JPH01214060A - Ccd photodetection device - Google Patents

Ccd photodetection device

Info

Publication number
JPH01214060A
JPH01214060A JP63037636A JP3763688A JPH01214060A JP H01214060 A JPH01214060 A JP H01214060A JP 63037636 A JP63037636 A JP 63037636A JP 3763688 A JP3763688 A JP 3763688A JP H01214060 A JPH01214060 A JP H01214060A
Authority
JP
Japan
Prior art keywords
light
capacitor
state
electric charge
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63037636A
Other languages
Japanese (ja)
Inventor
Hisanori Yoshimura
吉村 久乗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Original Assignee
NTT Technology Transfer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Technology Transfer Corp filed Critical NTT Technology Transfer Corp
Priority to JP63037636A priority Critical patent/JPH01214060A/en
Publication of JPH01214060A publication Critical patent/JPH01214060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain a device having a function to separate and select a laser beam which has been intensity-modulated by a pulse even when a background noise beam changing with the passage of time exists by a method wherein a photodetector and a capacitor which accumulates a photodetecting current as an electric charge are arranged separately as separate elements. CONSTITUTION:A photodetector PD and a capacitor (C) which is used to accumulate a photodetecting current as an electric charge are arranged separately as separate elements. For example, a transfer gate TG is in an OFF state and an electric charge of a capacitor (C) is 0; when a clock phiM is at a HIGH level, M1 and M2 become in an ON state and M3 and M4 become in an OFF state; the capacitor (C) is charged with the photoelectric current flowing through a route of +VCC-M1-PD-M2-C and corresponding to a signal beam + a noise beam. Then, when the clock phiM is at a LOW level, M3 and M4 become in the ON state instead of M1 and M2. Because a laser is in the OFF state during this process, the photoelectric current corresponding to the signal noise flows through a route of C-M3-PD-M4-VEE and discharges the capacitor (O). If the duration of this charging operation and that of this discharging operation are equal, the electric charge corresponding to the signal beam remains in the capacitor (C).

Description

【発明の詳細な説明】 り産業上の利用分野] 本発明は、パルス変調されたレーザ信号光を検出する機
能を有し、背景雑音光の存在下で信号光を検出するのに
使用されるCCD受光デバイスに関する。
[Detailed Description of the Invention] [Industrial Application] The present invention has a function of detecting pulse-modulated laser signal light, and is used to detect signal light in the presence of background noise light. This invention relates to a CCD light receiving device.

[従来の技術] CCDイメージセンサは、光学情報を電気信号に変換す
るデバイスとして、ファクシミリの送信部やテレビカメ
ラ等に多用されている。CCDは電荷蓄積形デバイスで
あり、受光1の時間積分が電気信号として取出される。
[Prior Art] CCD image sensors are frequently used in facsimile transmitters, television cameras, and the like as devices that convert optical information into electrical signals. The CCD is a charge accumulation type device, and the time integral of the received light 1 is extracted as an electrical signal.

ファクシミリ用の1次元CCDでもテレビジョン用の2
次元CCDでも原理的には同じなので、ここでは簡単の
ために1次元CCDで説明する。
One-dimensional CCD for facsimile and two-dimensional CCD for television.
Since the principle is the same for a dimensional CCD, a one-dimensional CCD will be explained here for simplicity.

第1図にCCDイメージセンサの原理的な構造を示す、
受光素子PDは逆バイアスされたPN接合、または閾電
圧値以上にバイアスされたMOSダイオードであり、電
荷蓄積用コンデンサを兼ねている。この部分に光が照射
されると、電子−正孔対が発生し、バイアス電圧により
正負電荷に分離され、コンデンサに蓄積される。所定の
積分時間の後、転送ゲートTGをONにして、蓄積され
た電荷をCCDアナログシフトレジスタに転送する。そ
の後、シフトレジスタに転送りロックパルスを加え、各
画素からの電荷を順次出力側へ転送して、1画素分毎読
出す。
Figure 1 shows the basic structure of a CCD image sensor.
The light receiving element PD is a reverse biased PN junction or a MOS diode biased above a threshold voltage value, and also serves as a charge storage capacitor. When this portion is irradiated with light, electron-hole pairs are generated, separated into positive and negative charges by a bias voltage, and stored in a capacitor. After a predetermined integration time, the transfer gate TG is turned on to transfer the accumulated charge to the CCD analog shift register. Thereafter, a transfer lock pulse is applied to the shift register to sequentially transfer the charges from each pixel to the output side and read out each pixel.

物体にレーザ光を照射し、物体からの散乱反射光を検出
して距離を測定する方法は、距離計や産業用ロボットの
センサーのほか、物体形状の認識に広く使用されている
。この方法は、基準線上にあるレーザビームの発射点か
ら散乱反射光が基準線と交る点(入射点)までの距離、
レーザビームの基準線に対する発射角、及び散乱反射光
の基準線に対する入射角の三つの量から、三角測量の原
理によって距離を計測するものである。これら各点の距
離情報を集積し、数学的な処理によって物体の形状認識
を行う。
The method of measuring distance by irradiating an object with laser light and detecting the scattered reflected light from the object is widely used in rangefinders, industrial robot sensors, and for recognizing the shape of objects. In this method, the distance from the laser beam emission point on the reference line to the point where the scattered reflected light intersects with the reference line (incidence point),
The distance is measured based on the principle of triangulation from three quantities: the emission angle of the laser beam with respect to the reference line, and the incident angle of the scattered reflected light with respect to the reference line. Distance information for each of these points is accumulated, and the shape of the object is recognized through mathematical processing.

一方、アーク溶接のように1強烈で且つ高周波成分を有
する雑音光の存在下で、距離計測乃至物体形状認識を行
う場合には、信号であるレーザ光と雑音である背景光を
分離する必要があり、雑音光に含まれる周波数成分以上
の高い周波数でレーザ光を変調し、受光信号を選択的に
増幅する方法が、一般的に使用されている。
On the other hand, when performing distance measurement or object shape recognition in the presence of intense noise light with high frequency components, such as in arc welding, it is necessary to separate the laser light that is the signal and the background light that is the noise. A commonly used method is to modulate laser light at a higher frequency than the frequency components contained in noise light and selectively amplify the received light signal.

しかし従来のCCDイメージセンサでは、積分時間内で
の光の強度変化を識別出来ないので1強度変調されたレ
ーザ信号に対する周波数選択性がなかった。
However, conventional CCD image sensors do not have frequency selectivity for single intensity modulated laser signals because they cannot distinguish changes in light intensity within the integration time.

[発明が解決しようとする問題点コ 本発明は1時間的に変化する背景雑音光の存在下でも、
パルスで強度変調されたレーザ光を分離選択する機能を
有するCCD受光デバイスを提供するものである。
[Problems to be solved by the invention] The present invention solves the problem even in the presence of temporally changing background noise light.
The present invention provides a CCD light-receiving device having a function of separating and selecting pulse-intensity-modulated laser light.

[問題点を解決するための手段] いま説明を簡単にするため、レーザ光は駆動パルスで変
調度100%に強度変調されているとする。即ちレーザ
は変調パルスで完全に0N−OFFされている。もし、
レーザが完全にOFFされていない場合には、低レベル
の発光を背景雑音光に含めて考えることが出来るので、
この様に仮定しても、−最外を失うものではない。
[Means for Solving the Problems] To simplify the explanation, it is assumed that the intensity of the laser light is modulated to a modulation degree of 100% by the driving pulse. That is, the laser is completely turned off by the modulation pulse. if,
If the laser is not completely turned off, low-level light emission can be considered as background noise light.
Even if we make this assumption, we do not lose the outermost part.

このレーザ光を物体に照射し、それからの散乱反射光を
CCDの受光素子で電流に変換する0本発明に於ては、
この受光素子は光電変換のみを受持ち、電荷蓄積用のコ
ンデンサは、別の素子として設けられる。
In the present invention, this laser light is irradiated onto an object, and the scattered reflected light is converted into an electric current by a CCD light receiving element.
This light receiving element is responsible only for photoelectric conversion, and a capacitor for charge storage is provided as a separate element.

レーザがONの状態では、信号光に相当する電流■、1
.。、1 と雑音光に相当する電流■。。1.、との和
に相当する電流ION  が得られ、この電流で電荷蓄
積用コンデンサを充電する。またレーザがOFFの状態
で得られる電流I OFFは、雑音光のみに相当する電
流工。。亀1.であり、この電流で上記充電電荷を放電
する。充電期間と放電期間を等しく取りTtat とす
ると。
When the laser is on, the current corresponding to the signal light is ■, 1
.. . , 1 and the current corresponding to the noise light■. . 1. , is obtained, and the charge storage capacitor is charged with this current. Also, the current IOFF obtained when the laser is OFF is a current equivalent to only noise light. . Turtle 1. The above-mentioned charge is discharged with this current. Assuming that the charging period and the discharging period are equal and Ttat.

IoNT+fit   I。pp  −TいtミIs+
。1・T t a tとなって、信号光のみに相当する
信号電荷を取出すことが出来る。従来のCCDイメージ
センサでは、受光素子と電荷蓄積用コンデンサが兼用な
ので、  I 0N−TtntとI opp −Tta
tの和を蓄積することは出来るが3両者の差を取ること
は出来なかった。
IoT+fit I. pp-TitmiIs+
. 1·T ta t, and the signal charge corresponding to only the signal light can be taken out. In a conventional CCD image sensor, the light receiving element and the charge storage capacitor are both used, so I 0N-Ttnt and I opp -Tta
Although it is possible to accumulate the sum of t, it is not possible to calculate the difference between the two.

[実施例] 受光素子は、従来技術によるCCDイメージセンサの受
光素子と同様な構造のものでよいが9本発明に於ける受
光素子は、電荷蓄積機能は不要なので、寄生容量は小さ
いことが望ましい、−以下の説明では受光素子は逆バイ
アスされたPN接合であるとするが、他の受光素子でも
動作原理は同様である。逆バイアスしたPN接合に光を
照射すると光電流が流れるが、その状態でのインピーダ
ンスが大きく、はぼ定電流源と考えることが出来るので
、この光電流で静電界xCを充電すると、光電流の積分
が得られる。
[Example] The light-receiving element may have a structure similar to that of a CCD image sensor according to the prior art; however, since the light-receiving element in the present invention does not require a charge storage function, it is desirable that the parasitic capacitance is small. , - In the following description, it is assumed that the light receiving element is a reverse biased PN junction, but the operating principle is the same for other light receiving elements. When a reverse-biased PN junction is irradiated with light, a photocurrent flows, but in that state the impedance is large and it can be thought of as a nearly constant current source, so if the electrostatic field xC is charged with this photocurrent, the photocurrent The integral is obtained.

また、光電流の方向を制御するスイッチは、スイッチン
グ機能を有する半導体素子であれば何でもよく、バイポ
ーラトランジスタでもよいが、実際にはCCDと適合性
のよいMOSトランジスタを使用するのが現実的である
ので、以下MOSトランジスタを用いて説明する。なお
説明中、電源の極性を反対にすると同時に、Nチャネル
MOSトランジスタとPチャネルMOSトランジスタと
を置換えてもよい。
Furthermore, the switch that controls the direction of the photocurrent may be any semiconductor element that has a switching function, or may be a bipolar transistor, but in reality, it is more realistic to use a MOS transistor that is compatible with the CCD. Therefore, the following explanation will be made using a MOS transistor. In the description, the polarity of the power supply may be reversed and at the same time, the N-channel MOS transistor and the P-channel MOS transistor may be replaced.

〈実施例1〉 第1図に第1の実施例を示す、この例では、1画素当り
1個の受光素子と1個の電荷蓄積用容量ががあり、各画
素に配置した4個のスイッチで光電流の方向を制御する
<Example 1> The first example is shown in Fig. 1. In this example, there is one light receiving element and one charge storage capacitor per pixel, and four switches arranged in each pixel. to control the direction of the photocurrent.

第2図に1画素当りの等価回路を示す、今、Nチャネル
及びPチャネルMOSトランジスタの閾値電圧をVT)
IN 、 VTI4P 、正負の電源電圧を十■CC,
VEE、クロックφMのHIGH及びLOWレベルをφ
闘、φMLとする。
Figure 2 shows the equivalent circuit per pixel. Now, the threshold voltages of N-channel and P-channel MOS transistors are VT).
IN, VTI4P, positive and negative power supply voltages
VEE, the HIGH and LOW levels of clock φM are set to φ
Fight, φML.

先ず第1図の転送ゲートTGがOFFである状態を考え
、このときCの電荷は0であるとする。
First, consider the state in which the transfer gate TG in FIG. 1 is OFF, and assume that the charge on C is 0 at this time.

クロックφ緘がHIGHであるとし、φMHがφMH>
VT)IN +VCC であれば、Ml、M2はON、M3.M4はOFF状態
になり、従って容icは +VCC−M 1−PD−M2−C の経路を通って、信号光十雑音光に相当する光電流で充
電される9次にクロックφ誠がLOWになり、φMLが φML<  (l VTHP l +VCC)であれば
、Ml、M2に替ってM4.M5がON状態になる。こ
の時レーザはOFFなので、雑音光に相当する光電流が CM3  PD  M4  Vl!s。
Assume that the clock φ is HIGH, and φMH is φMH>
VT)IN +VCC, Ml and M2 are ON, M3. M4 is in the OFF state, so the IC goes through the path +VCC-M1-PD-M2-C, and the 9th clock φMakoto, which is charged with a photocurrent corresponding to the signal light and the noise light, goes LOW. If φML<(l VTHP l +VCC), then M4. M5 becomes ON state. At this time, the laser is OFF, so the photocurrent corresponding to the noise light is CM3 PD M4 Vl! s.

の経路で流れ、Cを放電する。この充電と放電の期間が
等しければ、Cには信号光に相当する電荷が残留するこ
とになる。
flows along the path of and discharges C. If the charging and discharging periods are equal, charge corresponding to the signal light will remain in C.

次に転送ゲートTGをONにして、Cの電荷をCCDア
ナロジシフトレジスタSRに転送し、SRにシフトクロ
ックφ1.φ2を印加し、電荷を出力側に転送して、出
力回路で読出す。
Next, the transfer gate TG is turned ON, the charge of C is transferred to the CCD analog shift register SR, and the shift clock φ1. φ2 is applied, the charge is transferred to the output side, and read out by the output circuit.

〈実施例2〉 第3図に第2の実施例を示す、この実施例では画素は、
互に逆接続された2個の受光素子と1個の電荷蓄積用容
量より構成されている。第4図にその1画素当りの等価
回路を示す、第2図と同じ記号の説明は省略する。今、
第3図の転送ゲートTGがOFFである状態を考え、こ
のときCの電荷はOであるとする。クロックφ賛のHI
GHレベルが適切であれば、M2をON状態にすると同
時に、M3をOFF状悪にすることが出来る。このとき
容ICは。
<Example 2> A second example is shown in FIG. 3. In this example, the pixels are:
It consists of two light-receiving elements connected in reverse to each other and one charge storage capacitor. FIG. 4 shows the equivalent circuit per pixel, and the explanation of the same symbols as in FIG. 2 will be omitted. now,
Consider the state in which the transfer gate TG in FIG. 3 is OFF, and assume that the charge on C is O at this time. HI of clock φ support
If the GH level is appropriate, M2 can be turned on and M3 can be turned off at the same time. At this time, Yong IC.

十Vcc  M2−PD2−PDI−MI  Cの経路
を通って、信号光+雑音光に相当する光電流で充電され
る6次にクロックφMのLOWレベルが適切であれば、
M2をOFF状態、M3をONN状態することが出来る
。このときレーザはOFFなので、雑音光のみに相当す
る光電流がCMI  PDI  PD2  M3   
Vatの経路で流れ、Cを放電する。この充電と放電の
期間が等しければ、Cには信号光に相当する電荷が残留
することになる。
If the LOW level of the sixth clock φM, which is charged by the photocurrent corresponding to the signal light + noise light through the path of 10 Vcc M2-PD2-PDI-MIC, is appropriate,
M2 can be turned OFF and M3 can be turned ON. At this time, the laser is OFF, so the photocurrent corresponding only to the noise light is CMI PDI PD2 M3
It flows through the path of Vat and discharges C. If the charging and discharging periods are equal, charge corresponding to the signal light will remain in C.

次に転送ゲートTGをONにして、Cの電荷をCCDア
ナロジシフトレジスタSRに転送し、SRにシフトクロ
ックφ1.φ2を印加し、電荷を出力側に転送して、出
力回路で読出す。
Next, the transfer gate TG is turned ON, the charge of C is transferred to the CCD analog shift register SR, and the shift clock φ1. φ2 is applied, the charge is transferred to the output side, and read out by the output circuit.

[発明の効果] 本発明により、背景雑音光と信号光とを分離するために
パルス変調されたレーザ光を受光するに際して1周波数
同調回路を使用せず、レーザ変調パルスと同期するクロ
ックで、信号成分を取出すことが出来る1本発明による
受光デバイスは1通常のCCDイメージセンサと同様に
多数の受光素子を1チツプ上に集積出来ねので、3次元
物体形状認識等画素数の多い集積受光デバイスを可能に
するものである。
[Effects of the Invention] According to the present invention, when receiving pulse-modulated laser light to separate background noise light and signal light, a single frequency tuning circuit is not used, and the signal is detected using a clock synchronized with the laser modulation pulse. The light-receiving device according to the present invention is capable of extracting components.1 Since it is not possible to integrate a large number of light-receiving elements on one chip like a normal CCD image sensor, an integrated light-receiving device with a large number of pixels can be used for three-dimensional object shape recognition. It is what makes it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例、第2図はその1画素当
りの等価回路図、第3図は本発明の第2の実施例、第4
図はその1画素当りの等価回路図である1図中、Cは受
光電流を蓄積するための弁型容量、Ml〜M6はMOS
)ランジスタで、NはNチャネル形、PはPチャネル形
を示す。 PD、PDI、PD2:受光素子 TG:転送ゲート SR:CCDアナログシフトレジスタ φ、;レーザ変調クロック φ1.φ2:CCDアナログシフトレジスタの転送りロ
ック
Fig. 1 shows the first embodiment of the present invention, Fig. 2 shows the equivalent circuit diagram per pixel, Fig. 3 shows the second embodiment of the invention, and Fig. 4 shows the equivalent circuit diagram per pixel.
The figure is an equivalent circuit diagram per pixel. In the figure, C is a valve-shaped capacitor for accumulating the light-receiving current, and M1 to M6 are MOS
) transistor, where N indicates N-channel type and P indicates P-channel type. PD, PDI, PD2: light receiving element TG: transfer gate SR: CCD analog shift register φ,; laser modulation clock φ1. φ2: CCD analog shift register transfer lock

Claims (1)

【特許請求の範囲】[Claims] (1)受光素子と、受光電流を電荷として蓄積するため
の静電容量とを、別の素子として分離・配置したCCD
受光デバイス
(1) A CCD in which the light-receiving element and the capacitance for storing the light-receiving current as charge are separated and arranged as separate elements.
Light receiving device
JP63037636A 1988-02-22 1988-02-22 Ccd photodetection device Pending JPH01214060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037636A JPH01214060A (en) 1988-02-22 1988-02-22 Ccd photodetection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037636A JPH01214060A (en) 1988-02-22 1988-02-22 Ccd photodetection device

Publications (1)

Publication Number Publication Date
JPH01214060A true JPH01214060A (en) 1989-08-28

Family

ID=12503131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037636A Pending JPH01214060A (en) 1988-02-22 1988-02-22 Ccd photodetection device

Country Status (1)

Country Link
JP (1) JPH01214060A (en)

Similar Documents

Publication Publication Date Title
US4490036A (en) Image sensor and rangefinder device having background subtraction with paired analog shift registers
US6515740B2 (en) Methods for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation
US4490037A (en) Image sensor and rangefinder device having background subtraction with bridge network
US6580496B2 (en) Systems for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation
US10616519B2 (en) Global shutter pixel structures with shared transfer gates
JP5064655B2 (en) Pixel sensor circuit device and method thereof
US4521106A (en) Image sensor and rangefinder device with background subtraction using interlaced analog shift register
CN107300705B (en) Laser radar ranging system and method based on carrier modulation
EP0702484B1 (en) Photoelectric converting apparatus
EP2728373A1 (en) Improvements in time of flight pixel circuits
JPS6138405B2 (en)
EP1356664A2 (en) Cmos-compatible three-dimensional image sensing using quantum efficiency modulation
US10236400B2 (en) Quantum dot film based demodulation structures
US11044429B2 (en) Charge collection gate with central collection photodiode in time of flight pixel
KR102012343B1 (en) Pixel Circuit and Image Sensing System
US11860279B2 (en) Image sensing device and photographing device including the same
US4979816A (en) Range sensing system
JPH01214060A (en) Ccd photodetection device
EP4040187A1 (en) Light detection device and electronic device
JPH01301110A (en) Photodetecting circuit
JPH01214058A (en) Array photodetection device
JPH01214059A (en) Ccd photodetection device
US20240230908A9 (en) Image sensing device and photographing device including the same
JPH10281868A (en) Time correlation detection-type image sensor and image analysis method
Ohta et al. Pulse-modulated vision chips with versatile-interconnected pixels