANALOG 5IGNAL PRO-
CESSING AND INSTRUMENTAT
ION CAMBRIDGE UNIV-ER5ITY
PRESS et al.) are known. If the input signal is sampled an appropriate number of times and accumulated with the time of a specific part of the input signal as the origin, the same signal will always be added, but noise has a different value each time, so the signal and noise ratio is improved in proportion to the square root of the number of additions. However, the sampling period should be long enough so that the sampled noise values have no correlation.

雑音の周期に比べて多重照射の周期を十分長くすること
により、上記論理をこの発明に適用できる。
The above logic can be applied to the present invention by making the period of multiple irradiation sufficiently long compared to the period of noise.

以下、図面に基づいてこの発明の一実施例を説明する。An embodiment of the present invention will be described below based on the drawings.

この発明では、所望のパタン形成領域に照射量りを与え
ようとする場合、1回当りの照射量をD/nとしてn回
の多重照射を行う。また、照射の周期Tを雑音の周期で
よりも十分長くとる。ビーム電流と雑音との比をSNR
とする。
In this invention, when it is desired to apply a certain amount of irradiation to a desired pattern forming area, multiple irradiation is performed n times, with each irradiation amount being D/n. Furthermore, the period T of irradiation is set to be sufficiently longer than the period of noise. SNR is the ratio of beam current to noise
shall be.

ポイント・ビームの場合の描画方法を第1図に示す。第
1図(a)は、第3図(a)と同じく描画パタンW1を
示すもので、p、、p、はビーム走査開始位置、ビーム
走査終了位置であり、第1図(b)にビーム基?ffi
 Iと時間との関係を示す。
The drawing method in the case of a point beam is shown in FIG. FIG. 1(a) shows the drawing pattern W1 as in FIG. 3(a), p, , p are the beam scanning start position and beam scanning end position, and FIG. 1(b) shows the drawing pattern W1. Base? ffi
The relationship between I and time is shown.

第1図(b)に示すように、各時間t1からt2、t3
からt4、・・・・・・、t2n−1からt2T1の間
でビーム走査開始位tp、かうビーム走査終了位置P。
As shown in FIG. 1(b), from each time t1 to t2, t3
to t4, ..., the beam scanning start position tp and the beam scanning end position P between t2n-1 and t2T1.

までのビーム走査する。全ビーム走査回数はn回である
。各回の照射時間にビーム電流Iは第1図(b)のよう
に、11からI2、I3からI4、・・・・・・、I2
n−1からI2.nまで変化する。各回の照射量D1は
以下のように表せる。
The beam scans up to. The total number of beam scans is n times. At each irradiation time, the beam current I changes from 11 to I2, from I3 to I4, I2, as shown in Fig. 1(b).
n-1 to I2. It varies up to n. The irradiation amount D1 for each time can be expressed as follows.

DI =D/n+d11 (i =1.2.−・”、n
)D=(ΣDi)=DΣdi ただし、D / nはビーム電流Iによる照射量、dl
は雑音による照射量である。
DI=D/n+d11 (i=1.2.-・", n
)D=(ΣDi)=DΣdi where D/n is the dose due to beam current I, dl
is the radiation dose due to noise.

dlは各照射ごとにランダムな値をとるから、nが(1
)であればΣdiは薯となる。nが有限ならば、以下の
式になる。
Since dl takes a random value for each irradiation, n is (1
), then Σdi becomes yam. If n is finite, the following formula is obtained.

D=(ΣDi)=D+Σdi =D (1+1/ (FW−5NR))このように、n
回の多重照射により雑音による照射量の変動は1/ f
T−倍に低減されて、nを大きくとることによりパタン
領域における蓄積エネルギー分布は均一になる。したが
フて、現像後の描画パタンW、。は、第1図(C)のよ
うに、高い寸法度でパタン形成できる。この発明を、実
際のLSIパタン描画等に適用する場合、注意を要する
点がある。この発明の原理にしたがえば、雑音の周期に
比べて多重照射の周期を十分長くしなければならないの
で、1つのパタンだけを連続してn回照射すると描画の
待ち時間が増大し、全体としてスルーブツトが低下する
。幸いなことに、実際のLSIパタンでは第2図(a)
のように主フィールドFが多数のサブ・フィールドFs
に分けられており、パタン■、■、・・・・・・という
ようにパタン数が膨大であり、これらはチップ内に分散
している。この場合、第2図(b)に示すように、多重
描画すれば照射の周期Tが雑音の周期でよりも十分長い
という条件を満足するとともに、描画時間の無駄をなく
すことができる。
D=(ΣDi)=D+Σdi=D (1+1/ (FW-5NR)) Thus, n
Due to multiple irradiation, the variation in irradiation amount due to noise is 1/f
By increasing n by a factor of T, the distribution of stored energy in the pattern region becomes uniform. Therefore, the drawing pattern W after development. As shown in FIG. 1(C), a pattern can be formed with high dimensional accuracy. When this invention is applied to actual LSI pattern drawing, etc., there are some points that require attention. According to the principle of this invention, the period of multiple irradiation must be made sufficiently long compared to the period of noise, so if only one pattern is irradiated n times in succession, the waiting time for drawing increases, and the overall Throughput decreases. Fortunately, the actual LSI pattern is as shown in Figure 2(a).
The main field F has many sub-fields Fs as in
There are a huge number of patterns, such as patterns ■, ■, etc., and these are distributed within the chip. In this case, as shown in FIG. 2(b), by performing multiple writing, it is possible to satisfy the condition that the irradiation period T is sufficiently longer than the noise period, and to eliminate wasted writing time.

多重照射は (1)一定数のパタンごと、 (2)サブ
・フィールド(副変向領域)F8ごと、 (3)主フィ
ールド(主変更領域)Fごと、 (4)一定の描画時間
ごと、に繰り返す方法があり、装置の性能やパタンの描
画条件を考慮して適当な方法を選択すればよい。また、
上記の実施例は要求された照射量りの1 / nの照射
量り、=D2=−:−−−−=Dnでn回の多重照射を
行うものであったが、D1≠D2≠・・・・・・≠Dn
でも同様な効果が得られる。ただし、D=D、+D2+
・・・・−+ D n次にこの発明の具体例について述
べる。
Multiple irradiation is performed for (1) every certain number of patterns, (2) every sub-field (sub-direction area) F8, (3) every main field (main change area) F, (4) every certain drawing time. There is a repeating method, and an appropriate method may be selected in consideration of the performance of the device and the pattern drawing conditions. Also,
In the above embodiment, multiple irradiation was performed n times with a dose of 1/n of the required dose, =D2=-:-----=Dn, but D1≠D2≠... ...≠Dn
But you can get the same effect. However, D=D, +D2+
...-+ D nNext, a specific example of this invention will be described.

ポイント・ビームを使用して0.2μm×1500μm
のライン及スペース・パタンを[iした。ライン数は1
0本である。試料はSt基板に電子ビーム用ポジ形レジ
ストを0.5μmの膜厚で塗布した。ビーム・ピッチは
0.02μm1ビーム電流は3nAである。信号に対す
る雑音量は17%であり、雑音の周波数成分は10Hz
〜1kHzである。ライン・パタンの形成に必要な照射
量りは400uC/cm2である。多重照射回数nを2
0として1回当りの照射量を20μC/cm2とした。
0.2μm x 1500μm using point beam
I changed the line and space pattern of [i. The number of lines is 1
There are 0 pieces. The sample was a St substrate coated with a positive resist for electron beams to a thickness of 0.5 μm. The beam pitch is 0.02 μm and the beam current is 3 nA. The amount of noise relative to the signal is 17%, and the frequency component of the noise is 10Hz.
~1kHz. The amount of radiation required to form the line pattern is 400 uC/cm2. The number of multiple irradiations n is 2
0 and the irradiation amount per time was 20 μC/cm 2 .

10本のライン・パタンを描画するごとに照射を繰り返
した。照射の周期は200m5である。使用したビーム
走査クロック周波数および形成したパタンの寸法精度を
第1表に示す。これから多重照射によりパタン寸法精度
が向上したことが判る。
Irradiation was repeated every time 10 line patterns were drawn. The period of irradiation is 200 m5. Table 1 shows the beam scanning clock frequency used and the dimensional accuracy of the formed pattern. It can be seen from this that the pattern dimensional accuracy was improved by multiple irradiation.

第  1  表 また、この発明は、ポイント・ビームの場合のみならず
、可変成形ビームを用いた描画の場合にも有効である。
Table 1 Furthermore, the present invention is effective not only in the case of a point beam but also in the case of drawing using a variable shaped beam.

従来の可変成形ビームによる描画では、パタン領域を適
当なビーム寸法と照射時間tの描画条件により判を押す
ように1回でビーム照射するのに対し、この発明ではパ
タン領域を雑音の周期より短い照射時間t / nでビ
ーム照射し、これをn回繰り返し描画を行う。
In conventional writing using a variable shaped beam, the pattern area is irradiated with the beam in a single stroke according to the writing conditions of an appropriate beam size and irradiation time t. Beam irradiation is performed for an irradiation time of t/n, and this is repeated n times to perform drawing.

(発明の効果) 以上説明したようにこの発明は、パタン形成領域を所望
の照射量の1 / nの照射量でn回の多重照射を行い
、その際、照射周期を電子ビーム電流に重畳する雑音の
周期よりも十分長くするので、ビーム照射時間を増大せ
ずに雑音による照射量の変動を低減させて極微細パタン
形成を可能ならしめたものである。
(Effects of the Invention) As explained above, the present invention performs multiple irradiation on a pattern forming area n times at a dose of 1/n of the desired dose, and at that time, superimposes the irradiation period on the electron beam current. Since the period is sufficiently longer than the period of noise, it is possible to reduce fluctuations in the irradiation amount due to noise without increasing the beam irradiation time, thereby making it possible to form extremely fine patterns.

また、この発明は、低周波数のみならず高周波数までの
広い周波数領域の雑音に対し、有効であるという利点が
ある。
Further, the present invention has the advantage that it is effective against noise in a wide frequency range not only at low frequencies but also at high frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の描画方法の一実施例を示すもので、
第1図(a)は描画パタン形状を示す図、第1図(b)
はこの発明によるビーム電流と時間の関係を示す図、第
1図(C)は現像後のパタン形状を示す図、第2図(a
)、(b)は複数パタンにおけるこの発明の描画方法を
説明するためのLSIのパタン形状図と、ビーム電流と
時間の関係を示す図、第3図(a)、(b)、(c)は
従来の描画方法を説明するためのもので、第1図(a)
、(b)、(c)にそれぞれ対応する図、第4図はビー
ム電流に重畳した雑音の波形の模写図である。 図中、W、は描画パタン、W8゜は現像後の描画パタン
、P8はビーム走査開始位置、P、はビーム走査終了位
置、t+、t2は時間、It、I2はビーム電流である
。 第1図 1+、I2  ど−ム貰柔 第2図 一時間(1) 第3図 一@間(1) 第4図
FIG. 1 shows an embodiment of the drawing method of the present invention.
Figure 1(a) shows the drawing pattern shape, Figure 1(b)
is a diagram showing the relationship between beam current and time according to the present invention, FIG. 1(C) is a diagram showing the pattern shape after development, and FIG.
), (b) are LSI pattern shape diagrams for explaining the drawing method of the present invention for multiple patterns, and diagrams showing the relationship between beam current and time, and Figures 3 (a), (b), and (c). is for explaining the conventional drawing method, as shown in Figure 1(a).
, (b) and (c), respectively, and FIG. 4 are copies of the waveform of noise superimposed on the beam current. In the figure, W is the drawing pattern, W8° is the drawing pattern after development, P8 is the beam scanning start position, P is the beam scanning end position, t+ and t2 are the times, and It and I2 are the beam currents. Figure 1 1+, I2 Figure 2 1 hour (1) Figure 3 1 @ between (1) Figure 4

Claims (1)

【特許請求の範囲】[Claims]  電子ビームに感応する材料で被覆された基板上の所望
の位置に電子ビームを照射して所望の照射量を与えるこ
とによりパタンを形成する方法において、パタン形成領
域を所望の照射量の1/nの照射量でn回の多重照射を
行い、その際、照射周期を電子ビーム電流に重畳する雑
音の周期よりも十分長くすることを特徴とするパタン形
成方法。
In a method of forming a pattern by irradiating a desired position on a substrate coated with a material sensitive to electron beams with an electron beam to give a desired dose, the pattern forming area is set at 1/n of the desired dose. A method for forming a pattern, characterized in that multiple irradiation is performed n times with an irradiation dose of 1, and at that time, the irradiation period is made sufficiently longer than the period of noise superimposed on the electron beam current.
JP3859288A 1988-02-23 1988-02-23 Formation of pattern Pending JPH01214120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3859288A JPH01214120A (en) 1988-02-23 1988-02-23 Formation of pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3859288A JPH01214120A (en) 1988-02-23 1988-02-23 Formation of pattern

Publications (1)

Publication Number Publication Date
JPH01214120A true JPH01214120A (en) 1989-08-28

Family

ID=12529567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3859288A Pending JPH01214120A (en) 1988-02-23 1988-02-23 Formation of pattern

Country Status (1)

Country Link
JP (1) JPH01214120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524104A (en) * 2002-04-24 2005-08-11 オブデュキャット、アクチボラグ Lithographic apparatus, method and computer program product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524104A (en) * 2002-04-24 2005-08-11 オブデュキャット、アクチボラグ Lithographic apparatus, method and computer program product
JP2011095754A (en) * 2002-04-24 2011-05-12 Obducat Ab Lithographic apparatus and method

Similar Documents

Publication Publication Date Title
JPH04258111A (en) Method for correcting proximity effect in electron beam lithography
TW538323B (en) Electron beam exposure apparatus
Greve et al. Optimization of an electron beam lithography instrument for fast, large area writing at 10 kV acceleration voltage
US6035113A (en) Electron beam proximity correction method for hierarchical design data
KR100319672B1 (en) Pattern exposure method using electron beam
DE112004001942T5 (en) Combined pattern with trenches
Kruit et al. Optimum dose for shot noise limited CD uniformity in electron-beam lithography
JPH01214120A (en) Formation of pattern
Hou et al. Ultrafast and accurate proximity effect correction of large-scale electron beam lithography based on FMM and saaS
Van Kan et al. Hydrogen silsesquioxane a next generation resist for proton beam writing at the 20 nm level
JP3431444B2 (en) Pattern drawing method and drawing apparatus
JP2003218014A (en) Charged particle beam exposure method
Liang et al. Growth and printability of multilayer phase defects on extreme ultraviolet mask blanks
JPS62175739A (en) Pattern forming method
Freed et al. Demonstration of lithography patterns using reflective e-beam direct write
JP2907527B2 (en) Charged particle beam exposure apparatus and exposure method
Hudek et al. Fogging effect correction method in high-resolution electron beam lithography
JP4082970B2 (en) Charged particle beam exposure method
JP2979631B2 (en) Stencil mask forming method
JPH08203817A (en) Fabrication of x-ray mask
Gubarev et al. Dynamics of H atoms surface recombination in low-temperature plasma
Polasko et al. Low energy electron beam lithography
EP0166004B1 (en) Proximity effect correction method for e-beam lithography
Kyser et al. Proximity function approximations for electron beam lithography from resist profile simulations
Babin et al. Subfield scheduling for throughput maximization in electron-beam photomask fabrication