JPH01213547A - Grain size distribution measuring instrument - Google Patents

Grain size distribution measuring instrument

Info

Publication number
JPH01213547A
JPH01213547A JP63039158A JP3915888A JPH01213547A JP H01213547 A JPH01213547 A JP H01213547A JP 63039158 A JP63039158 A JP 63039158A JP 3915888 A JP3915888 A JP 3915888A JP H01213547 A JPH01213547 A JP H01213547A
Authority
JP
Japan
Prior art keywords
light
particle size
measured
lamp
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039158A
Other languages
Japanese (ja)
Inventor
Takeshi Niwa
丹羽 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63039158A priority Critical patent/JPH01213547A/en
Publication of JPH01213547A publication Critical patent/JPH01213547A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To inexpensively lower the lower limit particle size to be measured to <=1/3 the lower limit particle size of the prior art by providing a light source part where a deuterium or halogen lamp, interference filter and pinhole are used as well as a semiconductor sensor and image intensifier. CONSTITUTION:The lower limit particle size to be measured is smaller as the wavelength of light for measurement is shorter in the case of using a forward microangle scattering method. The need for a UV laser which is costly and has poor maintenance characteristic is, therefore, eliminated by using the deuterium lamp or halogen lamp as the light source lamp 1, using the interference filter 3 to obtain light of a single wavelength and imparting convergence to the light by the pinhole 4; in addition, the quantity of light is amplified by the image intensifier 7 provided on the photodetecting surface side of the semiconductor photosensor 8, by which the quantity of the light equiv. to the quantity of the light obtainable with the conventional gaseous He-Ne laser light source is obtd. and the lower limit particle size to be measured is lowered to <=1/3. Moreover, the measurement range is largely expanded by exchange of the filter 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、フラウホーファ回折やミー散乱理論による、
前方微小角散乱法を利用した粉粒体の粒度分布測定装置
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is based on Frauhofer diffraction and Mie scattering theory.
This invention relates to a particle size distribution measuring device for powder and granular materials using forward small angle scattering method.

〈従来の技術〉 分散状態の被測定粉粒体に光を照射することによって得
られる、フラウホーファ回折やミー散乱理論による散乱
光の強度分布を測定することによって、被測定粉粒体の
粒度分布を測定する、いわゆる前方微小角散乱法を用い
た粒度分布測定装置では、一般に、回折光強度を測定す
る関係上、測定用光には可干渉性および単色性が要求さ
れる。
<Prior art> The particle size distribution of the powder to be measured can be determined by measuring the intensity distribution of scattered light based on Frauhofer diffraction or Mie scattering theory, which is obtained by irradiating light onto the powder to be measured in a dispersed state. In a particle size distribution measuring device using a so-called forward small angle scattering method, the measurement light is generally required to have coherence and monochromaticity in order to measure the intensity of diffracted light.

このことから、測定用光の光源としてレーザが用いられ
、また、回折光もしくは散乱光を測定する光センサとし
てはフォトマルチプライヤあるいは半導体フォトセンサ
が使用されている。
For this reason, a laser is used as a light source for measurement light, and a photomultiplier or a semiconductor photosensor is used as an optical sensor for measuring diffracted light or scattered light.

レーザ光源は種々あるが、従来、そのコストおよび保守
性の点から、He−Neガスレーザが主として使用され
ている。
Although there are various types of laser light sources, a He-Ne gas laser has conventionally been mainly used due to its cost and maintainability.

〈発明が解決しようとする課題〉 ところで、He−Neガスレーザの出力光の波長は63
2.8 n mであるが、このような光をコリメートレ
ンズで平行光束として試料セル内の被測定粒子に照射し
、得られた回折光等をその後方に置かれたフーリエ変換
レンズの焦点面上に集光し、その焦点面にはリング状の
フォトマルチプライヤ等のデテクタを配設して回折光の
強度分布を測定する、いわゆるフラウホーファ回折を利
用した光学系では、その測定可能な小径側の粒子径限界
はせいぜい0.4μmである。そこで、従来、微小粒子
の測定には逆フーリエ光学系と称される光学系を使用す
る等の対策がとられている。逆フーリエ光学系では、光
源からのビームを集光レンズで集光し、その集光レンズ
の焦点面上にデテクタを配置するとともに、このデテク
タと集光レンズの間に被測定粒子を置く。このような光
学系を用いることにより測定下限は小径側に移行される
ものの、粒子径/波長の値がある値以下になると散乱パ
ターンが一定となることから、He−Neガスレーザを
光源としたときには0.1μm程度が限界である。
<Problem to be solved by the invention> By the way, the wavelength of the output light of the He-Ne gas laser is 63
2.8 nm, such light is irradiated onto the particle to be measured in the sample cell as a parallel beam using a collimating lens, and the resulting diffracted light is transferred to the focal plane of the Fourier transform lens placed behind it. In an optical system that uses so-called Frauhofer diffraction, in which the intensity distribution of the diffracted light is measured by placing a detector such as a ring-shaped photomultiplier on the focal plane, the small diameter side where the measurement is possible is performed. The particle size limit for is at most 0.4 μm. Therefore, conventional measures have been taken to measure microparticles, such as using an optical system called an inverse Fourier optical system. In an inverse Fourier optical system, a beam from a light source is focused by a condenser lens, a detector is placed on the focal plane of the condenser lens, and a particle to be measured is placed between the detector and the condenser lens. Although the lower measurement limit is shifted to the smaller diameter side by using such an optical system, the scattering pattern becomes constant when the particle diameter/wavelength value becomes less than a certain value, so when a He-Ne gas laser is used as the light source, The limit is about 0.1 μm.

測定用光の波長を短くすべく、例えば紫外域のレーザを
用いることは、そのコストが膨大なものとなるとともに
、保守性の面から見ても、実用的ではない。
Using a laser in the ultraviolet range, for example, in order to shorten the wavelength of measurement light results in enormous costs and is not practical from the viewpoint of maintainability.

本発明は、このような前方微小角散乱法を用いた粒度分
布測定装置において、その測定下限粒子径を、高価なレ
ーザを使用することなく、より小さくすることを目的と
している。
An object of the present invention is to further reduce the measurement minimum particle diameter in a particle size distribution measuring apparatus using such a forward small angle scattering method without using an expensive laser.

く課題を解決するための手段〉 上記目的を達成するため、本発明の粒度分布測定装置は
、実施例に対応する第1図に示すように、光源用のラン
プ1と、干渉フィルタ3と、ピンホール4と、干渉フィ
ルタ3およびピンホール4を通過したランプ1からの光
を被測定粒子(フローセル6内)に照射して得られる回
折光もしくは散乱光を受光するリング状半導体フォトセ
ンサ8と、そのフォトセンサ8の受光面側に配設された
イメージインテンシファイア7を備えたことを特徴とし
ている。
Means for Solving the Problems> In order to achieve the above object, the particle size distribution measuring device of the present invention includes a lamp 1 for a light source, an interference filter 3, as shown in FIG. 1 corresponding to an embodiment. a ring-shaped semiconductor photosensor 8 that receives diffracted light or scattered light obtained by irradiating the particle to be measured (inside the flow cell 6) with light from the lamp 1 that has passed through the pinhole 4, the interference filter 3, and the pinhole 4; , is characterized by having an image intensifier 7 disposed on the light-receiving surface side of the photosensor 8.

く作用〉 散乱光、回折光ともその測定は、散乱角または回折角と
光強度の関係(以下、散乱パターンと称する)を求める
もので、粒度分布はその測光データを用いた演算により
得ている。散乱パターンは、単一粒子の場合、主として
波長と粒子径の値で決まる。この散乱パターンは粒子径
/波長の値がある値以下になると一定となることは前述
した通りであり、このことが測定下限粒子径を決定して
しまう。
Measurement of both scattered light and diffracted light is to find the relationship between the scattering angle or diffraction angle and light intensity (hereinafter referred to as scattering pattern), and the particle size distribution is obtained by calculation using the photometric data. . In the case of a single particle, the scattering pattern is mainly determined by the wavelength and particle diameter values. As described above, this scattering pattern becomes constant when the value of particle diameter/wavelength becomes less than a certain value, and this determines the minimum particle diameter for measurement.

以上のことから、短波長の光を測定用光として用いれば
測定下限は小径側にずれる。従って、光源用のランプ1
に重水素ランプやハロゲンランプ等を用い、干渉フィル
タ3によって所望の単波長の光を得て、この光にピンホ
ール4で集光性を与えることによって、所期の目的が達
成される。
From the above, if short wavelength light is used as measurement light, the lower limit of measurement will shift toward the smaller diameter side. Therefore, the lamp 1 for the light source
The desired purpose is achieved by using a deuterium lamp, a halogen lamp, or the like, obtaining light of a desired single wavelength through an interference filter 3, and providing convergence to this light through a pinhole 4.

半導体フォトセンサ8の受光面側に設けられたイメージ
インテンシファイア7は、上述の構成で得られる光量が
従来のHe−Neガスレーザを光源とする場合に比して
低いため、これを増幅するために必要である。
The image intensifier 7 provided on the light-receiving surface side of the semiconductor photosensor 8 is used to amplify the amount of light obtained with the above configuration, which is lower than when using a conventional He-Ne gas laser as a light source. is necessary.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の光学系の構成図で、逆フーリエ
光学系に本発明を適用した例を示している。
FIG. 1 is a block diagram of an optical system according to an embodiment of the present invention, and shows an example in which the present invention is applied to an inverse Fourier optical system.

光源部Sは、重水素ランプやハロゲンランプ等のランプ
1と、集光レンズ2と、干渉フィルタ3、およびピンホ
ール4によって構成されている。
The light source section S includes a lamp 1 such as a deuterium lamp or a halogen lamp, a condenser lens 2, an interference filter 3, and a pinhole 4.

集光レンズ2、干渉フィルタ3およびピンホール4を通
過したランプ1からの光は、集光レンズ5によってデテ
クタD上に集光される。そして、この集光レンズ5とデ
テクタDの間に、被測定粉粒体が分散飛しょう状態で流
動するフローセル6が配設される。
The light from the lamp 1 that has passed through the condenser lens 2, the interference filter 3, and the pinhole 4 is condensed onto the detector D by the condenser lens 5. A flow cell 6 is disposed between the condenser lens 5 and the detector D, in which the powder to be measured flows in a dispersed flying state.

デテクタDは、従来と同様のリング状半導体フォトセン
サ8の受光面に、イメージインテンシファイア(光増幅
器)7を装着してなっている。リング状半導体フォトセ
ンサ8は、同心状に複数のリング状の受光面が配列され
たアレイ状センサであり、その中心が測定光の光軸上に
くるよう配設され、また、集光レンズ5による集光点が
イメージインテンシファイア7の受光面上にくるよう、
位’TZ gJI節される。リング状半導体フォトセン
サ8の出力は、増幅器、A−D変換器等を介してコンピ
ュータ(いずれも図示せず)に採り込まれ、公知の算法
によって被測定粉粒体の粒度分布を求めることができる
Detector D includes an image intensifier (optical amplifier) 7 attached to the light receiving surface of a ring-shaped semiconductor photosensor 8 similar to the conventional one. The ring-shaped semiconductor photosensor 8 is an array-shaped sensor in which a plurality of ring-shaped light-receiving surfaces are arranged concentrically, and the center thereof is placed on the optical axis of the measurement light. so that the light focusing point is on the light receiving surface of the image intensifier 7.
The position is 'TZ gJI clause. The output of the ring-shaped semiconductor photosensor 8 is input to a computer (none of which are shown) via an amplifier, an A-D converter, etc., and the particle size distribution of the powder to be measured can be determined using a known algorithm. can.

以上の本発明実施例によると、ランプ1からの光は干渉
フィルタ3によって所定波長の単波長光となり、次段の
ピンホール4を通過することで集光性が与えられる結果
、逆フーリエ光学系の測定用光として満足する光となる
According to the embodiment of the present invention described above, the light from the lamp 1 is converted into a single wavelength light of a predetermined wavelength by the interference filter 3, and is given condensing property by passing through the pinhole 4 in the next stage.As a result, the inverse Fourier optical system The light is satisfactory as a measuring light.

このような光を集光レンズ5で集光しつつフローセル内
の被測定粉粒体に照射することによって得られる散乱光
は、デテクタD上に散乱パターンを描く。光源部Sから
光は、He−Neガスレーザを光源とする従来の装置に
比してその光量が極めて低い。このような測定用光の粉
粒体による散乱光は、イメージインテンシファイア7で
増幅され、半導体フォトセンサ8により測光可能な光量
および波長を有する光となる。
The scattered light obtained by irradiating the powder to be measured in the flow cell while condensing such light with the condenser lens 5 draws a scattering pattern on the detector D. The amount of light emitted from the light source section S is extremely low compared to a conventional device using a He-Ne gas laser as a light source. Such light scattered by the powder and granular material of measurement light is amplified by the image intensifier 7, and becomes light having a light amount and wavelength that can be photometered by the semiconductor photosensor 8.

第2図は本発明の他の実施例の光学系の構成図で、通常
のフラウンホーファ回折光の測定系に本発明を適用した
例を示している。
FIG. 2 is a block diagram of an optical system according to another embodiment of the present invention, showing an example in which the present invention is applied to a normal Fraunhofer diffraction light measurement system.

この例において、光源部SとデテクタDの構造は第1図
の例と同じであるが、光源部Sからの光は、コリメータ
レンズ9で平行光束とされた後にフローセル6内の被測
定粉粒体に照射され、ここで回折した光は次段のフーリ
エ変換レンズ10によってデテクタD上に集光され、回
折像を結ぶ。
In this example, the structures of the light source section S and detector D are the same as those in the example shown in FIG. The light irradiated onto the body and diffracted here is focused onto a detector D by the Fourier transform lens 10 in the next stage, forming a diffraction image.

ここで、回折光の測定に際しては、測定用光には単色性
のほか、可干渉性が要求されるが、ピンホール4はこの
系においては可干渉性を与える働きをなし、光源部Sか
らはこの測定系でも有効な光が出力される。
When measuring diffracted light, the measuring light is required to have coherence as well as monochromaticity, but the pinhole 4 serves to provide coherence in this system, and from the light source S. This measurement system also outputs effective light.

以上の各実施例において、干渉フィルタ3を交換するこ
とで測定用光の波長を変更できる。測定用光の波長は前
述したように測定下限粒子径を決定する要因となり、例
えば200nm程度の波長を用いることで第1図の光学
系により0.03μm程度まで、第2図の光学系でも0
.1〜0.15μm程度まで測定可能である。
In each of the above embodiments, the wavelength of the measurement light can be changed by replacing the interference filter 3. As mentioned above, the wavelength of the measurement light is a factor that determines the minimum particle diameter for measurement. For example, by using a wavelength of about 200 nm, the optical system shown in Figure 1 can measure up to about 0.03 μm, and the optical system shown in Figure 2 can also measure up to 0.03 μm.
.. It is possible to measure up to about 1 to 0.15 μm.

〈発明の効果〉 以上説明したように、本発明によれば、高価で保守性の
悪い紫外線レーザを用いることなく、重水素ランプやハ
ロゲンランプ等と干渉フィルタおよびピンホールによる
光源部と、半導体フォトセンサ、イメージインテンシフ
ァイアを設けることで、前方微小角散乱法を利用した粒
度分布測定の測定下限粒子径を、従来のHe−Neガス
レーザを光源とする装置に比して1/3以下とすること
ができる。しかも、干渉フィルタの交換によって容易に
測定用光の波長を変更できるから、同一の光学系におけ
る測定範囲を大幅に拡張できるという利点もある。
<Effects of the Invention> As explained above, according to the present invention, a light source section using a deuterium lamp, a halogen lamp, etc., an interference filter and a pinhole, and a semiconductor photodiode can be used without using an expensive and difficult-to-maintain ultraviolet laser. By installing a sensor and an image intensifier, the lower limit particle diameter for particle size distribution measurement using forward small-angle scattering method is reduced to 1/3 or less compared to conventional equipment using a He-Ne gas laser as a light source. be able to. Furthermore, since the wavelength of the measurement light can be easily changed by replacing the interference filter, there is an advantage that the measurement range in the same optical system can be greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の光学系の構成図、第2図は本発
明の他の実施例の光学系の構成図である。 1・・・ランプ 3・・・干渉フィルタ 4・・・ピンホール 5・・・集光レンズ 6・・・フローセル フ・・・イメージインテンシファイア 8・・・リング状半導体フォトセンサ 特許出願人    株式会社島津製作所代 理 人  
  弁理士 西1)新
FIG. 1 is a block diagram of an optical system according to an embodiment of the present invention, and FIG. 2 is a block diagram of an optical system according to another embodiment of the present invention. 1...Lamp 3...Interference filter 4...Pinhole 5...Condensing lens 6...Flow self...Image intensifier 8...Ring-shaped semiconductor photosensor Patent applicant Stock Company representative Shimadzu Corporation Masato
Patent Attorney Nishi 1) Arata

Claims (1)

【特許請求の範囲】[Claims] 分散状態の被測定粒子に光を照射することによって得ら
れる回折光もしくは散乱光の強度分布から、被測定粒子
の粒度分布を測定する装置であって、光源用のランプと
、干渉フィルタと、ピンホールと、上記干渉フィルタお
よびピンホールを通過した上記ランプからの光を被測定
粒子に照射して得られる回折光もしくは散乱光を受光す
るリング状半導体フォトセンサと、そのフォトセンサの
受光面側に配設されたイメージインテンシファイアを備
えたことを特徴とする、粒度分布測定装置。
This device measures the particle size distribution of particles to be measured from the intensity distribution of diffracted light or scattered light obtained by irradiating light onto particles to be measured in a dispersed state, and includes a lamp for a light source, an interference filter, and a pin. a ring-shaped semiconductor photosensor that receives diffracted light or scattered light obtained by irradiating the particle to be measured with light from the lamp that has passed through the hole, the interference filter and the pinhole; A particle size distribution measuring device, characterized in that it is equipped with an image intensifier.
JP63039158A 1988-02-22 1988-02-22 Grain size distribution measuring instrument Pending JPH01213547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039158A JPH01213547A (en) 1988-02-22 1988-02-22 Grain size distribution measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039158A JPH01213547A (en) 1988-02-22 1988-02-22 Grain size distribution measuring instrument

Publications (1)

Publication Number Publication Date
JPH01213547A true JPH01213547A (en) 1989-08-28

Family

ID=12545304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039158A Pending JPH01213547A (en) 1988-02-22 1988-02-22 Grain size distribution measuring instrument

Country Status (1)

Country Link
JP (1) JPH01213547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294410A (en) * 1994-04-26 1995-11-10 Shimadzu Corp Grain size distribution measuring device
JP2012103259A (en) * 2004-03-06 2012-05-31 Michael Trainer Methods and apparatus for determining size and shape of particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294410A (en) * 1994-04-26 1995-11-10 Shimadzu Corp Grain size distribution measuring device
JP2012103259A (en) * 2004-03-06 2012-05-31 Michael Trainer Methods and apparatus for determining size and shape of particles

Similar Documents

Publication Publication Date Title
EP0485817B1 (en) Apparatus for measuring a particle size distribution
US5416580A (en) Methods and apparatus for determining small particle size distribution utilizing multiple light beams
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
US5438408A (en) Measuring device and method for the determination of particle size distributions by scattered light measurements
JPH044522B2 (en)
JPH0478543U (en)
JPH0237536B2 (en)
EP1588147B1 (en) Extracted polarization intensity differential scattering for particle characterization
JP3446410B2 (en) Laser diffraction particle size distribution analyzer
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
JP2910596B2 (en) Particle size distribution analyzer
JP2862077B2 (en) Particle size distribution analyzer
JP2626009B2 (en) Particle size distribution analyzer
JPH01213547A (en) Grain size distribution measuring instrument
JPH0462455A (en) Particle size distribution measuring instrument
JP2694304B2 (en) Light diffraction, scattering type particle size distribution analyzer
JPH0749302A (en) Method and apparatus of measuring particle size of microparticle in fluid
JPH05172730A (en) Measurement of particle-size distribution
JPH02193041A (en) Particle size distribution apparatus
JPH08128942A (en) Particle size distribution measuring equipment
JP2674128B2 (en) Particle size distribution analyzer
JP2876253B2 (en) Particle size distribution analyzer
JP2836481B2 (en) Particle size distribution analyzer
JPH07260669A (en) Grain size distribution measuring device
JP3049926B2 (en) Particle size distribution analyzer