JPH0121223B2 - - Google Patents

Info

Publication number
JPH0121223B2
JPH0121223B2 JP8594980A JP8594980A JPH0121223B2 JP H0121223 B2 JPH0121223 B2 JP H0121223B2 JP 8594980 A JP8594980 A JP 8594980A JP 8594980 A JP8594980 A JP 8594980A JP H0121223 B2 JPH0121223 B2 JP H0121223B2
Authority
JP
Japan
Prior art keywords
free
hardness
steel
cutting
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8594980A
Other languages
Japanese (ja)
Other versions
JPS5713155A (en
Inventor
Yoshuki Niiyama
Naoyuki Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8594980A priority Critical patent/JPS5713155A/en
Publication of JPS5713155A publication Critical patent/JPS5713155A/en
Publication of JPH0121223B2 publication Critical patent/JPH0121223B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、HRCが40〜47、とくに43〜46程度
の中硬度で使用する快削性型用鋼に関する。
The present invention relates to a free-cutting mold steel used with a medium hardness of H R C of 40 to 47, particularly 43 to 46.

【従来の技術】[Conventional technology]

ダイプレート、絞り型、抜き型、ダイカスト金
型などに使用する型用鋼において、快削成分を含
有させた場合には、生成するA系介在物が塑性加
工によつて線状に変形し、それが原因となつて介
在物の鋭角コーナー部での応力集中による初期破
壊が起りやすく、靭性が低いという悩みがある。
When mold steel used for die plates, drawing dies, punching dies, die-casting molds, etc. contains free-cutting components, the A-based inclusions that are formed are deformed into linear shapes by plastic working. As a result, initial fracture is likely to occur due to stress concentration at the acute corners of inclusions, resulting in low toughness.

【発明が解決しようとする課題】 本発明の目的は、上記の悩みを解消して、既知
のものよりも高い被削性を有しながら、靭性はす
ぐれている快削性型用鋼を実現することにある。
詳しくは、快削成分から生成する非金属介在物の
形状を球状化して耐衝撃性と靭性を高め、中硬度
にプレハードン化して複雑な加工を容易にすると
ともに、加工後の熱処理により生じる変形等の問
題を未然に防止した快削性型用鋼を提供すること
にある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problems and realize a free-cutting mold steel that has higher machinability than known products and has excellent toughness. It's about doing.
Specifically, the shape of nonmetallic inclusions generated from free-cutting components is made spherical to increase impact resistance and toughness, pre-hardened to medium hardness to facilitate complex machining, and deformation caused by heat treatment after machining. An object of the present invention is to provide a free-cutting mold steel that prevents the above problems.

【課題を解決するための手段】[Means to solve the problem]

本発明の快削性型用鋼は、基本的には、C:
0.2〜0.8%、Si:0.1〜1.5%、Mn:0.4〜1.5%、
Cr:1.0〜6.0%、Mo:0.1〜1.0%およびN:0.02
〜0.3%を基本成分とし、快削成分としてS:
0.05〜0.3%およびTe:0.03〜0.3%を含有し、残
部Feおよび不可避の不純物からなり、硬さがHR
Cで40〜47、とくに43〜46の範囲にある。 上記の合金組成に対しては、さらにNi:0.3〜
1.5%を加えることができる。 硬さをHRCで40〜47、とくに43〜46の範囲に
調節するには、機械加工に先立つて熱処理を施
し、プレハードンの状態にすればよい。
The free-cutting mold steel of the present invention basically has C:
0.2-0.8%, Si: 0.1-1.5%, Mn: 0.4-1.5%,
Cr: 1.0~6.0%, Mo: 0.1~1.0% and N: 0.02
~0.3% as the basic component, S as the free-cutting component:
Contains 0.05~0.3% and Te: 0.03~0.3%, with the remainder consisting of Fe and inevitable impurities, and has a hardness of H R
C is in the range of 40-47, especially 43-46. For the above alloy composition, Ni: 0.3~
1.5% can be added. In order to adjust the hardness to a range of 40 to 47, particularly 43 to 46 in H R C, heat treatment may be performed prior to machining to bring it into a pre-hardened state.

【作 用】[Effect]

本発明において、各合金成分を前記の組成範囲
にした理由は、つぎのとおりである。 C:0.2〜0.8% Cr、Mo、V、Nb、Zr、Tiのような炭化物
形成元素と結合して複合炭化物を生成し、工
具として必要な耐摩耗性を向上させるのに効
果があり、かつ基地中に固溶してこれに硬さ
を付与させるために必要である。0.2%未満
の含有ではこの作用が十分にあらわれず、焼
もどしにより必要な硬さが得られない。他
方、0.8%を超える過剰の含有量では、焼も
どし軟化抵抗が減少するとともに、大形介在
物が出現して鏡面仕上性が低下する。 Si:0.1〜1.5% 疲労限界の拡張に有効な元素である。また、
200〜300℃の温度域で軟化抵抗を高める。
0.1%以下ではこれらの効果を得ることがで
きない。1.5%を超えると熱伝導性の低下に
よる金型温度の上昇や被削性の低下が生じ
る。 Mn:0.4〜1.5% Sと反応してMnSを形成する。このMnSが
被削性向上に寄与していることはいうまでも
ない。しかし、Mnはオーステナイトを安定
化し、マルテンサイト変態点を大きく降下さ
せる。0.4%未満の含有ではMnSの形成が完
全に行なわれず、余剰のSがFeと反応して
低融点のFeSを形成するので、最低0.4%が
必要である。1.5%以上になるとマルテンサ
イト変態点が約80℃低下して残留オーステナ
イト量が増加し、寸法の経年変化などが生じ
る。また加工硬化能が高くなつて被削性にも
悪影響を与えるので、この1.5%を上限とし
た。 Cr:1.0〜6.0% 鋼に耐酸化性を付与するのに必須の成分であ
るが、1.0%未満ではその効果が不十分であ
り、また必要な焼もどし硬さが得られない。
一方、6.0%を超えると炭化物反応を低温側
に移行させ、焼もどし軟化抵抗を減少させる
とともに、靭性をも損う。Crはまた、M7O3
型の巨大共晶炭化物を生成する。この炭化物
は角ばつた形状となるため、使用中に外部か
ら応力が加わつた場合に、そのコーナー部で
ノツチ効果として応力集中が生じ、そこから
亀裂が生じやすい。このような理由から、
Cr含有量は1.0〜6.0%の範囲と定めた。 Mo:0.1〜1.0% 微細な炭化物をつくり、かつ基質中にも固溶
してこれを強化するので、耐摩耗性と耐ヒー
トチエツク性を良好にする。Cr量が2%以
上の場合には、Mo添加量0.1%以上で焼もど
し軟化抵抗が向上するが、1%を超えるとそ
の効果が飽和するので、Moの組成範囲は0.1
〜1.0%とした。 N:0.02〜0.3% Cと同様に、Cr、Mo、V、Nb、Zr、Tiの
ような元素と反応して窒化物を形成し、耐摩
耗性の向上、結晶粒の粗大化防止に効果があ
る。0.02%に足りない添加量では、Nの大部
分が炭窒化物の形となるためこの効果が期待
できないし、0.3%より多くなると、炭窒化
物が粒界のトリプルポイントで巨大成長し、
靭性を低下させる。 S:0.05〜0.3% Te:0.03〜0.3% ともに快削性付与成分として重要な元素で、
必ず両元素を複合状態で添加することが必要
である。これらはMnと結合してMn―スル
フオテルライド固溶体Mn(S、Te)を形成
し、これが介在物となつて基地中に均一分布
するために被削性が向上する。 この介在物はMnS形よりも硬いので、母材
の塑性加工時にも変形しにくく、楕円形ない
し卵形になるだけである。既知の類似快削鋼
では、やわらかなMnS介在物が主体であり、
それが塑性加工時に糸状に長く伸びて先端が
鋭いエツジ状を呈するため、外部から応力の
負荷と除去がくり返されると、ノツチ作用が
生じて早期破壊がひき起される。これに対し
SとTeとを複合添加した場合には、Mn(S、
Te)が球状に近い形となるため、介在物に
鋭いエツジができず、クラツク発生の起点と
なりにくい。このため、靭性が改善できるの
である。 被削性に対しても、この介在物形状はMnS
のような糸状に延びたものより好結果を与え
る。卵形の介在物を得るためと、鍛造時のワ
レを防止するためには、S:0.05〜0.3%、
Te:0.03〜0.3%の範囲内の複合添加が必要
である。 Ni:0.3〜1.5% 靭性向上と焼入性向上を希望する場合に添加
する。その効果は0.3%未満の含有では得ら
れず、他方、1.5%以上になると残留オース
テナイトが安定化して炭化物生成反応が遅滞
し被削性が低下する。
In the present invention, the reason why each alloy component is set in the above composition range is as follows. C: 0.2-0.8% It is effective in combining with carbide-forming elements such as Cr, Mo, V, Nb, Zr, and Ti to form composite carbides and improving the wear resistance necessary for tools, and It is necessary to form a solid solution in the base and impart hardness to it. If the content is less than 0.2%, this effect will not be sufficiently exhibited, and the necessary hardness will not be obtained by tempering. On the other hand, if the content exceeds 0.8%, the tempering softening resistance decreases, large inclusions appear, and the mirror finish deteriorates. Si: 0.1-1.5% This is an effective element for extending fatigue limits. Also,
Increases softening resistance in the temperature range of 200-300℃.
These effects cannot be obtained at 0.1% or less. If it exceeds 1.5%, the mold temperature will increase and machinability will decrease due to a decrease in thermal conductivity. Mn: 0.4-1.5% Reacts with S to form MnS. It goes without saying that this MnS contributes to improving machinability. However, Mn stabilizes austenite and significantly lowers the martensitic transformation point. If the content is less than 0.4%, the formation of MnS will not be completed, and excess S will react with Fe to form FeS with a low melting point, so a minimum content of 0.4% is required. If it exceeds 1.5%, the martensite transformation point will drop by about 80°C, the amount of retained austenite will increase, and dimensional changes will occur over time. In addition, the work hardening ability increases, which adversely affects machinability, so the upper limit was set at 1.5%. Cr: 1.0-6.0% This is an essential component for imparting oxidation resistance to steel, but if it is less than 1.0%, the effect is insufficient and the necessary tempering hardness cannot be obtained.
On the other hand, when it exceeds 6.0%, the carbide reaction shifts to the low temperature side, reducing temper softening resistance and impairing toughness. Cr is also M7O3
type of giant eutectic carbide. Since this carbide has an angular shape, when stress is applied from the outside during use, stress concentration occurs at the corners as a notch effect, and cracks are likely to occur there. For this reason,
The Cr content was determined to be in the range of 1.0 to 6.0%. Mo: 0.1-1.0% Creates fine carbides and strengthens them by dissolving them in the matrix, improving wear resistance and heat check resistance. When the Cr content is 2% or more, the tempering softening resistance improves when the Mo addition amount is 0.1% or more, but the effect is saturated when it exceeds 1%, so the Mo composition range is 0.1%.
~1.0%. N: 0.02-0.3% Like C, it reacts with elements such as Cr, Mo, V, Nb, Zr, and Ti to form nitrides, and is effective in improving wear resistance and preventing coarsening of crystal grains. There is. If the addition amount is less than 0.02%, most of the N will be in the form of carbonitrides, so this effect cannot be expected, and if it exceeds 0.3%, carbonitrides will grow enormously at the triple points of the grain boundaries.
Decrease toughness. S: 0.05~0.3% Te: 0.03~0.3% Both are important elements as components that impart free machinability.
It is necessary to add both elements in a composite state. These combine with Mn to form a Mn-sulfotellide solid solution Mn (S, Te), which becomes inclusions and is uniformly distributed in the matrix, improving machinability. Since this inclusion is harder than the MnS type, it is difficult to deform during plastic working of the base material, and only becomes oval or oval. In known similar free-cutting steels, soft MnS inclusions are the main component.
During plastic working, it stretches into a long thread-like shape with a sharp edge, so when stress is repeatedly applied and removed from the outside, a notch action occurs and premature failure occurs. On the other hand, when S and Te are added in combination, Mn (S,
Te) has a nearly spherical shape, so there are no sharp edges in the inclusions, making them less likely to become a starting point for cracks. Therefore, toughness can be improved. This inclusion shape also affects machinability.
Gives better results than thread-like ones such as. In order to obtain egg-shaped inclusions and to prevent cracking during forging, S: 0.05 to 0.3%;
Te: Composite addition within the range of 0.03 to 0.3% is required. Ni: 0.3 to 1.5% Added when desired to improve toughness and hardenability. This effect cannot be obtained if the content is less than 0.3%, and on the other hand, if the content exceeds 1.5%, the retained austenite becomes stabilized, the carbide generation reaction is delayed, and machinability decreases.

【実施例】【Example】

第1表に示す組成の本発明鋼(No.1〜4)およ
び従来鋼(No.5、6)を用意し、熱処理により硬
さを調節し、衝撃試験を行なつた。その結果を、
あわせて第1表に示す。 本発明鋼と従来鋼に対し、SKH51製3mmφス
トレートシヤンクドリルによる穿孔試験を行なつ
た。その結果を下に示す。試験条件は、回転数
1480rpm、送り0.067mm/rev.、試験回数5回であ
る。
Steels of the present invention (Nos. 1 to 4) and conventional steels (Nos. 5 and 6) having the compositions shown in Table 1 were prepared, the hardness was adjusted by heat treatment, and an impact test was conducted. The result is
They are also shown in Table 1. A drilling test was conducted on the steel of the present invention and the conventional steel using a SKH51 3mmφ straight shank drill. The results are shown below. The test conditions are rotation speed
1480 rpm, feed rate 0.067 mm/rev., and number of tests was 5 times.

【表】 この結果から明らかなように、本発明鋼は従来
鋼と比較して、高硬度での穿孔試験結果が2〜5
倍もすぐれているから、冷間および温間加工用金
型を製作する場合、容易に機械加工できる。 そこで、本発明鋼および従来鋼を使用して、ダ
イプレート、絞り型、抜き型、亜鉛ダイカスト金
型を製造した。それぞれの金型寿命を、第2表に
示す。この表から明らかなように、本発明鋼を用
いて製作した金型は、既知の材料による金型にく
らべ、寿命が1.5〜3倍にのびている。
[Table] As is clear from this result, the steel of the present invention has a drilling test result of 2 to 5 at high hardness compared to conventional steel.
Since it is twice as good, it can be easily machined when making molds for cold and warm working. Therefore, a die plate, a drawing die, a punching die, and a zinc die-casting mold were manufactured using the steel of the present invention and the conventional steel. The life of each mold is shown in Table 2. As is clear from this table, the life of molds made using the steel of the present invention is 1.5 to 3 times longer than molds made from known materials.

【表】【table】

【表】【table】

【発明の効果】【Effect of the invention】

本発明の快削性型用鋼は、既知のものにくらべ
て高い被削性を有し、しかも介在物形態の調整に
より、耐衝撃性と靭性の向上がみられる。この型
用鋼は、プレハードン鋼として提供され、HRC40
〜47の中硬度を有し、複雑な形状への機械加工に
も困難がない。
The free-cutting mold steel of the present invention has higher machinability than known mold steels, and also has improved impact resistance and toughness by adjusting the form of inclusions. This mold steel is supplied as pre-hardened steel and is H R C40
It has a medium hardness of ~47 and has no difficulty in machining into complex shapes.

Claims (1)

【特許請求の範囲】 1 C:0.2〜0.8%、Si:0.1〜1.5%、Mn:0.4〜
1.5%、Cr:1.0〜6.0%、Mo:0.1〜1.0%および
N:0.02〜0.3%を基本成分とし、快削成分とし
てS:0.05〜0.3%およびTe:0.03〜0.3%を含有
し、残部Feおよび不可避の不純物からなり、硬
さがHRC40〜47の範囲にある快削性型用鋼。 2 C:0.2〜0.8%、Si:0.1〜1.5%、Mn:0.4〜
1.5%、Cr:1.0〜6.0%、Mo:0.1〜1.0%および
N:0.02〜0.3%に加えて、Ni:0.3〜1.5%を基本
成分とし、快削成分としてS:0.05〜0.3%およ
びTe:0.03〜0.3%を含有し、残部Feおよび不可
避の不純物からなり、硬さがHRC40〜47の範囲に
ある快削性型用鋼。
[Claims] 1 C: 0.2-0.8%, Si: 0.1-1.5%, Mn: 0.4-0.4%
The basic components are 1.5%, Cr: 1.0-6.0%, Mo: 0.1-1.0% and N: 0.02-0.3%, and free-cutting components S: 0.05-0.3% and Te: 0.03-0.3%, with the balance A free-cutting mold steel consisting of Fe and unavoidable impurities, with a hardness in the range of H R C40 to 47. 2 C: 0.2~0.8%, Si: 0.1~1.5%, Mn: 0.4~
In addition to 1.5%, Cr: 1.0-6.0%, Mo: 0.1-1.0% and N: 0.02-0.3%, Ni: 0.3-1.5% is the basic component, and S: 0.05-0.3% and Te are free-cutting components. : Free-cutting mold steel containing 0.03 to 0.3%, the balance consisting of Fe and unavoidable impurities, and having a hardness in the range of H R C40 to 47.
JP8594980A 1980-06-26 1980-06-26 Free cutting alloy tool steel Granted JPS5713155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8594980A JPS5713155A (en) 1980-06-26 1980-06-26 Free cutting alloy tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8594980A JPS5713155A (en) 1980-06-26 1980-06-26 Free cutting alloy tool steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63327837A Division JPH01201424A (en) 1988-12-27 1988-12-27 Manufacture of free-cutting die steel

Publications (2)

Publication Number Publication Date
JPS5713155A JPS5713155A (en) 1982-01-23
JPH0121223B2 true JPH0121223B2 (en) 1989-04-20

Family

ID=13873005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8594980A Granted JPS5713155A (en) 1980-06-26 1980-06-26 Free cutting alloy tool steel

Country Status (1)

Country Link
JP (1) JPS5713155A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217683A (en) * 1984-04-13 1985-10-31 Mitsubishi Electric Corp Laser output controller

Also Published As

Publication number Publication date
JPS5713155A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
JP5076683B2 (en) High toughness high speed tool steel
KR100836699B1 (en) Die steel
US6162389A (en) High-strength and high-toughness non heat-treated steel having excellent machinability
JP5080708B2 (en) Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same
JP3301439B2 (en) Precipitation hardening tool steel
JPS6366385B2 (en)
JP2005336553A (en) Hot tool steel
JPH01201424A (en) Manufacture of free-cutting die steel
JP3300511B2 (en) Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability
EP1381702B1 (en) Steel article
JPH0323617B2 (en)
JPS6366386B2 (en)
JP6519226B2 (en) Alloy tool steel
JPH0121223B2 (en)
JPS6366384B2 (en)
JPS5952227B2 (en) high speed tool steel
JPH04154936A (en) Precipitation hardening nitriding steel
JPH04371547A (en) Production of high strength and high toughness steel
JP3629851B2 (en) Cold tool steel for plasma carburizing
JP4305891B2 (en) Hot forging die steel and hot forging die
CA2475248A1 (en) Nanocarbide precipitation strengthened ultrahigh-strength, corrosion resistant, structural steels
JP4030925B2 (en) Free-cutting precipitation hardening stainless steel
JPH0447023B2 (en)
JP3059318B2 (en) Manufacturing method of high fatigue strength hot forgings
JPH02125840A (en) Tool steel for hot working