JPH10281868A - Time correlation detection-type image sensor and image analysis method - Google Patents

Time correlation detection-type image sensor and image analysis method

Info

Publication number
JPH10281868A
JPH10281868A JP9086723A JP8672397A JPH10281868A JP H10281868 A JPH10281868 A JP H10281868A JP 9086723 A JP9086723 A JP 9086723A JP 8672397 A JP8672397 A JP 8672397A JP H10281868 A JPH10281868 A JP H10281868A
Authority
JP
Japan
Prior art keywords
time
current
image sensor
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9086723A
Other languages
Japanese (ja)
Other versions
JP3643210B2 (en
Inventor
Shigeru Ando
繁 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP08672397A priority Critical patent/JP3643210B2/en
Publication of JPH10281868A publication Critical patent/JPH10281868A/en
Application granted granted Critical
Publication of JP3643210B2 publication Critical patent/JP3643210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform various kinds of image analyses that have been impossible so far due to the limitation in a time resolution. SOLUTION: A plurality of photodetectors with a photo diode FD converting an input photon to a current, a pair of transistors for modulating a current generated by the photo diode FD according to an inputted external electrical signal S, and capacitors C for integrating a current modulated by a pair of transistors in a time domain are provided. As a result, by scanning a plurality of photodetectors, the integration value of each capacitor C can be successively read out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、入射光強度と外部
電気信号との時間相関検出を行う時間相関検出型センサ
および時間相関検出型センサを用いた画像解析方法に関
する。
[0001] 1. Field of the Invention [0002] The present invention relates to a time correlation detection type sensor for detecting a time correlation between an incident light intensity and an external electric signal, and an image analysis method using the time correlation detection type sensor.

【0002】[0002]

【従来の技術】画像センシングや画像解析の応用は、コ
ンピュータビジョン、自動視覚検査、科学計測、リモー
トセシング等、多岐にわたっている。しかし、その入力
手段としては、ほとんど放送用のイメージセンサの流用
以外の方法がなく、その限定された機能に由来して、画
像処理の応用展開上、多くの制約を受けているのが現状
である。
2. Description of the Related Art The applications of image sensing and image analysis are wide-ranging, such as computer vision, automatic visual inspection, scientific measurement, and remote sexing. However, there is almost no method other than diversion of the image sensor for broadcasting as an input means, and there are many restrictions on application development of image processing due to its limited function at present. is there.

【0003】特に問題が大きいのが、フレームレート1/
30秒という時間分解能の悪さであり、MOS型イメージ
センサの高速スキャンや、イメージディテクタのような
時間信号出力型デバイスを用いても、感度や本来の空間
分解能が犠牲になるため、本質的な解決にならない。
[0003] A particular problem is that the frame rate 1 /
The time resolution of 30 seconds is poor, and even if a high-speed scanning of a MOS image sensor or a time signal output type device such as an image detector is used, the sensitivity and the original spatial resolution are sacrificed, so this is an essential solution. do not become.

【0004】[0004]

【発明が解決しようとする課題】この問題に対して、本
発明は画像センシングの方法論に立返った考察から解決
法を与えようとするものである。もともと、空間分解能
と時間分解能の双方を高めようとする要求は情報量の莫
大化に帰着するため、本質的な困難さがある。本発明
は、センサ段階で適切な処理を加え、後続する画像解析
に必要十分な情報に圧縮して出力する方法を採るもので
あり、これにより、例えば、時間分解能の制限から従来
不可能であった種々の画像解析が可能となる、という技
術上の効果が得られる。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention seeks to provide a solution based on a reconsideration of image sensing methodologies. Originally, a request to increase both the spatial resolution and the temporal resolution results in an enormous amount of information, and thus has an inherent difficulty. The present invention employs a method of applying appropriate processing at the sensor stage and compressing and outputting the necessary and sufficient information for the subsequent image analysis. In addition, a technical effect that various image analysis can be performed is obtained.

【0005】[0005]

【課題を解決するための手段】一実施の形態を示す図1
〜図8に対応づけて説明すると、請求項1に記載の発明
は、入力フォトンを電流に変換する変換手段FD、入力
された変調信号Sに応じて変換手段FDにより発生した
電流を変調する電流変調手段1(図1)、および電流変
調手段により変調された電流を時間積分する積分手段C
(図1)を有する複数の受光素子と、変調信号よりも遅
い周期により複数の受光素子を走査して積分手段の積分
値を順次読み出す走査手段とを備えることにより上述の
目的が達成される。請求項2に記載の発明は、請求項1
に記載の時間検出相関型イメージセンサにおいて、各受
光素子の電流変調手段1に同一の変調信号を入力するも
のである。請求項3に記載の発明は、時間変調をかけた
光を物体4に照射する光源3と、光源3の時間変調信号
を遅延する遅延手段とを用い、遅延手段により遅延され
た信号を請求項1または2に記載の時間相関型イメージ
センサに変調信号として入力することにより、光源3か
らの光が物体4で反射され、さらにイメージセンサで受
光される際の光伝播時間で決定される物体の特定部分の
みを検出するものである(図3)。請求項4に記載の発
明は、請求項1または2に記載の時間検出相関型イメー
ジセンサの電流変調手段1に変調信号を印加しつつ、受
光素子に入力される画像の位置を変調信号と同期して振
動させることにより、画像の微分値を求めるものであ
る。
FIG. 1 shows an embodiment of the present invention.
8, the invention according to claim 1 includes a conversion unit FD that converts an input photon into a current, and a current that modulates a current generated by the conversion unit FD in accordance with an input modulation signal S. A modulating means 1 (FIG. 1) and an integrating means C for integrating the current modulated by the current modulating means with time;
The above object is achieved by providing a plurality of light receiving elements having (FIG. 1) and scanning means for scanning the plurality of light receiving elements at a period slower than the modulation signal and sequentially reading out the integrated value of the integrating means. The invention described in claim 2 is the first invention.
In the time detection correlation type image sensor described in (1), the same modulation signal is input to the current modulation means 1 of each light receiving element. The invention according to claim 3 uses a light source 3 that irradiates the object 4 with time-modulated light, and a delay unit that delays the time-modulated signal of the light source 3, and the signal delayed by the delay unit is claimed. The light from the light source 3 is reflected by the object 4 by inputting it as a modulation signal to the time-correlation type image sensor described in 1 or 2, and the light of the object is determined by the light propagation time when the light is received by the image sensor. Only a specific portion is detected (FIG. 3). According to a fourth aspect of the present invention, a position of an image input to the light receiving element is synchronized with the modulation signal while applying a modulation signal to the current modulation means 1 of the time detection correlation type image sensor according to the first or second aspect. By vibrating the image, the differential value of the image is obtained.

【0006】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が実施の形態に限定されるものではない。
[0006] In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easy to understand. However, the present invention is not limited to this.

【0007】[0007]

【発明の実施の形態】以下、図1〜図8を用いて本発明
による時間相関検出型イメージセンサおよび画像解析方
法の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a time correlation detection type image sensor and an image analysis method according to the present invention will be described with reference to FIGS.

【0008】本発明による時間相関型イメージセンサの
基本構造を図1に示す。この構造の要点は、入射フォ
トンを光電流(被乗数)に変換するフォトダイオード検
出器FDを備え、全画素に共通に外部電気信号(乗
数)Sを供給するようにし、光電流と電気信号との間
の積に比例する電流を生成する電流モード乗算器1を備
え、上記の積電流を時間積分して相関値として蓄積す
るコンデンサCを備え、相関値を走査して通常のビデ
オ信号として出力するための走査部(CCDあるいはM
OSスイッチ回路)2を備える、ことにある。
FIG. 1 shows the basic structure of a time correlation type image sensor according to the present invention. The point of this structure is to provide a photodiode detector FD for converting an incident photon into a photocurrent (multiplicand), to supply an external electric signal (multiplier) S to all the pixels in common, and to compare the photocurrent with the electric signal. A current mode multiplier 1 for generating a current proportional to the product between them; a capacitor C for integrating the above product current with time and accumulating it as a correlation value; scanning the correlation value and outputting it as a normal video signal Scanning unit (CCD or M
OS switch circuit) 2.

【0009】画素(i,j)の光検出器の出力をfi,j
(t)、外部電気信号をg(t)、走査周期に一致する
積分時間をTとすると、時間相関型イメージセンサの
(i,j)画素の出力は、
The output of the photodetector of pixel (i, j) is represented by f i, j
(T), the external electric signal is g (t), and the integration time corresponding to the scanning period is T, the output of the (i, j) pixel of the time correlation type image sensor is

【数1】 と表されるものとなる。(Equation 1) It will be represented as

【0010】周波数帯域から見た本発明による時間相関
検出型センサの構造(動作)を図2に示す。変調光のよ
うな変化する光ではfi,j(t)にはいくらでも高い時
間周波数帯域を想定できる。通常のイメージセンサで
は、この帯域は走査周期(フレームレート)で強い制限
を受けるが、上記のセンサ構造では、この上限は光検出
器の限界帯域まで取払われる。外部電気信号Sは全画素
共通のため、この帯域も走査周期の制約は受けず、上限
帯域は信号分配配線の限界帯域程度と見積もられる。こ
れに対して、出力信号はそれらの相関値であり走査周期
分の積分値であるため、その帯域は常に走査周期の帯域
に収っている。
FIG. 2 shows the structure (operation) of the time correlation detection type sensor according to the present invention viewed from the frequency band. For changing light such as modulated light, any high time frequency band can be assumed for f i, j (t). In a normal image sensor, this band is strongly limited by a scanning period (frame rate), but in the above-described sensor structure, this upper limit is removed to the limit band of the photodetector. Since the external electric signal S is common to all pixels, this band is not limited by the scanning period, and the upper limit band is estimated to be about the limit band of the signal distribution wiring. On the other hand, the output signal is a correlation value thereof and is an integrated value for the scanning cycle, so that the band is always within the band of the scanning cycle.

【0011】−光伝搬時間による距離画像の生成− これまで画像センシングにおける相関計測は、主として
空間相関−パターンマッチング−に関して議論されるに
留まり、時間軸に対する相関は、ほとんど議論されてい
ない。ここでは、非常に高速な時間相関が得られる場合
に、画像センシングにどのような応用展開が開けてくる
かを、二三の具体例を用いて示す。空間解像度や出力信
号の形態としては、積極的に通常の放送用のイメージセ
ンサとコンパティブルなものを想定する。回路の複雑さ
を10トランジスタ/画素程度に抑えれば、ハイビジョ
ン程度の空間解像度までターゲットとなり得る。
-Generation of Range Image by Light Propagation Time- Correlation measurement in image sensing has been mainly discussed so far mainly on spatial correlation-pattern matching, and correlation with respect to a time axis has hardly been discussed. Here, using a few specific examples, what kinds of application developments can be opened to image sensing when a very high-speed time correlation can be obtained will be described. The spatial resolution and the form of the output signal are assumed to be positively compatible with a normal broadcast image sensor. If the circuit complexity is reduced to about 10 transistors / pixel, a spatial resolution of about HDTV can be targeted.

【0012】まず最初に、光伝搬時間による距離画像の
生成について図3を用いて説明する。この応用は、光検
出器、外部電気信号入力とも、数GHz以上の帯域が実
現できたときに可能となる。数GHzの時間分解能で
は、光の伝搬長分解能は3次元計測に求められる数cm
以下となることに注目すべきである。
First, generation of a distance image based on light propagation time will be described with reference to FIG. This application becomes possible when a band of several GHz or more can be realized for both the photodetector and the external electric signal input. With a time resolution of several GHz, the light propagation length resolution is several cm required for three-dimensional measurement.
It should be noted that:

【0013】光源はレーザダイオードやLEDなどのよ
うに、広帯域な(高い周波数成分を含む)時間変調がか
けられるものを想定する。ここではLED3を用いてい
る。このLED3は一定レベルで発光させるのではな
く、発光の輝度をM系列のパターンに変調を施して発光
させる。この変調光をM(t)とする。すなわち、
It is assumed that a light source that can be time-modulated over a wide band (including a high frequency component), such as a laser diode or an LED, is assumed. Here, LED3 is used. The LED 3 does not emit light at a constant level, but emits light by modulating the luminance of the emission into an M-sequence pattern. This modulated light is defined as M (t). That is,

【数2】 を満たすものである。(Equation 2) It satisfies.

【0014】LED3の変調信号は遅延装置6を介して
遅延時間τだけ遅延されて、外部電気信号としてセンサ
5に入力される。また、センサ5の各受光素子により捉
えられた入射光は外部電気信号により変調されて、入射
光と外部電気信号との積に相当する電荷が相関値として
蓄積される。各素子を順次走査することにより蓄積され
た各素子の電荷を読み出し、これにより相関が求まるこ
ととなる。
The modulation signal of the LED 3 is delayed by a delay time τ via a delay device 6 and input to the sensor 5 as an external electric signal. The incident light captured by each light receiving element of the sensor 5 is modulated by an external electric signal, and an electric charge corresponding to a product of the incident light and the external electric signal is accumulated as a correlation value. By sequentially scanning each element, the accumulated electric charge of each element is read out, whereby the correlation is obtained.

【0015】ここで、LED3から対象4までの距離
と、対象4からセンサ5までの距離との和をli (i=
1,2・・・n)、光速をcとする。ただし、対象4は
静止しているものと仮定する。センサ5上の光強度分布
は一般に以下のように書かれる。
Here, the sum of the distance from the LED 3 to the object 4 and the distance from the object 4 to the sensor 5 is l i (i =
1, 2,... N), and the speed of light is c. However, it is assumed that the object 4 is stationary. The light intensity distribution on the sensor 5 is generally written as:

【数3】 ただし、光の減衰等は簡略化のため無視してある。ま
た、対象4をセンサ5上に結像させる結像光学系の図示
は省略している。ここで、fi (x,y)は距離li
ところにある画像、n(x,y,t)は照明光や太陽光
などの観測雑音である。この強度分布G(x,y,t)
と変調信号M(t)の時間相関関数は、
(Equation 3) However, light attenuation and the like are ignored for simplification. Further, an illustration of an imaging optical system for forming an image of the object 4 on the sensor 5 is omitted. Here, f i (x, y) is an image at a distance l i , and n (x, y, t) is observation noise such as illumination light or sunlight. This intensity distribution G (x, y, t)
And the time correlation function of the modulated signal M (t) is

【数4】 であり、外部信号として与えるM(t)の時間遅れがτ
=li /cの時だけ、fi (x,y)の出力が得られる
ということである。すなわち、適当にτを選択すること
によって、外来光によらず所望の距離の物体4表面のみ
を明るく検出することができる。したがって、例えばτ
を段階的に変化させることにより、物体4の立体像が得
られる。
(Equation 4) And the time delay of M (t) given as an external signal is τ
= L i / c means that an output of f i (x, y) is obtained. That is, by appropriately selecting τ, only the surface of the object 4 at a desired distance can be detected brightly regardless of external light. Thus, for example, τ
Is changed step by step, a three-dimensional image of the object 4 is obtained.

【0016】−画像の1次微分の算出− 入射光の強度に変調成分を与える方法として、センサを
微小振動させる方法もある。以下で述べる応用には、光
検出器と外部電気信号の時間周波数帯域とも100kH
z以下で十分である。また、微分を画素間差分を用いず
に生成することには、イメージセンサ最大の雑音源であ
る画素感度差による誤差を排除できる利点がある。
-Calculation of first derivative of image- As a method of giving a modulation component to the intensity of incident light, there is a method of causing a sensor to vibrate minutely. In the applications described below, the time frequency band of the photodetector and the external electric signal are both 100 kHz.
z or less is sufficient. Generating the derivative without using the pixel-to-pixel difference has the advantage that errors due to the pixel sensitivity difference, which is the largest noise source of the image sensor, can be eliminated.

【0017】センサが静止しているときにセンサ上に到
来するであろう光強度分布をf0 (x,y)で表す。セ
ンサには微小半径εで回転角速度ωの回転的シフト運
動、すなわちセンサの受光面内で半径εの円を軌跡とす
る平行運動を与える。センサの運動速度に比べれば、
(例えあったとしても)対象の運動は無視できるものと
仮定する。このとき、時刻tにおいてセンサが捉える光
強度分布は、
The light intensity distribution that will arrive on the sensor when the sensor is stationary is denoted by f 0 (x, y). The sensor is given a rotational shift motion with a small radius ε and a rotational angular velocity ω, that is, a parallel motion with a circle having a radius ε as a locus in the light receiving surface of the sensor. Compared to the movement speed of the sensor,
Assume that the subject's movements (if any) are negligible. At this time, the light intensity distribution captured by the sensor at time t is:

【数5】 となり、テーラー展開をして1次近似すると、(Equation 5) And a first-order approximation with Taylor expansion gives

【数6】 である。ここで、式(6)にεcosωtを乗じて時間
平均をとると、
(Equation 6) It is. Here, multiplying equation (6) by εcosωt and taking a time average gives

【数7】 となる。ここで、<cosωt>=0、<sinωtc
osωt>=0、<cos2 ωt>=1/2を用いた。
式(7)の左辺はセンサ上に相関値として生成され、ε
も既知であるから、センサ出力として画像のx微分f0x
(x,y)が読み出されることになる。同様にして、f
0y(x,y)も式(6)にεsinωtを掛けて時間平
均をとることにより求まる。
(Equation 7) Becomes Here, <cosωt> = 0, <sinωtc
osωt> = 0 and <cos 2 ωt> = 1 / were used.
The left side of equation (7) is generated as a correlation value on the sensor, and ε
Is also known, the x derivative f 0x of the image is used as the sensor output.
(X, y) will be read. Similarly, f
0y (x, y) is also obtained by multiplying equation (6) by ε sinωt and taking a time average.

【0018】これは、回転的シフト量のx方向成分を外
部電気信号とすることにより、画像のx微分f0x(x,
y)が読み出されることを意味する。同様に、回転的シ
フト量のy方向成分を外部電気信号とすることにより、
画像のy微分f0y (x,y)が読み出される。また、
定数を外部信号として読み出せば、回転的シフトによる
移動平均画像が得られる。
This is because the x derivative of the image f 0x (x,
y) is read out. Similarly, by using the y-direction component of the rotational shift amount as an external electric signal,
The y derivative f 0y (x, y) of the image is read. Also,
If a constant is read as an external signal, a moving average image due to rotational shift can be obtained.

【0019】1次微分が精度良く求まることは、単に演
算処理量の減少にとどまらず、勾配ベクトルを用いたさ
まざまな画像処理(エッジ検出、オプティカルフロー検
出、両眼ステレオ等)の精度の大幅な向上につながる。
なお、センサ自体を振動させる代りに、例えば光学系の
一部を振動させるなどして、固定したセンサ上で結像を
移動(振動)させるようにしてもよい。
The fact that the first derivative can be obtained with high precision is not limited to the reduction in the amount of arithmetic processing, but also the great accuracy of various image processing (edge detection, optical flow detection, binocular stereo, etc.) using gradient vectors. Leads to improvement.
Instead of vibrating the sensor itself, the imaging may be moved (vibrated) on a fixed sensor by, for example, vibrating a part of the optical system.

【0020】−時間相関型イメージセンサのセンシング
セルの構造− 次に、時間相関型イメージセンサのセンシングセルの具
体的な構成を例示する。
-Structure of Sensing Cell of Time Correlation Image Sensor- Next, a specific configuration of the sensing cell of the time correlation image sensor will be described.

【0021】乗算を実現する代表的な回路構成として、
可変コンダクタンス差動増幅器が知られている。図4
は、これを利用した構成法を示す。図4ではバイポーラ
トランジスタQ1 ,Q2 を用いているが、差動のトラン
ジスタ対として、サブスレッショルド領域にバイアスさ
れたMOSFET対を用いてもよい。
As a typical circuit configuration for realizing multiplication,
Variable conductance differential amplifiers are known. FIG.
Indicates a construction method using this. Although bipolar transistors Q 1 and Q 2 are used in FIG. 4, a pair of MOSFETs biased in a subthreshold region may be used as a differential transistor pair.

【0022】この回路の差動入力電圧The differential input voltage of this circuit

【数8】 に対する相互コンダクタンスgm は、トランジスタQ
1 ,Q2 のエミッタバイアス電流を与える光電流I
PD(t)に比例する。したがって、この比例係数をρと
すると、両コレクタ電流は、
(Equation 8) Is the transconductance g m of the transistor Q
1, photocurrent I give emitter bias current Q 2 '
It is proportional to PD (t). Therefore, if this proportionality factor is ρ, both collector currents are

【数9】 となり、コンデンサC1 ,C2 に蓄積される電荷には、(Equation 9) And the charges stored in the capacitors C 1 and C 2 include:

【数10】 (Equation 10)

【数11】 のように、IPD (t)とV(t)の相関に比例した成
分と、IPD の積分値に比例する成分との和が生成され
る。MOSFETQ3 ,Q4 による電荷転送の後で、画
素ごとにこれらの和と差をとることにより、
[Equation 11] , A sum of a component proportional to the correlation between I PD (t) and V (t) and a component proportional to the integral value of I PD is generated. After charge transfer by MOSFETs Q 3 and Q 4, by taking the sum and difference of these for each pixel,

【数12】 (Equation 12)

【数13】 のごとく、それらが分離される。前者の和の成分は、通
常のイメージセンサの出力(平均照度)に等しい。した
がって、例えば上述した画像の1次微分の算出を行う場
合には、式(8)の差動入力電圧V(t)をセンサの外
部電気信号(変調信号)として用い、2つのコンデンサ
1 ,C2 の電荷をFETQ3 およびQ4をオンさせて
電圧を介して検出し、その差分を相関として求めればよ
い。なお、式(9)〜式(13)の添字はコンデンサC
1 ,C2 の添字に対応している。
(Equation 13) Like, they are separated. The former sum component is equal to the output (average illuminance) of a normal image sensor. Therefore, for example, when calculating the first derivative of the above-described image, the differential input voltage V (t) of Expression (8) is used as an external electric signal (modulation signal) of the sensor, and the two capacitors C 1 , and the charge of C 2 to turn on the FETs Q 3 and Q 4 is detected through the voltage may be determined the difference as the correlation. Note that the suffixes of Expressions (9) to (13) are the capacitors C
Corresponds to 1, the subscript of C 2.

【0023】しかし、この回路構成の欠点は、応用によ
っては大変大きな値をもつIPD の積分値の成分が、蓄
積コンデンサ(コンデンサC1 ,C2 )やCCD転送線
を飽和させやすいため精度上の困難さが予想される点に
ある。平均照度の成分をあきらめて差成分のみを生成す
るには、カレントミラー回路の付加により分岐された電
流を逆相合成して1つのコンデンサに電荷を蓄積する方
法や、図5のように、2つのコンデンサC3 ,C4 の蓄
積電荷の差成分のみを取り出すようなFETスイッチ回
路(Q5 ,Q6 )を内蔵させる方法なども考えられる。
通常は図5のVXFR を低電位に維持して2つのコンデン
サC3 ,C4 を充電するとともに、走査時にVXFR を高
電位に切替えることにより、FETQ3 を介して2つの
コンデンサC3 ,C4 の蓄積電荷の差成分に応じた電圧
を検出することができる。
However, a drawback of this circuit configuration is that, depending on the application, the component of the integrated value of IPD , which has a very large value, tends to saturate the storage capacitors (capacitors C 1 and C 2 ) and the CCD transfer line, so that the accuracy is low. Difficulties are expected. In order to give up the average illuminance component and generate only the difference component, a method in which currents branched by adding a current mirror circuit are combined in reverse phase to accumulate charge in one capacitor, or as shown in FIG. A method of incorporating a FET switch circuit (Q 5 , Q 6 ) for extracting only the difference component between the charges stored in the three capacitors C 3 and C 4 may be considered.
Normally, the two capacitors C 3 and C 4 are charged by maintaining V XFR in FIG. 5 at a low potential, and by switching V XFR to a high potential during scanning, the two capacitors C 3 and C 3 are connected via the FET Q 3 . voltage can be detected in accordance with the difference component of the charge accumulated in the C 4.

【0024】図4および図5の回路では、検出器に生じ
た光電流を、電圧入力に比例した按分比率で2つのコン
デンサに分配し、電荷として蓄えていると見なせる。そ
して、光検出器自体にこのような発生電流の按分機構を
埋め込めれば、回路的手段により電荷を振り分ける場合
に比べて乗算の周波数帯域が大幅に拡大することが予想
される(例えば数GHz以上)。
In the circuits of FIGS. 4 and 5, it can be considered that the photocurrent generated in the detector is distributed to the two capacitors at a proportional ratio proportional to the voltage input, and is stored as electric charge. If such a mechanism for apportioning the generated current can be embedded in the photodetector itself, it is expected that the frequency band of the multiplication will be greatly expanded (for example, several GHz or more) as compared with the case where electric charges are distributed by circuit means. ).

【0025】図6はこのような光検出器の一例であり、
半導体中に発生した光キャリアのドリフト方向を外部電
界で制御し、2つのpn接合に流れ落ちるキャリア数を
変調するようにし、コンデンサC5 ,C6 に電流を振り
分けている。コンデンサC5,C6 の電荷はMOSFE
TQ7 ,Q8 のオン動作により読み出される。図6に示
す光検出器では、VMPY + とVMPY - の差分が上述の光伝
搬時間による距離画像の生成における外部電気信号(変
調信号)に対応する。
FIG. 6 shows an example of such a photodetector.
The direction of drift of optical carriers generated in the semiconductor is controlled by an external electric field to modulate the number of carriers flowing down to two pn junctions, and current is distributed to the capacitors C 5 and C 6 . The charges of the capacitors C 5 and C 6 are MOSFE
The data is read out by turning on TQ 7 and Q 8 . In the photodetector shown in FIG. 6, the difference between V MPY + and V MPY corresponds to the external electric signal (modulation signal) in the generation of the distance image based on the light propagation time.

【0026】次に、図7に示すFETブリッジを用いた
スイッチング方式半2値相関回路について説明する。こ
の回路構成には、外部電気信号が2値的信号に制限され
る欠点はあるが、容易に高精度の動作が得られるという
利点とともに、従来のCCDイメージセンサと半導体製
造プロセス上の共通点が多いという利点がある。
Next, a switching type half binary correlation circuit using the FET bridge shown in FIG. 7 will be described. This circuit configuration has the disadvantage that the external electric signal is limited to a binary signal, but has the advantage of being able to easily obtain high-precision operation, and also has the common features with the conventional CCD image sensor in the semiconductor manufacturing process. There is an advantage that there are many.

【0027】この回路の動作は、図8に模式的に示され
る。まず、画素に光が入射すると、その光は各画素ごと
にフォトダイオードPDにより電流に変換される。通常
のCCDカメラでは、この電流により直接コンデンサで
電荷を蓄積し、コンデンサの両端電圧をスキャンする。
ここで提案する方法では、通常の電荷蓄積前にFETを
4個(Q11 〜Q14 )用いてスイッチングを行い、走査
時にはFETQ12 およびQ13 をオンさせた状態でFE
TQ15 を介してコンデンサC7 の電圧を検出する。こ
れは、例えばM系列信号で駆動することに対応してい
る。すなわち、電流スイッチングを繰返し行うことによ
り、中央のコンデンサC7 の電荷が蓄積され(放出さ
れ)、このコンデンサC7 の両端電圧を計測することに
より、相関が計算されたことになる。
The operation of this circuit is shown schematically in FIG. First, when light enters a pixel, the light is converted into a current by a photodiode PD for each pixel. In an ordinary CCD camera, the electric charge is directly accumulated in the capacitor by this current, and the voltage across the capacitor is scanned.
In the method proposed here, switching is performed using four FETs (Q 11 to Q 14 ) before normal charge accumulation, and the FE is turned on during scanning with the FETs Q 12 and Q 13 turned on.
Through the TQ 15 detects the voltage of the capacitor C 7. This corresponds to, for example, driving with an M-sequence signal. That is, by repeating the current switching charge of the central capacitor C 7 is accumulated (released), by measuring the voltage across the capacitor C 7, so that the correlation was calculated.

【0028】[0028]

【発明の効果】請求項1に記載の発明によれば、入力フ
ォトンを電流に変換する変換手段、入力された電気信号
に応じて変換手段により発生した電流を変調する電流変
調手段、および電流変調手段により制御された電流を時
間積分する積分手段を有する複数の受光素子を備え、複
数の受光素子を走査して積分手段の積分値を順次読み出
すので、高い時間分解能での時間相関検出を行うことが
できる。請求項3に記載の発明によれば、時間変調をか
けた光を物体に照射する光源と、光源の時間変調信号を
遅延する遅延手段とを用い、遅延手段により遅延された
信号を請求項1または2に記載の時間相関型イメージセ
ンサに変調信号として入力するので、距離画像等を生成
することができる。請求項4に記載の発明によれば、請
求項1または2に記載の時間検出相関型イメージセンサ
に変調信号を印加しつつ、イメージセンサに入力される
画像の位置を振動させるので、高精度に画像の微分値を
求めることができる。
According to the first aspect of the present invention, a conversion means for converting an input photon into a current, a current modulation means for modulating a current generated by the conversion means in accordance with an input electric signal, and a current modulation A plurality of light receiving elements having an integrating means for time-integrating the current controlled by the means, and scanning the plurality of light receiving elements to sequentially read out the integrated value of the integrating means, thereby performing time correlation detection with high time resolution. Can be. According to the third aspect of the present invention, the light source that irradiates the object with the time-modulated light and the delay unit that delays the time-modulated signal of the light source are used, and the signal delayed by the delay unit is used. Alternatively, since a modulation signal is input to the time correlation type image sensor described in 2, the distance image or the like can be generated. According to the fourth aspect of the invention, the position of the image input to the image sensor is vibrated while applying the modulation signal to the time detection correlation type image sensor according to the first or second aspect, so that the accuracy is high. The derivative of the image can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるイメージセンサの構造を示す図。FIG. 1 is a diagram showing a structure of an image sensor according to the present invention.

【図2】図1に示すイメージセンサの動作帯域を示す
図。
FIG. 2 is a diagram showing an operation band of the image sensor shown in FIG.

【図3】本発明によるイメージセンサを用いた光伝播時
間による距離画像の生成を示す図。
FIG. 3 is a diagram showing generation of a distance image based on light propagation time using an image sensor according to the present invention.

【図4】差動トランジスタを用いて光電流を2つのコン
デンサに分流させる例を示す回路図。
FIG. 4 is a circuit diagram showing an example in which a photocurrent is divided into two capacitors by using a differential transistor.

【図5】図4に示す回路にFETスイッチを付加しで差
分だけを取り出す例を示す回路図。
FIG. 5 is a circuit diagram showing an example in which an FET switch is added to the circuit shown in FIG. 4 to extract only a difference.

【図6】半導体中に発生した光キャリアを2つのコンデ
ンサに割り振る構成を模式的に示す図。
FIG. 6 is a diagram schematically showing a configuration in which optical carriers generated in a semiconductor are allocated to two capacitors.

【図7】FETブリッジを用いたスイッチング方式半2
値相関回路を示す回路図。
FIG. 7: Switching method half 2 using FET bridge
FIG. 3 is a circuit diagram showing a value correlation circuit.

【図8】図7に示す回路の動作を説明する図。FIG. 8 illustrates operation of the circuit illustrated in FIG. 7;

【符号の説明】[Explanation of symbols]

1 電流モード乗算器 3 LED 4 対象 C コンデンサ S 電気信号 FD フォトダイオード Reference Signs List 1 current mode multiplier 3 LED 4 target C capacitor S electric signal FD photodiode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入力フォトンを電流に変換する変換手
段、入力された変調信号に応じて前記変換手段により発
生した電流を変調する電流変調手段、および前記電流変
調手段により変調された電流を時間積分する積分手段を
有する複数の受光素子と、 前記変調信号よりも遅い周期により前記複数の受光素子
を走査して前記積分手段の前記積分値を順次読み出す走
査手段とを備えることを特徴とする時間相関検出型イメ
ージセンサ。
1. A converter for converting an input photon into a current, a current modulator for modulating a current generated by the converter in accordance with an input modulation signal, and a time integration of the current modulated by the current modulator. A plurality of light receiving elements each having an integrating means, and a scanning means for scanning the plurality of light receiving elements at a period slower than the modulation signal and sequentially reading out the integrated value of the integrating means. Detection type image sensor.
【請求項2】 前記各受光素子の前記電流変調手段に同
一の変調信号を入力することを特徴とする請求項1に記
載の時間相関検出型イメージセンサ。
2. The time correlation detection type image sensor according to claim 1, wherein the same modulation signal is input to the current modulation means of each of the light receiving elements.
【請求項3】 時間変調をかけた光を物体に照射する光
源と、前記光源の時間変調信号を遅延する遅延手段とを
用い、 前記遅延手段により遅延された信号を請求項1または2
に記載の時間相関型イメージセンサに前記変調信号とし
て入力することにより、前記光源からの光が前記物体で
反射され、さらに前記イメージセンサで受光される際の
光伝播時間で決定される前記物体の特定部分のみを検出
することを特徴とする画像解析方法。
3. A signal source which irradiates an object with time-modulated light and delay means for delaying a time-modulated signal of the light source, wherein the signal delayed by the delay means is provided.
By inputting the modulation signal to the time-correlation type image sensor according to the above, the light from the light source is reflected by the object, and further determined by the light propagation time when received by the image sensor. An image analysis method characterized by detecting only a specific portion.
【請求項4】 請求項1または2に記載の時間検出相関
型イメージセンサの前記電流変調手段に変調信号を印加
しつつ、前記受光素子に入力される画像の位置を前記変
調信号と同期して振動させることにより、前記画像の微
分値を求めることを特徴とする画像解析方法。
4. A position of an image input to said light receiving element in synchronization with said modulation signal while applying a modulation signal to said current modulation means of said time detection correlation type image sensor according to claim 1 or 2. An image analysis method, wherein a differential value of the image is obtained by vibrating.
JP08672397A 1997-04-04 1997-04-04 Time correlation detection type image sensor and image analysis method Expired - Lifetime JP3643210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08672397A JP3643210B2 (en) 1997-04-04 1997-04-04 Time correlation detection type image sensor and image analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08672397A JP3643210B2 (en) 1997-04-04 1997-04-04 Time correlation detection type image sensor and image analysis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004351644A Division JP4001598B2 (en) 2004-12-03 2004-12-03 Time correlation detection type image sensor and image analysis method

Publications (2)

Publication Number Publication Date
JPH10281868A true JPH10281868A (en) 1998-10-23
JP3643210B2 JP3643210B2 (en) 2005-04-27

Family

ID=13894799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08672397A Expired - Lifetime JP3643210B2 (en) 1997-04-04 1997-04-04 Time correlation detection type image sensor and image analysis method

Country Status (1)

Country Link
JP (1) JP3643210B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305061A (en) * 2006-05-15 2007-11-22 Univ Of Tokyo Moving object information acquisition device and image acquisition device
JP2008096387A (en) * 2006-10-16 2008-04-24 Sharp Corp Temporal correlation detecting image sensor and image analyzer
WO2011105438A1 (en) 2010-02-26 2011-09-01 浜松ホトニクス株式会社 Range image sensor
US9100561B2 (en) 2011-09-12 2015-08-04 Canon Kabushiki Kaisha Image pickup apparatus that provides a correlation image

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5395323B2 (en) * 2006-09-29 2014-01-22 ブレインビジョン株式会社 Solid-state image sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144222A (en) * 1986-12-08 1988-06-16 Atsumi Denki Kk Heat ray type intruder detector
JPH06117922A (en) * 1991-12-16 1994-04-28 Erwin Sick Gmbh Opt Elektron Optical sensor device and operating method thereof
JPH07218352A (en) * 1994-02-04 1995-08-18 Nkk Corp Measurement method by otdr

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144222A (en) * 1986-12-08 1988-06-16 Atsumi Denki Kk Heat ray type intruder detector
JPH06117922A (en) * 1991-12-16 1994-04-28 Erwin Sick Gmbh Opt Elektron Optical sensor device and operating method thereof
JPH07218352A (en) * 1994-02-04 1995-08-18 Nkk Corp Measurement method by otdr

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305061A (en) * 2006-05-15 2007-11-22 Univ Of Tokyo Moving object information acquisition device and image acquisition device
JP2008096387A (en) * 2006-10-16 2008-04-24 Sharp Corp Temporal correlation detecting image sensor and image analyzer
WO2011105438A1 (en) 2010-02-26 2011-09-01 浜松ホトニクス株式会社 Range image sensor
US9081095B2 (en) 2010-02-26 2015-07-14 Hamamatsu Photonics K.K. Range image sensor
US9100561B2 (en) 2011-09-12 2015-08-04 Canon Kabushiki Kaisha Image pickup apparatus that provides a correlation image

Also Published As

Publication number Publication date
JP3643210B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US9442196B2 (en) Demodulation sensor with separate pixel and storage arrays
US8754939B2 (en) Multistage demodulation pixel and method
US8760549B2 (en) Demodulation pixel with daisy chain charge storage sites and method of operation therefor
US10616519B2 (en) Global shutter pixel structures with shared transfer gates
EP1777747B1 (en) Device and method for the demodulation of modulated electromagnetic wave fields
KR101751090B1 (en) Range image sensor
Buttgen et al. Demodulation pixel based on static drift fields
WO2009111556A1 (en) Drift field demodulation pixel with pinned photo diode
TW200427078A (en) Pixel sensor circuit device and method thereof
US11531094B2 (en) Method and system to determine distance using time of flight measurement comprising a control circuitry identifying which row of photosensitive image region has the captured image illumination stripe
Spirig et al. The multitap lock-in CCD with offset subtraction
US10236400B2 (en) Quantum dot film based demodulation structures
JP4356672B2 (en) Photodetector, photodetector control method, and spatial information detector
JP2003247809A (en) Distance information input device
JPH10281868A (en) Time correlation detection-type image sensor and image analysis method
EP1668708B1 (en) Optoelectronic detector with multiple readout nodes and its use thereof
CN109863604A (en) Imaging sensor with phase sensitive pixel
JP5441204B2 (en) Time correlation detection type image sensor and image analysis apparatus
US4979816A (en) Range sensing system
JP4001598B2 (en) Time correlation detection type image sensor and image analysis method
Buxbaum et al. MSM-PMD as correlation receiver in a new 3D-ranging system
Luan et al. Three-dimensional intelligent sensing based on the PMD technology
Myers et al. High density, high point-rate line-scanned LiDAR receiver design and application benefits
US20060038113A1 (en) Photodetector arrangement and method for stray ligh compensation
EP2138865A1 (en) Method and device for recording 3D images of a scene

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term