JPH01214016A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPH01214016A
JPH01214016A JP3926788A JP3926788A JPH01214016A JP H01214016 A JPH01214016 A JP H01214016A JP 3926788 A JP3926788 A JP 3926788A JP 3926788 A JP3926788 A JP 3926788A JP H01214016 A JPH01214016 A JP H01214016A
Authority
JP
Japan
Prior art keywords
layer
film
stress
insulating
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3926788A
Other languages
Japanese (ja)
Inventor
Jitsuya Noda
野田 実也
Yasushi Morita
靖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3926788A priority Critical patent/JPH01214016A/en
Publication of JPH01214016A publication Critical patent/JPH01214016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a SOI substrate which can prevent an isolation capacity from being increased and can reduce a stress to be caused in an epitaxial layer by a method wherein an insulating layer in a semiconductor substrate where a semiconductor layer has been formed on a substratum via the insulating layer is constituted by a laminated film of an insulating film coming into contact with the semiconductor layer and of a film offsetting the stress in the insulating film. CONSTITUTION:An insulating layer 8 in a semiconductor substrate 11 where a semiconductor layer 10 has been formed on a substratum 1 via the insulating layer 8 is constituted by a laminated film of an insulating film 12 coming into contact with the semiconductor layer 10 and of a film 7 offsetting a stress in the insulating film 12. For example, a polycrystalline silicon layer 5 having a thickness of about 3000Angstrom and to be used as a stress buffer layer, an Si3N4 film 7 having a thickness of 100-500Angstrom and an SiO2 film 12 having a thickness of 1000Angstrom or more are applied and formed one after another on a silicon substrate 1. Then, the SiO2 film 12, the Si3N4 film 7 and the polycrystalline silicon layer 5 are patterned via a mask. Then, SiO2 is applied; after that, it is etched back; SiO2 sidewall parts 9 are formed. Then, silicon is epitaxially grown selectively from the face facing the silicon substrate 1; a silicon semiconductor layer 10 is formed on the SiO2 film 12; a SOI substrate 11 is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基体上に絶縁層を介して半導体1→が形成さ
れてなる半導体基板、すなわち所謂5oi(silic
on on 1nsulator)基板に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a semiconductor substrate in which a semiconductor 1→ is formed on a base through an insulating layer, that is, a so-called 5oi (silic) substrate.
on on 1 insulator) substrate.

(発明の概要」 本発明は、基体上に絶縁層を介して半導体層が形成され
てなる半導体基板において、絶縁層を半導体1−に接す
る絶縁膜と、この絶縁膜の応力を相殺する膜による積r
−膜で構成することによって、絶縁膜を実質的に薄(し
て絶縁膜の実効的な応力を少なくし、これによって半導
体層に発生する応力を低減するようにしたものである。
(Summary of the Invention) The present invention provides a semiconductor substrate in which a semiconductor layer is formed on a base with an insulating layer interposed therebetween, in which the insulating layer is formed by an insulating film in contact with the semiconductor 1- and a film that cancels out the stress of this insulating film. product r
- By forming the insulating film with a film, the insulating film is made substantially thinner, thereby reducing the effective stress of the insulating film, thereby reducing the stress generated in the semiconductor layer.

〔従来の技術〕[Conventional technology]

近時、所謂SOt基板を用イーCCMOS等(7)VL
SI(ijj大規模集積回路)を作成する開発が進めら
れている(19861Hhh 、 196−IEDM8
6〜lhDM86−199参照)、このSol基撮とし
ては、例えば第3図に示すように、シリコン基板(1)
上に厚さ4000人程度炭種 i02等の絶Ii層(2
)を被着形成し、シリコンの選択エピタキシャル成長に
よって絶縁層(2)上にシリコン半導体rfi(31を
形成するようにしたSol基板!41が知られている。
Recently, the so-called SOt board is used for e-CCMOS, etc. (7) VL.
Development to create SI (ijj large-scale integrated circuit) is underway (19861Hhh, 196-IEDM8
6 to lhDM86-199), for example, as shown in FIG.
On top of this, there is an absolute Ii layer (2
) is deposited and a silicon semiconductor RFI (31) is formed on the insulating layer (2) by selective epitaxial growth of silicon.

このようなS OI 4i141を形成する場合、選択
エピタキシャル成圏のためのマスクとなる絶縁rfi(
2)としては、選択エピタキシャル成長形状から判1t
lrすると5iOzが最も良いという結果が得られてい
る。
When forming such an SOI 4i141, an insulating rfi (
As for 2), the size is 1t from the selective epitaxial growth shape.
The results show that 5iOz is the best.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述したSol基扱(4)において、S i
02絶縁層(4)上に成長したシリコン平導体j−すな
わちエピタキシャル層(3)の応力を調べると、強いテ
ンシルの力が働いていることが判明した。顕微ラマン法
によると、この応力は約1.3 X 10’ dyne
/d位であった。このような強い応力はSiとS i0
2の膜の組み合せに起因するものであり、本構造をとる
限り避けられない。選択エピタキシャル成長(気相成長
、固相成長)で第3図のSol基撮(4)を形成する場
合、エピタキシャルrM (31において5i02絶縁
層(2)上の両側よりの成長のぶつかり部に応力が本中
し、結晶欠陥が発生しやすく、この結晶欠陥がリーク電
流の原因となる。従って、このようなSol基板(4)
は半導体デバイスの作成に使えなくなる。又、MOSな
どのデバイスを作成する場合にシリコン半導体t= (
31に応力が残っていると、後の工程で均一な酸化がで
きない。
By the way, in the Sol-based treatment (4) mentioned above, S i
When the stress of the silicon flat conductor j-, that is, the epitaxial layer (3) grown on the 02 insulating layer (4) was investigated, it was found that a strong tensile force was acting. According to the micro-Raman method, this stress is approximately 1.3 x 10' dyne
/d position. Such strong stress is caused by Si and Si0
This is due to the combination of the two films, and cannot be avoided as long as this structure is adopted. When forming the Sol substrate (4) in Fig. 3 by selective epitaxial growth (vapor phase growth, solid phase growth), stress is generated at the collision portion of the growth from both sides on the 5i02 insulating layer (2) in the epitaxial rM (31). However, crystal defects are likely to occur, and these crystal defects cause leakage current.Therefore, such a Sol substrate (4)
can no longer be used to create semiconductor devices. Also, when creating devices such as MOS, silicon semiconductor t= (
If stress remains in 31, uniform oxidation will not be possible in subsequent steps.

一方、本発明者達はシリコンのエピタキシャル層に発生
ずる応力を低減するために第2図に示す構成のSol基
機(61を提案した。このSO1基板(6)は、シリコ
ン基板(11上に応力緩衝層となる所定パターンの多結
晶シリコン1−(又は非晶質シリコン層)(5)を形成
し、この多結晶シリコン層(5)上にS i02絶縁層
(2)を形成した後、選択エピタキシャル成長してシリ
コン半導体層(3)を形成して構成するものである。
On the other hand, the present inventors proposed a Sol-based substrate (61) having the configuration shown in FIG. 2 in order to reduce the stress generated in the silicon epitaxial layer. After forming a predetermined pattern of polycrystalline silicon 1- (or amorphous silicon layer) (5) that will become a stress buffer layer, and forming an Si02 insulating layer (2) on this polycrystalline silicon layer (5), A silicon semiconductor layer (3) is formed by selective epitaxial growth.

多結晶シリコン層(5)自身はシリコン基板+1)と同
じ材料のため応力が少ないと共に、電気抵抗がシリコン
基板<11よりも大きい、従って、この構成では多結晶
シリコン層(5)の存在によってS i(h絶縁層(2
)の厚さを実質的に薄くしてS i(h絶縁層(2)の
応力を実効的に小さくし、これによってエピタキシャル
層(3)に発生する引張り応力を低減している。また、
第3図のSol基板(4)と比較して、S i02絶縁
+= (2+が薄くなるも多結晶シリコンJtj [5
)によってエピタキシャル層(3)とシリコン基板(1
)間の分離容量を小さくすることができる。この構成で
はエピタキシャルI@ (3)に掛る応力を小さくする
ためにS iO2絶縁層(2)の厚さはあまり厚く°で
きす、1000Å以上にしている。
Since the polycrystalline silicon layer (5) itself is made of the same material as the silicon substrate +1), it has less stress and has a higher electrical resistance than the silicon substrate <11. Therefore, in this configuration, the presence of the polycrystalline silicon layer (5) causes S i (h insulating layer (2
) to effectively reduce the stress in the Si(h insulating layer (2)), thereby reducing the tensile stress generated in the epitaxial layer (3).
Compared to the Sol substrate (4) in Fig. 3, the polycrystalline silicon Jtj [5
) between the epitaxial layer (3) and the silicon substrate (1
) can be made smaller. In this configuration, in order to reduce the stress applied to the epitaxial I@(3), the thickness of the SiO2 insulating layer (2) cannot be too thick; it is set to 1000 Å or more.

しかるに、かかるSol基扱(6)においても、Sig
h絶縁層(2)上のエピタキシャル層(3)が薄い場合
にはエピタキシャル1m (31に発生する応力はまだ
大きいと思われる。
However, even in such Sol-based treatment (6), Sig
When the epitaxial layer (3) on the h insulating layer (2) is thin, the stress generated in the epitaxial layer 1 m (31) is considered to be still large.

又、多結晶シリコン層(5)は、その電気抵抗がシリコ
ン基板(1)より大きいけれども5i(hに比べて小さ
いので、絶縁物として代用しきれず、このため−S i
02絶縁層(2)を薄くした場合に分離容量も大きくな
る。
Further, although the electrical resistance of the polycrystalline silicon layer (5) is larger than that of the silicon substrate (1), it is smaller than 5i(h), so it cannot be used as an insulator, and therefore -S i
When the 02 insulating layer (2) is made thinner, the isolation capacitance also increases.

本発明は、上述の点に鑑み、分離容)dの増加を防ぎ、
且つエピタキシャル層に発生する応力を低減できるよう
にした半導体基&即ちSOI基扱を提供するものである
In view of the above points, the present invention prevents an increase in separation volume) d,
Moreover, it provides semiconductor-based and SOI-based treatment that can reduce the stress generated in the epitaxial layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、基体上(1)に絶縁層を介して選択エピタキ
シャル成長による半導体層(10)が形成されてなる半
導体基板において、絶縁層(8)を半導体層に接する絶
縁19!(12)と、この絶縁膜(12)の応力を相殺
する膜(7)との積層膜で構成するようになす。
The present invention provides a semiconductor substrate in which a semiconductor layer (10) is formed on a substrate (1) by selective epitaxial growth via an insulating layer, and an insulating layer (8) is in contact with the semiconductor layer (19!). (12) and a film (7) that cancels the stress of this insulating film (12).

〔作用〕[Effect]

絶縁層(8)が半導体JtW(10)に接する絶縁膜(
12)と、この絶縁膜(12)の応力を相殺する膜(7
)の積Ij膜で構成されるので、絶縁膜(12)の応力
が可及的に小さくなる。これにより絶縁IQ(12)上
に形成される半導体層(10)の応力が低減する。した
がって応力に起因する結晶欠陥も減り、結晶性のよい半
導体1!(10)が形成される。
An insulating film (where the insulating layer (8) is in contact with the semiconductor JtW (10)
12) and a film (7) that offsets the stress of this insulating film (12).
), the stress of the insulating film (12) is reduced as much as possible. This reduces stress in the semiconductor layer (10) formed on the insulating IQ (12). Therefore, crystal defects caused by stress are reduced, resulting in a semiconductor with good crystallinity! (10) is formed.

また、絶縁Jm (81は積I一般で形成されるので厚
くすることができ、半導体In(10)と基体(1)間
の分離容量が小さくできる。分離容量が小さいときはデ
バイスを作成したときのデバイスの商連動作に有利とな
る。
In addition, since the insulation Jm (81) is generally formed by the product I, it can be made thicker, and the separation capacitance between the semiconductor In (10) and the substrate (1) can be reduced.When the separation capacitance is small, when the device is made This will be advantageous for the commercial operation of devices.

〔実施例〕〔Example〕

以下、第1図を参照して本発明によるSO1法坂の実施
例をその製法と共に説明する。
Hereinafter, an embodiment of the SO1 method slope according to the present invention will be described with reference to FIG. 1, together with its manufacturing method.

本例においては、先ず第1図Aに示すようにシリコン基
板(1)上に応力ri街層となる厚さ3000人程度0
例えば多結晶シリコン層!5)、)i−さ100〜50
0炭種度のSi3N2腺(7)及び厚さ1000Å以上
の5iOzll!2!(12)を順次被着形成する。こ
こで、S i(h股(12)の応力と5iaN4IQ(
71の応力は互いに逆方向である。
In this example, first, as shown in FIG.
For example, a polycrystalline silicon layer! 5),) i-sa 100-50
Si3N2 gland (7) with 0 coal grade degree and 5iOzll with thickness of 1000 Å or more! 2! (12) are sequentially deposited and formed. Here, S i (h crotch (12) stress and 5iaN4IQ (
The stresses at 71 are in opposite directions.

従って、SiO2股(12)の応力とSi3N4股(7
)の応力が杓ち消し合う2M構造の絶縁層(8)が形成
される。
Therefore, the stress of the SiO2 crotch (12) and the stress of the Si3N 4 crotch (7)
An insulating layer (8) having a 2M structure in which the stresses of ) are canceled out is formed.

次に、第1図Bに示すようにマスク(図示せず)を介し
てS +02映(12)、 5i−IN4IIぐ(73
及び多結晶シリコン層(5)をバターニングする。
Next, as shown in FIG. 1B, S +02 (12) and 5i-IN4II (73
and patterning the polycrystalline silicon layer (5).

次に、第1図Cに示すようにCVI)法によるS i(
hを被着して後エソナハソクして多結晶シリコン層(5
)の1u11面を覆うようなS i02側壁口1S(9
1を形成する。
Next, as shown in Figure 1C, S i (
After depositing a polycrystalline silicon layer (5
) S i02 side wall opening 1S (9
form 1.

次に、第1図りに示すようにシリコン基板(1)が臨む
面からシリコンの選択エピタキシャル成長を行う。この
選択エピタキシャル成長は、3i02膜(12)上まで
横力向に成長が進ような条件で行い、5i(h膜(12
)上にシリコン半導体層(10)を形成する。斯くして
目的のSO1基板(11)をii#る。
Next, as shown in the first diagram, selective epitaxial growth of silicon is performed from the surface facing the silicon substrate (1). This selective epitaxial growth was performed under conditions such that the growth progressed in the lateral direction up to the top of the 3i02 film (12), and the 5i(h film (12)
) A silicon semiconductor layer (10) is formed on the silicon semiconductor layer (10). In this way, the target SO1 substrate (11) is obtained.

かかる構成によれば、第2図のSol基扱(6)と比較
してみると、5iOsJ9j (12)の厚さを厚く形
成できると共に、5iOJ2 (12) 0)応力とS
 i3N 411R+7)の応力とか相殺されることに
よって5iOJ* (12)の応力が小さくなる。従っ
て絶縁W (8)としてはSt0?股(12)とSi〕
N4映(7)の合計膜厚となり、分離容量を小さくする
ことができると同時に、シリコン半導体j@即ちエピタ
キシャルIn(10)に発生する応力を10’ dyn
e/cd程度に低減することができる。そして、応力が
低減されるので3心力に起因する結晶欠陥も低減できる
。構造的には第2図の構造とほぼ同じなので@A造工程
などの制限は特に変わらない。
According to this configuration, when compared with Sol-based treatment (6) in FIG.
By canceling out the stress of i3N 411R+7), the stress of 5iOJ* (12) becomes smaller. Therefore, as the insulation W (8), St0? Crotch (12) and Si]
The total film thickness is N4 (7), which makes it possible to reduce the isolation capacitance and reduce the stress generated in the silicon semiconductor (i.e., epitaxial In (10)) by 10' dyn.
It can be reduced to about e/cd. Furthermore, since stress is reduced, crystal defects caused by three-core forces can also be reduced. Structurally, it is almost the same as the structure shown in Figure 2, so there are no particular changes in the restrictions such as the @A construction process.

一方、第3図の従来のSol基板(4)と比較したとき
には絶縁1@ (8)の下に応力緩衝層となる多結晶シ
リコン映(5)が介hljされているごとにより、S 
1(hfl!(12)を実質的に薄くすることができ、
実効的なLea力を小さくすることができる。
On the other hand, when compared with the conventional Sol substrate (4) in Figure 3, S
1 (hfl!(12)) can be made substantially thinner,
The effective Lea force can be reduced.

尚、上側では応力緩衝層として多結晶シリコンIn +
51を用いたが、その他非晶實シリコン、酸素ドープ多
結晶シリコン、或はSiと膨張係数が同じなりSG (
ボロンシリケートガラス)  、 Sio2より応力の
少ないPSG (リンシリケートガラス)等を用いるこ
ともできる。
Note that polycrystalline silicon In + is used as a stress buffer layer on the upper side.
51 was used, but other materials such as amorphous silicon, oxygen-doped polycrystalline silicon, or SG (
It is also possible to use PSG (phosphorus silicate glass), which has less stress than Sio2 (boron silicate glass), or the like.

(発明の効果」 本発明によれは、基体上に絶縁層を介して半導体層が形
成されてなる半導体基板において、絶縁j−を半導体1
iに接する絶縁層とこの絶縁段の応力を相殺する股との
積層膜で構成することにより、絶縁段の応力を小さくす
ることができ、この上に形成される半導体層の応力を低
減することができる。これによって結晶欠陥の少ない半
導体層がRjられる。同時に絶縁層を厚く形成できるの
で、半導体1−と基体間の分離容量も小さくすることが
できる。従って、VLSI等の作成に通した半導体&扱
を提供することができる。
(Effects of the Invention) According to the present invention, in a semiconductor substrate in which a semiconductor layer is formed on a base through an insulating layer, the insulating j- is
By constructing a laminated film of an insulating layer in contact with i and a crotch that offsets the stress of this insulating step, the stress of the insulating step can be reduced, and the stress of the semiconductor layer formed thereon can be reduced. Can be done. As a result, the semiconductor layer with few crystal defects is Rj. At the same time, since the insulating layer can be formed thickly, the separation capacitance between the semiconductor 1- and the substrate can also be reduced. Therefore, it is possible to provide semiconductor & handling through the creation of VLSI etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Dは本発明にょるSOI基扱の一例を示す製
造工程順の断面図、第2図は本発明の説明に供する比較
のための5O1i坂の断面し1、第3図は従来のSol
基扱の断面図である。 +1)はシリコン基板、(2)は5i(h絶縁層、+3
1 (10)は選択エピタキシャル成にによるシリコン
半導体層、(5)は多結晶シリコン層、(7)はSi3
N4股、(8)は絶縁r−1(12)はS ith絶縁
絶縁ある。
1A to 1D are cross-sectional views in the order of manufacturing steps showing an example of SOI handling according to the present invention, FIG. 2 is a cross-sectional view of a 5O1i slope for comparison to explain the present invention, and FIG. Traditional Sol
It is a sectional view of the basic treatment. +1) is a silicon substrate, (2) is a 5i (h insulating layer, +3
1 (10) is a silicon semiconductor layer formed by selective epitaxial formation, (5) is a polycrystalline silicon layer, and (7) is a Si3
N4 crotch, (8) is insulated r-1 (12) is S ith insulated.

Claims (1)

【特許請求の範囲】  基体上に絶縁層を介して半導体層が形成されてなる半
導体基板において、 上記絶縁層が半導体層に接する絶縁膜と、該絶縁膜の応
力を相殺する膜との積層膜で構成されて成る半導体基板
[Scope of Claims] A semiconductor substrate in which a semiconductor layer is formed on a base with an insulating layer interposed therebetween, a laminated film comprising an insulating film in which the insulating layer is in contact with the semiconductor layer, and a film that offsets the stress of the insulating film. A semiconductor substrate made up of
JP3926788A 1988-02-22 1988-02-22 Semiconductor substrate Pending JPH01214016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3926788A JPH01214016A (en) 1988-02-22 1988-02-22 Semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3926788A JPH01214016A (en) 1988-02-22 1988-02-22 Semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH01214016A true JPH01214016A (en) 1989-08-28

Family

ID=12548367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3926788A Pending JPH01214016A (en) 1988-02-22 1988-02-22 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH01214016A (en)

Similar Documents

Publication Publication Date Title
JP3033412B2 (en) Method for manufacturing semiconductor device
US5442223A (en) Semiconductor device with stress relief
US7915173B2 (en) Shallow trench isolation structure having reduced dislocation density
US5168078A (en) Method of making high density semiconductor structure
KR950012678A (en) Device isolation film manufacturing method of semiconductor device
JPH04137723A (en) Manufacture of semiconductor laminated substrate
US5025304A (en) High density semiconductor structure and method of making the same
KR920008983A (en) Semiconductor pressure sensor and manufacturing method
KR970052024A (en) SOH eye substrate manufacturing method
JPH01214016A (en) Semiconductor substrate
JPS59186342A (en) Manufacture of semiconductor device
KR930008994A (en) Wafer bonding technology
JPH0447980B2 (en)
JPH04311059A (en) Decreasing method of wiring capacity
KR100335263B1 (en) Method for manufacturing isolation layer in semiconductor device
KR930011113A (en) Contact Forming Method of Semiconductor Device
JPH01214012A (en) Semiconductor substrate
JPS63293948A (en) Forming method for interlayer insulating film
JPS60149145A (en) Manufacture of semiconductor device
JPS6055613A (en) Substrate for semiconductor device
JPH09153490A (en) Semiconductor device and manufacture thereof
JPS613424A (en) Dielectric isolation substrate
JPH02183553A (en) Semiconductor device
KR930003366A (en) Device Separation Method of Semiconductor Device
KR960015855A (en) SOI structure and its manufacturing method