JP3300511B2 - Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability - Google Patents

Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability

Info

Publication number
JP3300511B2
JP3300511B2 JP30921693A JP30921693A JP3300511B2 JP 3300511 B2 JP3300511 B2 JP 3300511B2 JP 30921693 A JP30921693 A JP 30921693A JP 30921693 A JP30921693 A JP 30921693A JP 3300511 B2 JP3300511 B2 JP 3300511B2
Authority
JP
Japan
Prior art keywords
ratio
machinability
ferrite
steel
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30921693A
Other languages
Japanese (ja)
Other versions
JPH07166235A (en
Inventor
石川房男
高橋稔彦
越智達朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30921693A priority Critical patent/JP3300511B2/en
Publication of JPH07166235A publication Critical patent/JPH07166235A/en
Application granted granted Critical
Publication of JP3300511B2 publication Critical patent/JP3300511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、亜熱間鍛造による自動
車用を始めとする機械構造用鋼の製造方法に関するもの
であり、さらに言えば、特定の化学成分を有する鋼材に
800〜1050℃の温度域で亜熱間鍛造を施し、特定
の金属組織とした後、時効処理を施すことによって、引
張強度90kgf/mm2 超、20℃での衝撃値2kg
f−m/cm2 以上で、優れた耐久比、降伏比および被
削性を同時に有することを特徴とする亜熱間鍛造用鋼の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing steel for machine structures such as automobiles by sub-hot forging, and more particularly, to a steel having a specific chemical composition at 800 to 1050.degree. After performing sub-hot forging in the temperature range described above to obtain a specific metal structure, by subjecting to aging treatment, the tensile strength exceeds 90 kgf / mm 2 and the impact value at 20 ° C. is 2 kg.
The present invention relates to a method for producing a steel for sub-hot forging, characterized by having excellent durability ratio, yield ratio and machinability at f-m / cm 2 or more.

【0002】[0002]

【従来の技術】工程省略、製造コストの低減の観点から
自動車を始めとする機械構造用鋼に対して非調質鋼の適
用が普及している。
2. Description of the Related Art From the viewpoint of omitting steps and reducing manufacturing costs, application of non-heat treated steel to steel for machine structural use such as automobiles has become widespread.

【0003】これらの非調質鋼は主に高い引張強度(あ
るいは硬さ)と降伏強度および靭性を有することを主眼
に開発が行われてきた。そこで例えば特開昭62−20
5245号公報などに見られるように、析出強化の代表
的元素であるVを使った非調質鋼が提案されてきた。と
ころがこの様な高強度高靭性の非調質鋼の機械鋼への適
用において真に障害となるものは疲労強度および被削性
である。
[0003] These non-heat treated steels have been developed mainly with a view to having high tensile strength (or hardness), yield strength and toughness. For example, Japanese Patent Application Laid-Open No. Sho 62-20
As seen in Japanese Patent No. 5245 and the like, a non-heat treated steel using V, which is a typical element of precipitation strengthening, has been proposed. However, what really hinders the application of such a high-strength, high-toughness non-heat treated steel to mechanical steel is fatigue strength and machinability.

【0004】疲労強度は一般に引張強度に依存するとさ
れ、引張強度を高くすれば高くなる。しかし引張強度を
上げることによって被削性は極端に劣化し引張強度が1
20kgf/mm2 を超えるともはや通常の生産能率で
は生産ができなくなってしまう。そこで被削性を劣化さ
せずに疲労強度を向上させる非調質鋼の具現化が切望さ
れた。
[0004] Fatigue strength is generally considered to depend on tensile strength, and increases as tensile strength increases. However, by increasing the tensile strength, the machinability deteriorates extremely and the tensile strength becomes 1
If it exceeds 20 kgf / mm 2 , production will no longer be possible with normal production efficiency. Therefore, the realization of a non-heat treated steel that improves the fatigue strength without deteriorating the machinability has been desired.

【0005】これには疲労強度と引張強度の比すなわち
耐久比を向上させることが有効な手段である。そこで例
えば特開平4−176842号公報などに見られるよう
に、ベイナイト主体の金属組織とし組織中の高炭素島状
マルテンサイトおよび残留オーステナイトを低減する方
法などが提案されてきた。
[0005] For this purpose, it is effective means to improve the ratio of fatigue strength to tensile strength, that is, the durability ratio. Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-176842, a method has been proposed in which a bainite-based metal structure is used to reduce high-carbon island martensite and retained austenite in the structure.

【0006】しかし、このような開発努力にもかかわら
ず、耐久比はせいぜい0.55程度であり、被削性も極
めて不良である従来型のベイナイト非調質鋼の高々2倍
程度にしか改善されない。
However, despite such development efforts, the durability ratio is at most about 0.55, and the machinability is extremely improved to at most about twice that of conventional bainite non-heat treated steel, which is extremely poor. Not done.

【0007】本発明者らはフェライト組織に適当量のベ
イナイト組織が混ざる金属組織を持つ数種類の亜熱間鍛
造材について、その疲労特性および被削性について検討
した。その結果、低Cおよび低N化により硬さを制御
したベイナイト組織を適当量含有するフェライト−ベイ
ナイト2相組織とする、MnS−TiNおよびMnS
−VN複合析出物によって鍛造加熱時のオーステナイト
結晶粒を微細化する、800〜1050℃の温度にお
いて亜熱間鍛を施し加工再結晶によりオーステナイト結
晶粒を微細化する、冷却過程にて上記MnS−Ti
N、MnS−VN複合析出物を核発生サイトとしてオー
ステナイト粒の粒内からフェライトを微細析出させる、
ついで析出したフェライトおよびベイナイトのマトリ
ックス地にさらにV炭化物またはV炭窒化物を極めて微
細に析出させマトリックスを析出強化させる、以上の亜
熱間加工と析出物を活用した手法により、組織全体が極
めて微細でかつ析出強化されたフェライト−ベイナイト
組織が得られ、この様な鋼において疲労亀裂の進展は軟
質なフェライト結晶粒から硬質なベイナイト結晶粒へ移
行するまたはその逆の過程でいずれも進展速度の低下を
もたらし耐久比が向上することを見出した。さらにま
た、このような軟質なフェライト相と硬質なベイナイト
相が共存する2相組織とすることにより被削性も向上す
ることを見いだした。また、通常、高耐久比化を図ると
靭性が低下する傾向を示すが、800〜1050℃の温
度域での亜熱間鍛造により微細フェライト−ベイナイト
組織を実現することにより、高耐久比と靭性の両立が可
能であることを見出した。
The present inventors have studied the fatigue properties and machinability of several types of sub-hot forgings having a metal structure in which an appropriate amount of bainite structure is mixed with a ferrite structure. As a result, MnS—TiN and MnS were formed into a ferrite-bainite two-phase structure containing an appropriate amount of a bainite structure whose hardness was controlled by reducing C and N.
-Austenite crystal grains during forging heating are refined by VN composite precipitates; sub-hot forging is performed at a temperature of 800 to 1050 ° C to refine the austenite crystal grains by processing and recrystallization; Ti
N, MnS-VN composite precipitates are used as nucleation sites to finely precipitate ferrite from within austenite grains.
Next, V carbide or V carbonitride is precipitated extremely finely on the matrix of the precipitated ferrite and bainite to strengthen the matrix by precipitation. And a precipitation-strengthened ferrite-bainite structure is obtained, and in such a steel, the growth of fatigue cracks slows down during the transition from soft ferrite grains to hard bainite grains or vice versa. And improved durability ratio. Furthermore, it has been found that the machinability is also improved by forming a two-phase structure in which a soft ferrite phase and a hard bainite phase coexist. In addition, the toughness generally tends to decrease when the durability ratio is increased. However, by realizing a fine ferrite-bainite structure by sub-hot forging in a temperature range of 800 to 1050 ° C., the high durability ratio and the toughness are improved. And found that it is possible to achieve both.

【0008】しかし変態したままのベイナイト組織を有
する鋼では引張強度および疲労強度は向上するものの、
降伏強度および降伏比が顕著に低下する問題点があっ
た。このような問題点から、特に非定常的に大荷重がか
かる自動車のエンジン部品関係には適用が困難であっ
た。
[0008] However, in a steel having a bainite structure in a transformed state, although tensile strength and fatigue strength are improved,
There is a problem that the yield strength and the yield ratio are remarkably reduced. From such a problem, it has been difficult to apply the present invention particularly to the engine parts of an automobile which is subject to a large load on an irregular basis.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来の非調
質鋼では実現が困難であった、引張強度90kgf/m
2 超、20℃での衝撃値2kgf−m/cm2 以上
で、優れた耐久比、降伏比および被削性を同時に有する
亜熱間鍛造用鋼の製造方法を提供するものである。
The present invention has a tensile strength of 90 kgf / m, which has been difficult to achieve with conventional non-heat treated steel.
m 2, greater than at 20 ° C. in the impact value 2kgf-m / cm 2 or more, there is provided superior endurance ratio, a manufacturing method of the yield ratio and Anetsu forging steel with machinability simultaneously.

【0010】[0010]

【課題を解決するための手段】降伏強度は塑性変形を開
始する応力に等しく、例えば硬質相+軟質相の2相組織
であれば軟質相の降伏強度によって決定される。そこで
フェライト−ベイナイトの2相組織であれば軟質なフェ
ライト相の降伏強度に主に影響を受ける。このフェライ
ト相は比較的高温で変態を終了するので、低温変態相で
あるベイナイト相よりも固溶CおよびNの量が少なく時
効処理による降伏強度の増加は期待できない。
The yield strength is equal to the stress at which plastic deformation starts. For example, in the case of a two-phase structure of a hard phase and a soft phase, the yield strength is determined by the yield strength of the soft phase. Therefore, the ferrite-bainite two-phase structure is mainly affected by the yield strength of the soft ferrite phase. Since the transformation of this ferrite phase is completed at a relatively high temperature, the amount of solute C and N is smaller than that of the bainite phase, which is a low-temperature transformation phase, so that an increase in yield strength due to aging cannot be expected.

【0011】ところがVをある程度多くしたフェライト
−ベイナイト組織の材料ではフェライト中にも固溶Vが
多く存在できる。CとNを比較的低めに制御した鋼材成
分のフェライト−ベイナイト組織の材料に時効処理を行
うと、ベイナイト相のみでなくフェライト中にもフェラ
イトマトリックスと整合な微細V炭化物が析出し、これ
が変態で導入された可動転位の移動を妨げることにより
降伏強度を高め、しかも特定の温度範囲の時効処理であ
れば引張強度の低下を起こさずかつ疲労強度が向上する
ことがわかった。
However, in a ferrite-bainite structure material in which V is increased to some extent, a large amount of solute V can be present in ferrite. When aging treatment is performed on a ferrite-bainite structure material of a steel component in which C and N are controlled to be relatively low, fine V carbides consistent with the ferrite matrix precipitate not only in the bainite phase but also in the ferrite, and this is transformed. It was found that the yield strength was increased by hindering the movement of the introduced movable dislocations, and that the aging treatment in a specific temperature range did not cause a decrease in tensile strength and improved fatigue strength.

【0012】本発明者らはこのような知見に基づいて、
ベイナイトを含有する鋼材の化学成分、鍛造条件および
金属組織の設計を行い、さらに特定の温度範囲の時効処
理を付与することにより、引張強度・靭性が高く、耐久
比・降伏比および被削性も良好である理想的な亜熱間鍛
造用鋼を提供しうる製造方法を発明するに至った。
[0012] The present inventors have based on such knowledge,
By designing the chemical composition, forging conditions and metallographic structure of steel containing bainite, and applying aging treatment in a specific temperature range, tensile strength and toughness are high, durability ratio, yield ratio and machinability are also improved. The inventors have invented a manufacturing method capable of providing a good ideal steel for hot forging.

【0013】すなわち本発明の第1発明は、重量比にし
てC:0.10〜0.35%、Si:0.15〜2.0
0%、Mn:0.40〜2.00%、S:0.03〜
0.10%、Al:0.0005〜0.050%、T
i:0.003〜0.050%、N:0.0020〜
0.0070%、V:0.30〜0.70%を含有し、
残部はFeならびに不純物元素からなる組成の鋼材に、
800〜1050℃の温度域で亜熱間鍛造を施し、その
後冷却させ変態が終了した後の金属組織の80%以上が
フェライト−ベイライト組織であるようにし、これにさ
らに200〜700℃の温度域で時効処理を行うことに
より、引張強度90kgf/mm2 超、20℃での衝撃
値2kgf−m/cm2 以上で、優れた耐久比、降伏比
および被削性を同時に有することを特徴とするフェライ
ト−ベイナイト型亜熱間鍛造用鋼の製造方法であり、第
2発明は結晶粒微細化とベイナイト組織率の調整および
被削性のさらなる向上のため、第1発明鋼の成分にさら
にCr:0.02〜1.50%、Mo:0.02〜1.
00%、Nb:0.001〜0.200%、Pb:0.
05〜0.30%、Ca:0.0005〜0.0100
%の内の1種または2種以上を含有させたものである。
That is, in the first invention of the present invention, C: 0.10 to 0.35% by weight, Si: 0.15 to 2.0
0%, Mn: 0.40 to 2.00%, S: 0.03 to
0.10%, Al: 0.0005 to 0.050%, T
i: 0.003 to 0.050%, N: 0.0020 to
0.0070%, V: 0.30 to 0.70%,
The remainder is steel with a composition consisting of Fe and impurity elements.
Sub-hot forging is performed in a temperature range of 800 to 1050 ° C., and then cooled so that 80% or more of the metal structure after the transformation is completed is a ferrite-baileite structure. By performing aging treatment, a tensile strength of more than 90 kgf / mm 2 , an impact value at 20 ° C. of 2 kgf-m / cm 2 or more, and excellent durability ratio, yield ratio and machinability are simultaneously obtained. The second invention is a method for producing a ferrite-bainite type sub-hot forging steel. The second invention further comprises Cr: a component of the first invention steel in order to refine crystal grains, adjust a bainite structure ratio and further improve machinability. 0.02 to 1.50%, Mo: 0.02 to 1.
00%, Nb: 0.001 to 0.200%, Pb: 0.
0.05 to 0.30%, Ca: 0.0005 to 0.0100
% Or one or more of the above.

【0014】次に本発明のフェライト−ベイナイト型亜
熱間鍛造用鋼の製造方法における鋼材化学成分、鍛造条
件、亜熱間鍛造を施し冷却して変態が終了した後の金属
組織およびこの材料を時効処理する条件の限定理由につ
いて以下に説明する。
Next, in the method for producing a ferritic-bainite type sub-hot forging steel of the present invention, the chemical composition of the steel material, the forging conditions, the metal structure after the sub-hot forging and cooling to complete the transformation, and this material The reasons for limiting the conditions for aging will be described below.

【0015】C:ベイナイト組織率を調整し、ひいては
最終製品の引張強度を増加させる重要な元素であるが、
過多であると強度が上がりすぎて衝撃値、被削性が顕著
に劣化する。すなわち、0.10%未満では低引張強度
および低疲労強度となり、逆に0.35%超過では高引
張強度となりすぎ衝撃値、被削性が顕著に低下するので
0.10〜0.35%とする。
C: An important element that adjusts the bainite structure ratio and thus increases the tensile strength of the final product.
If it is excessive, the strength is too high, and the impact value and machinability are remarkably deteriorated. That is, if it is less than 0.10%, the tensile strength and the fatigue strength become low, and if it exceeds 0.35%, the tensile strength becomes too high, and the impact value and machinability are remarkably reduced. And

【0016】Si:脱酸およびベイナイト組織率を調整
する元素で、0.15%未満ではその効果は小さく、
2.00%超過では耐久比、衝撃値、被削性のいずれも
低下するので0.15〜2.00%とする。
Si: an element for adjusting the deoxidation and the bainite structure ratio. If less than 0.15%, the effect is small.
If it exceeds 2.00%, the durability ratio, the impact value, and the machinability are all reduced.

【0017】Mn:ベイナイト組織率を調整するととも
にMnSとなることによりフェライトの析出サイトであ
る複合析出物の基盤となる元素で、0.40%未満では
その効果が小さく、2.00%超過ではマルテンサイト
が多量発生して耐久比、衝撃値、被削性のいずれも低下
するので0.40〜2.00%とする。
Mn: an element that becomes a base of a composite precipitate which is a precipitation site of ferrite by adjusting the bainite structure ratio and becoming MnS. When Mn is less than 0.40%, the effect is small, and when it exceeds 2.00%, the effect is small. Since a large amount of martensite is generated and the durability ratio, impact value, and machinability are all reduced, the content is set to 0.40 to 2.00%.

【0018】S:MnSとなることによりフェライトの
析出サイトである複合析出物の基盤となりかつ被削性を
向上させる元素で、0.03%未満ではその効果が小さ
く、0.10%超過ではMnSの析出が過多となり耐久
比と衝撃値が低下するので0.03〜0.10%とす
る。
S: MnS is an element that serves as a base for composite precipitates, which are ferrite precipitation sites, and improves machinability. If it is less than 0.03%, its effect is small, and if it exceeds 0.10%, MnS is an element. Is excessive, and the durability ratio and the impact value are reduced.

【0019】Al:脱酸および結晶粒微細化効果をもつ
元素で、0.0005%未満ではその効果が小さく、
0.050%超過では硬質介在物を形成し耐久比、衝撃
値、被削性のいずれも低下するので0.0005〜0.
050%とする。
Al: an element having an effect of deoxidizing and refining crystal grains. If less than 0.0005%, the effect is small.
If it exceeds 0.050%, a hard inclusion is formed, and the durability ratio, impact value, and machinability are all reduced.
050%.

【0020】Ti:MnS上に窒化物となって析出しフ
ェライトの析出サイトとなる複合析出物を形成する元素
で、0.003%未満ではその効果が小さく、0.05
0%超過では粗大硬質介在物の形成を促し耐久比、衝撃
値、切削性のいずれも低下するので0.003〜0.0
50%とする。
Ti: An element that forms a nitride on MnS and forms a composite precipitate that becomes a precipitation site of ferrite. If the content is less than 0.003%, the effect is small.
If it exceeds 0%, the formation of coarse hard inclusions is promoted, and the durability ratio, impact value, and machinability are all reduced.
50%.

【0021】N:TiおよびVと窒化物あるいは炭窒化
物を形成する元素で、0.0020%未満ではその効果
が小さい。一方、0.0070%超過では亜熱間鍛造時
に多量のVNを析出し、固溶Vが低減するため、フェラ
イト変態時にVCによる析出強化を図ることができず、
耐久比、衝撃値、被削性のいずれも低下するので、0.
0020〜0.0070%とする。
N: an element which forms a nitride or a carbonitride with Ti and V. If its content is less than 0.0020%, its effect is small. On the other hand, if it exceeds 0.0070%, a large amount of VN precipitates during sub-hot forging and the solid solution V decreases, so that precipitation strengthening by VC during ferrite transformation cannot be achieved,
Since all of the durability ratio, impact value, and machinability decrease, the ratio is set to 0.1%.
0020 to 0.0070%.

【0022】V:MnS上に窒化物となって析出しフェ
ライトの析出サイトとなる複合析出物を形成する元素で
あるとともに、ベイナイト中のマトリックスフェライト
を析出強化する元素で、0.30%未満ではその効果が
小さく、0.70%超過では耐久比、衝撃値、被削性の
いずれも低下するので、0.30〜0.70%とする。
V: an element that forms a nitride on MnS to form a composite precipitate that becomes a precipitation site for ferrite, and an element that strengthens the precipitation of matrix ferrite in bainite. The effect is small, and if it exceeds 0.70%, the durability ratio, the impact value, and the machinability are all reduced, so it is set to 0.30 to 0.70%.

【0023】以上が本願第1発明の鋼の化学成分の限定
理由である。本願第2発明においては、結晶粒微細化と
ベイナイト組織率の調整および被削性のさらなる向上の
ため、第1発明鋼の成分にさらにCr,Nb,Pb,C
aの内の1種または2種以上を含有させる。これらの化
学成分の限定理由について以下に述べる。
The above is the reason for limiting the chemical composition of the steel of the first invention of the present application. In the second invention, Cr, Nb, Pb, and C are further added to the components of the first invention steel in order to refine the crystal grains, adjust the bainite structure ratio, and further improve the machinability.
One or more of a are contained. The reasons for limiting these chemical components are described below.

【0024】Cr:Mnとほぼ同様に、ベイナイト組織
率を調整する元素で、0.02%未満ではその効果が小
さく、1.50%超過ではマルテンサイトが多量発生し
て耐久比、衝撃値、被削性のいずれも低下するので0.
02〜1.50%とする。
Almost similar to Cr: Mn, it is an element that adjusts the bainite structure ratio. If it is less than 0.02%, its effect is small, and if it exceeds 1.50%, a large amount of martensite is generated and the durability ratio, impact value, Since all of the machinability is reduced, 0.
02 to 1.50%.

【0025】Mo:Mn,Crとほぼ同様の効果をもつ
元素で、0.02%未満ではその効果が小さく、1.0
0%超過ではマルテンサイトが多量発生して耐久比、衝
撃値、被削性のいずれも低下するので0.02〜1.0
0%とする。
Mo: An element having almost the same effect as Mn and Cr. If it is less than 0.02%, the effect is small.
If it exceeds 0%, a large amount of martensite is generated, and the durability ratio, impact value, and machinability are all reduced.
0%.

【0026】Nb:TiおよびVとほぼ同様の効果をも
つ元素で、0.001%未満ではその効果が小さく、
0.200%超過では耐久比、衝撃値、被削性のいずれ
も低下するので、0.001〜0.200%とする。
Nb: an element having substantially the same effect as Ti and V. If less than 0.001%, the effect is small.
If it exceeds 0.200%, the durability ratio, the impact value, and the machinability are all reduced, so the content is set to 0.001 to 0.200%.

【0027】Pb:被削性を向上せしめる元素で、0.
05%未満ではその効果が小さく、0.30%超過では
その効果は飽和し疲労強度および耐久比、衝撃値が低下
するので、0.05〜0.30%ととする。
Pb: an element that improves machinability,
If it is less than 05%, the effect is small, and if it exceeds 0.30%, the effect is saturated and the fatigue strength, durability ratio, and impact value are reduced.

【0028】Ca:Pbとほぼ同様な効果をもつ元素
で、0.0005%未満ではその効果が小さく0.01
00%超過ではその効果は飽和し疲労強度および耐久
比、衝撃値が低下するので0.0005〜0.0100
%とする。
Ca: an element having almost the same effect as Pb. If it is less than 0.0005%, the effect is small and 0.01%.
If it exceeds 00%, the effect is saturated and the fatigue strength, the durability ratio, and the impact value are reduced.
%.

【0029】以上が本願第2発明の鋼において付加され
た化学成分の限定理由である。次に本発明において、鍛
造温度を限定した理由について述べる。
The above is the reason for limiting the chemical components added in the steel of the second invention of the present application. Next, the reason for limiting the forging temperature in the present invention will be described.

【0030】まず、鍛造温度の下限を800℃としたの
は、800℃未満の温度では鍛造負荷が顕著に増大し、
成型が困難になるためである。また、鍛造温度の上限を
1050℃としたのは、1050℃超の鍛造温度では加
工再結晶によるオーステナイト結晶粒の微細化効果が不
十分なためであり、更に鋼材表面の脱炭も激しくなり、
鍛造後の機械部品の疲労強度が大幅に低下するためであ
る。
First, the lower limit of the forging temperature is set to 800 ° C., because the forging load increases remarkably at a temperature lower than 800 ° C.
This is because molding becomes difficult. Further, the upper limit of the forging temperature was set to 1050 ° C., because at a forging temperature higher than 1050 ° C., the effect of refining austenite crystal grains by working recrystallization was insufficient, and the decarburization of the steel material surface became more severe.
This is because the fatigue strength of the machine component after forging is significantly reduced.

【0031】次に本願発明の鋼において亜熱間鍛造後冷
却し変態が終了した際の金属組織であるが、被削性の向
上および疲労強度の向上を達成するため、金属組織の8
0%以上がフェライト−ベイナイトの2相組織であるこ
とが必要である。組織率で20%未満のパーライト、マ
ルテンサイト、あるいは残留オーステナイトがあっても
本効果を妨げない。
Next, the metal structure of the steel of the present invention when the transformation is completed after cooling after sub-hot forging is performed.
It is necessary that 0% or more has a two-phase structure of ferrite-bainite. Even if pearlite, martensite or retained austenite has a microstructure ratio of less than 20%, this effect is not impaired.

【0032】このようなフェライト−ベイナイト2相組
織を得るためには、亜熱間鍛造後の冷却方法は特に指定
しないが、設備や製造コストの点からは自然放冷が当然
望ましい。なお、金属組織は腐食した試験片を光学顕微
鏡等で観察することおよびマイクロビッカース硬度測定
機でその組織の微小硬度を測定する等の方法で確認す
る。
In order to obtain such a ferrite-bainite two-phase structure, a cooling method after sub-hot forging is not particularly specified, but natural cooling is naturally desirable from the viewpoint of equipment and manufacturing costs. The metal structure is confirmed by observing the corroded test piece with an optical microscope or the like, or measuring the microhardness of the structure with a micro Vickers hardness tester.

【0033】最後にこのような材料を時効処理する条件
の限定理由について述べる。時効処理の加熱温度が20
0℃未満ではCの拡散が困難で効果が不十分となる。一
方、700℃を超えると析出した炭化物が粗大化し、引
張強度が下がるだけでなく疲労強度も低下する。そこで
時効処理の加熱温度は200〜700℃とする。加熱時
間はこの温度範囲であれば特に限定する必要はないが、
望ましくは10分〜2時間程度とすべきである。さらに
時効処理後の冷却方法も空冷、水冷、油冷どのような方
法でも本発明の性能は得ることができる。
Finally, the reasons for limiting the conditions for aging such a material will be described. Heating temperature for aging treatment is 20
If the temperature is lower than 0 ° C., diffusion of C is difficult and the effect becomes insufficient. On the other hand, when the temperature exceeds 700 ° C., the precipitated carbides become coarse, and not only the tensile strength decreases, but also the fatigue strength decreases. Therefore, the heating temperature of the aging treatment is set to 200 to 700 ° C. The heating time does not need to be particularly limited as long as it is within this temperature range,
Desirably, it should be about 10 minutes to 2 hours. Further, the performance of the present invention can be obtained by any cooling method after the aging treatment, such as air cooling, water cooling, and oil cooling.

【0034】以下に、本発明の効果を実施例により、さ
らに具体的に示す。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

【0035】[0035]

【実施例】【Example】

(1)鋼材化学成分の影響 表1に示す化学成分の鋼を高周波炉にて溶解し、150
kgの鋼塊とし、これから鍛造用材料を切り出し、一旦
950℃加熱放冷で焼準した後、850〜1100℃に
加熱して800〜1050℃の温度で亜熱間鍛造を行
い、その後放冷した。さらにこの材料を400℃の加熱
炉に1時間装入して時効処理を行った。
(1) Influence of chemical composition of steel material
kg of steel ingot, cut out the forging material from this, once normalize by heating and cooling at 950 ° C, heat to 850 to 1100 ° C, perform sub-hot forging at a temperature of 800 to 1050 ° C, and then cool down did. Further, this material was placed in a heating furnace at 400 ° C. for 1 hour to perform aging treatment.

【0036】この材料の中央部よりJIS4号引張試験
片、JIS1号回転曲げ試験片、JIS3号衝撃試験片
を採取し、引張試験、回転曲げ疲労試験およびシャルピ
ー衝撃試験を行った。同材料から光学顕微鏡観察試験片
を採取し5%ナイタールで腐食して200倍で観察しベ
イナイト組織率を求めた。さらに同材料より切削試験片
を採取し、SKH9製10mmφストレートシャンクド
リルを用いて30mm深さのブラインドホールを穿孔
し、ドリルが寿命破壊するまでの総穿孔距離により被削
性を評価した。なお、切削速度は50m/min、送り
速度は0.35mm/rev、切削油7L/minの条
件とした。
A JIS No. 4 tensile test piece, a JIS No. 1 rotary bending test piece, and a JIS No. 3 impact test piece were collected from the center of this material, and a tensile test, a rotary bending fatigue test and a Charpy impact test were performed. An optical microscope specimen was sampled from the same material, corroded with 5% nital, observed at a magnification of 200, and the bainite texture was determined. Further, a cutting test piece was sampled from the same material, a 30 mm deep blind hole was drilled using a SKH9 10 mmφ straight shank drill, and the machinability was evaluated based on the total drilling distance until the life of the drill was destroyed. The cutting speed was 50 m / min, the feed speed was 0.35 mm / rev, and the cutting oil was 7 L / min.

【0037】表2に各供試材のベイナイト組織率および
性能評価結果を示す。
Table 2 shows the bainite structure ratio and performance evaluation results of each test material.

【0038】まず調質鋼であるNo.42の耐久比0.
47、被削性1.00に対し、本発明例であるNo.1
〜20はいずれも耐久比は0.56以上であり、また被
削性もNo.42の2〜3倍程度と良好である。
First, the heat-treated steel No. 1 was used. 42 durability ratio 0.
No. 47, the machinability of 1.00, and 1
No. 20 to No. 20 have a durability ratio of 0.56 or more, and the machinability is No. 42, which is as good as 2-3 times.

【0039】比較例のNo.21はC量が低いため引張
強度が低くかつ耐久比も低いので疲労特性は不良であ
る。比較例のNo.22はC量が高すぎるためマルテン
サイトが発生し本発明のフェライト−ベイナイト組織率
の条件が満足できず、引張強度は高くなるが本発明例に
比べ耐久比が低く、衝撃値、被削性も不良である。
No. of Comparative Example Sample No. 21 has low fatigue strength because of low tensile strength and low durability ratio due to low C content. No. of the comparative example. In No. 22, martensite was generated because the C content was too high, and the ferrite-bainite structure ratio condition of the present invention could not be satisfied. The tensile strength was high, but the durability ratio was lower than that of the examples of the present invention, and the impact value, machinability Is also bad.

【0040】比較例のNo.23はSi量が低いため脱
酸程度が低く耐久比は本発明例に比べ低い。比較例のN
o.24はSi量が高いためマルテンサイトが発生し本
発明のフェライト−ベイナイト組織率の条件が満足でき
ず、耐久比は本発明例に比べ低く、衝撃値、被削性も不
良である。
No. of Comparative Example Sample No. 23 has a low amount of Si and therefore has a low degree of deoxidation and a lower durability ratio than that of the present invention. N of Comparative Example
o. In No. 24, since the amount of Si was high, martensite was generated and the condition of the ferrite-bainite structure ratio of the present invention could not be satisfied, the durability ratio was lower than that of the examples of the present invention, and the impact value and machinability were poor.

【0041】比較例のNo.25はMn量が低いため複
合析出物の析出が少なく、耐久比、衝撃値が本発明例に
比べ低い。比較例のNo.26はMn量が高いためマル
テンサイトが発生し本発明のフェライト−ベイナイト組
織率の条件が満足できず、耐久比は本発明例に比べ低く
なり、衝撃値、被削性も不良である。
No. of Comparative Example Sample No. 25 has a small amount of Mn, so that precipitation of composite precipitates is small, and the durability ratio and impact value are lower than those of the examples of the present invention. No. of the comparative example. In No. 26, since the amount of Mn is high, martensite is generated, and the condition of the ferrite-bainite structure ratio of the present invention cannot be satisfied. The durability ratio is lower than that of the examples of the present invention, and the impact value and machinability are poor.

【0042】比較例のNo.27はS量が低いため複合
介在物の析出が少なく、耐久比、衝撃値が本発明例に比
べ低く、またMnSの被削性向上効果を得られないので
被削性も不良である。比較例のNo.28はS量が高い
ためMnSの析出が過多となり、耐久比、衝撃値が本発
明例に比べ低い。
No. of Comparative Example Sample No. 27 has a low S content so that the precipitation of composite inclusions is small, the durability ratio and the impact value are lower than those of the examples of the present invention, and the machinability is poor because the effect of improving the machinability of MnS cannot be obtained. No. of the comparative example. Sample No. 28 has a high S content, resulting in excessive precipitation of MnS, and has a lower durability ratio and impact value than those of the present invention.

【0043】比較例のNo.29はAl量が低いため脱
酸程度および結晶粒微細化効果が小さく、耐久比が本発
明に比べ低い。比較例のNo.30はAl量が高いため
硬質介在物が形成され、耐久比は本発明例に比べ低く、
衝撃値、被削性も不良である。
No. of Comparative Example Since No. 29 has a low Al content, the degree of deoxidation and the effect of crystal grain refinement are small, and the durability ratio is lower than that of the present invention. No. of the comparative example. 30 has a high Al content, so that a hard inclusion is formed, and the durability ratio is lower than that of the present invention.
The impact value and machinability are also poor.

【0044】比較例のNo.31はTi量が低いため複
合析出物の析出が少なく、耐久比が本発明例に比べて低
い。比較例のNo.32はTi量が高いため硬質介在物
が形成され、耐久比は本発明例に比べ低く、衝撃値、被
削性も不良である。
No. of Comparative Example Sample No. 31 has a low Ti content, so that precipitation of composite precipitates is small, and the durability ratio is lower than that of the present invention. No. of the comparative example. No. 32 has a high Ti content, so that hard inclusions are formed, the durability ratio is lower than that of the example of the present invention, and the impact value and machinability are poor.

【0045】比較例のNo.33はN量が低いため複合
析出物の析出が少なく、耐久比、衝撃値が本発明例に比
べ低い。比較例のNo.34はN量が高いためマトリッ
クスが硬化し、耐久比は本発明例に比べ低く、衝撃値、
被削性も不良である。
No. of Comparative Example No. 33 has a low N content and therefore has a small precipitation of composite precipitates, and has a lower durability ratio and impact value than those of the present invention. No. of the comparative example. No. 34 has a high N content, so that the matrix is hardened, the durability ratio is lower than that of the present invention, and the impact value,
The machinability is also poor.

【0046】比較例のNo.35はV量が低いため複合
析出物の析出が少なくかつマトリックスフェライトを析
出強化する効果が小さいので、耐久比、衝撃値が本発明
例に比べ低い。比較例のNo.36はV量が高いため、
耐久比は本発明例に比べ低く、衝撃値、被削性も不良で
ある。
No. of Comparative Example No. 35 has a low V content so that the precipitation of composite precipitates is small and the effect of strengthening the precipitation of matrix ferrite is small, so that the durability ratio and the impact value are lower than those of the examples of the present invention. No. of the comparative example. 36 has a high V content,
The durability ratio is lower than that of the present invention, and the impact value and machinability are also poor.

【0047】比較例のNo.37はCr量が高いためマ
ルテンサイトが発生し本発明のフェライト−ベイナイト
組織率の条件が満足できず、耐久比は本発明例に比べ低
く、衝撃値、被削性も不良である。
No. of Comparative Example In No. 37, since the amount of Cr is high, martensite is generated and the condition of the ferrite-bainite structure ratio of the present invention cannot be satisfied, the durability ratio is lower than that of the examples of the present invention, and the impact value and machinability are poor.

【0048】比較例のNo.38はMo量が高いためマ
ルテンサイトが発生し本発明のフェライト−ベイナイト
組織率の条件が満足できず、耐久比は本発明例に比べ低
く、衝撃値、被削性も不良である。
No. of Comparative Example In No. 38, since the Mo content is high, martensite is generated and the condition of the ferrite-bainite structure ratio of the present invention cannot be satisfied, the durability ratio is lower than that of the examples of the present invention, and the impact value and machinability are poor.

【0049】比較例のNo.39はNb量が高いため、
耐久比は本発明例に比べ低く、衝撃値、被削性も不良で
ある。
No. of Comparative Example 39 has a high Nb content,
The durability ratio is lower than that of the present invention, and the impact value and machinability are also poor.

【0050】比較例のNo.40はPb量が高いため、
被削性は良好なるも耐久比、衝撃値が不良である。
No. of Comparative Example 40 has a high Pb content,
Although the machinability is good, the durability ratio and the impact value are poor.

【0051】比較例のNo.41はCa量が高いため、
被削性は良好なるも耐久比、衝撃値が不良である。
No. of Comparative Example 41 has a high Ca content,
Although the machinability is good, the durability ratio and the impact value are poor.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【表4】 [Table 4]

【0056】(2)熱鍛後の冷却方法によるフェライト
−ベイナイト組織率変化の影響 表1のNo.20に示す、本発明の化学成分の条件を満
足する鋼を高周波炉にて溶解し、150kgの鋼塊とし
これから鍛造用材料を切り出し、一旦950℃加熱放冷
で焼準した後、850〜1100℃に加熱して800〜
1050℃の温度で亜熱間鍛造を行い、その後、表3に
示す方法で冷却した。さらにこれらの材料を400℃の
温度の加熱炉に1時間装入して時効処理を行った。この
材料の中央部より実施例(1)と同様の方法で、試験片
を採取し、さらに実施例(1)と同様の方法で、引張試
験、疲労試験、衝撃試験、切削試験および金属組織観察
を行った。表4に各供試材のフェライト−ベイナイト組
織率および性能評価結果を示す。
(2) Effect of ferrite-bainite structure ratio change by cooling method after hot forging A steel satisfying the conditions of the chemical components of the present invention shown in No. 20 was melted in a high-frequency furnace to form a 150 kg steel ingot, and a forging material was cut out therefrom. 800 ℃
Sub-hot forging was performed at a temperature of 1050 ° C., and then cooled by the method shown in Table 3. Further, these materials were placed in a heating furnace at a temperature of 400 ° C. for one hour to perform aging treatment. A test piece was collected from the center of this material in the same manner as in Example (1), and further subjected to a tensile test, fatigue test, impact test, cutting test, and metallographic observation in the same manner as in Example (1). Was done. Table 4 shows the ferrite-bainite structure ratio and performance evaluation results of each test material.

【0057】No.43,44,45および46は、フ
ェライト−ベイナイト組織率が割合にして0.8以上と
本発明の条件を満足しており、引張強度90kgf/m
2超、20℃での衝撃値2kgf−m/cm2 以上を
満たし、いずれも耐久比は0.56以上を確保し、また
被削性も現行非調質鋼であるNo.48のほぼ2.5倍
程度と良好である。
No. Nos. 43, 44, 45 and 46 satisfy the conditions of the present invention with a ferrite-bainite structure ratio of 0.8 or more in proportion, and have a tensile strength of 90 kgf / m.
m 2 , the impact value at 20 ° C. is 2 kgf-m / cm 2 or more, and the durability ratio is 0.56 or more, and the machinability is no. 48, which is approximately 2.5 times as good.

【0058】No.47は冷却速度を高めることにより
マルテンサイトを主とする組織としたものであり、引張
強度は高くなるものの耐久比、衝撃値は極めて低く、ま
た被削性も不良で工具寿命は小さい。
No. Reference numeral 47 denotes a structure mainly composed of martensite by increasing the cooling rate. Although the tensile strength is increased, the durability ratio and impact value are extremely low, the machinability is poor, and the tool life is short.

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【表6】 [Table 6]

【0061】(3)時効処理温度の変化の影響 実施例(2)と同一の化学成分の鋼を高周波炉にて溶解
し、150kgの鋼塊としこれから鍛造用材料を切り出
し、一旦950℃加熱放冷で焼準した後、850〜11
00℃に加熱して800〜1050℃の温度で亜熱間鍛
造を行い、その後放冷した。さらにこの材料を表5に示
す温度の加熱炉に1時間装入して時効処理を行った。こ
れらの材料について実施例(1)と同様の方法で、引張
試験、疲労試験、衝撃試験、切削試験および金属組織観
察を行った。表6に各供試材の性能評価結果を示す。
(3) Influence of change in aging temperature Steel of the same chemical composition as in Example (2) was melted in a high-frequency furnace to form a 150 kg steel ingot, from which a forging material was cut out, and then heated and released at 950 ° C. once. After normalizing cold, 850-11
Sub-hot forging was performed at a temperature of 800 to 1050 ° C. by heating to 00 ° C., and then allowed to cool. Further, this material was placed in a heating furnace at a temperature shown in Table 5 for 1 hour to perform aging treatment. These materials were subjected to a tensile test, a fatigue test, an impact test, a cutting test, and a metal structure observation in the same manner as in Example (1). Table 6 shows the performance evaluation results of each test material.

【0062】No.50,51および52は、本発明の
時効温度範囲である200〜700℃を満足しており、
いずれも耐久比は0.58以上を確保しまた被削性も現
行調質鋼であるNo.54のほぼ2.5倍と良好であ
る。
No. 50, 51 and 52 satisfy the aging temperature range of the present invention of 200 to 700 ° C,
In each case, the durability ratio of 0.58 or more is ensured, and the machinability is also the current tempered steel No. 2. This is approximately 2.5 times as good as 54.

【0063】No.49は時効温度が本発明の範囲を下
回った場合であり、降伏比、耐久比が劣る。またNo.
53は時効温度が本発明の範囲を上回った場合であり、
耐久比が劣っている。
No. 49 is a case where the aging temperature is lower than the range of the present invention, and the yield ratio and the durability ratio are inferior. No.
53 is a case where the aging temperature exceeds the range of the present invention,
Poor durability ratio.

【0064】[0064]

【表7】 [Table 7]

【0065】[0065]

【表8】 [Table 8]

【0066】[0066]

【発明の効果】以上述べた如く、本発明鋼はフェライト
−ベイナイト2相組織とすることにより高い引張強度を
得ると共に被削性を確保し、さらにMnS,Ti窒化物
およびV窒化物から形成される複合析出物を使って金属
組織の微細化とV炭化物(または炭窒化物)によるベイ
ナイト中のフェライトマトリックスの強化と同時に行
い、優れた衝撃値と高耐久被を確保し、高Vおよび低
C,N化して時効処理を施すことによってさらに高い降
伏強度までも獲得することのできる極めて理想的な亜熱
間鍛造用鋼に関する製造方法を提供し、産業上極めて効
果の大きいものである。
As described above, the steel of the present invention has a ferritic-bainite two-phase structure to obtain high tensile strength, secure machinability, and is formed of MnS, Ti nitride and V nitride. Simultaneously with the refinement of the metal structure and the strengthening of the ferrite matrix in bainite with V carbides (or carbonitrides) using composite precipitates to ensure excellent impact value and high durability, The present invention provides a very ideal method for producing a steel for sub-hot forging, which can obtain even higher yield strength by applying aging treatment to N, which is extremely effective in industry.

フロントページの続き (56)参考文献 特開 平5−156354(JP,A) 特開 昭64−56821(JP,A) 特開 昭64−55328(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 Continuation of the front page (56) References JP-A-5-156354 (JP, A) JP-A-64-56821 (JP, A) JP-A-64-55328 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) C21D 8/00-8/10 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比にして C :0.10〜0.35% Si:0.15〜2.00% Mn:0.40〜2.00% S :0.03〜0.10% Al:0.0005〜0.050% Ti:0.003〜0.050% N :0.0020〜0.0070% V :0.30〜0.70%を含有し 残部はFeならびに不純物元素からなる組成の鋼材に8
00〜1050℃の温度域で鍛造を施し、その後冷却さ
せ変態が終了した後の金属組織の80%以上がフェライ
ト−ベイナイト組織であるようにし、これにさらに20
0〜700℃の温度で時効処理を行うことにより、引張
強度90kgf/mm2 超、20℃での衝撃値2kgf
−m/cm2 以上とすることを特徴とする強靭性、耐久
比、降伏比および被削性に優れるフェライト−ベイナイ
ト型亜熱間鍛造用鋼の製造方法。
1. A weight ratio of C: 0.10 to 0.35% Si: 0.15 to 2.00% Mn: 0.40 to 2.00% S: 0.03 to 0.10% Al : 0.0005% to 0.050% Ti: 0.003% to 0.050% N: 0.0020% to 0.0070% V: 0.30% to 0.70%, the balance being Fe and impurity elements 8 for steel composition
Forging is performed in a temperature range of 00 to 1050 ° C., and then cooled to ensure that at least 80% of the metal structure after transformation is a ferrite-bainite structure.
By performing the aging treatment at a temperature of 0 to 700 ° C, the tensile strength exceeds 90 kgf / mm 2 and the impact value at 20 ° C is 2 kgf.
A method for producing a ferrite-bainite type subhot forging steel excellent in toughness, durability ratio, yield ratio, and machinability, characterized by being at least −m / cm 2 .
【請求項2】成分がさらに Cr:0.02〜1.50% Mo:0.02〜1.00% Nb:0.001〜0.200% Pb:0.05〜0.30% Ca:0.0005〜0.0100% の内の1種または2種以上を含有する鋼材を用いること
を特徴とする請求項1記載の強靭性、耐久比、降伏比お
よび被削性に優れるフェライト−ベイナイト型亜熱間鍛
造用鋼の製造方法。
2. The composition further comprises Cr: 0.02 to 1.50% Mo: 0.02 to 1.00% Nb: 0.001 to 0.200% Pb: 0.05 to 0.30% Ca: 2. A ferrite-bainite having excellent toughness, durability ratio, yield ratio and machinability according to claim 1, wherein a steel material containing one or more of 0.0005 to 0.0100% is used. A method for producing steel for sub-hot forging.
JP30921693A 1993-12-09 1993-12-09 Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability Expired - Fee Related JP3300511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30921693A JP3300511B2 (en) 1993-12-09 1993-12-09 Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30921693A JP3300511B2 (en) 1993-12-09 1993-12-09 Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability

Publications (2)

Publication Number Publication Date
JPH07166235A JPH07166235A (en) 1995-06-27
JP3300511B2 true JP3300511B2 (en) 2002-07-08

Family

ID=17990333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30921693A Expired - Fee Related JP3300511B2 (en) 1993-12-09 1993-12-09 Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability

Country Status (1)

Country Link
JP (1) JP3300511B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916008B2 (en) 2011-05-26 2014-12-23 Nippon Steel and Sumitomo Metal Corporation Steel part for machine structural use and manufacturing method thereof
US8926767B2 (en) 2011-05-26 2015-01-06 Nippon Steel & Sumitomo Metal Corporation Steel part for machine structural use and manufacturing method thereof
US9187797B2 (en) 2011-05-26 2015-11-17 Nippon Steel and Sumitomo Metal Corporation Steel part for machine structural use and manufacturing method thereof
JP2019076942A (en) * 2017-10-26 2019-05-23 ジヤトコ株式会社 Method for manufacturing pulley shaft for belt type stepless speed change device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922145A (en) * 1996-11-25 1999-07-13 Sumitomo Metal Industries, Ltd. Steel products excellent in machinability and machined steel parts
JP5825199B2 (en) * 2012-05-24 2015-12-02 新日鐵住金株式会社 Method of manufacturing age-hardening steel and machine parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916008B2 (en) 2011-05-26 2014-12-23 Nippon Steel and Sumitomo Metal Corporation Steel part for machine structural use and manufacturing method thereof
US8926767B2 (en) 2011-05-26 2015-01-06 Nippon Steel & Sumitomo Metal Corporation Steel part for machine structural use and manufacturing method thereof
US9187797B2 (en) 2011-05-26 2015-11-17 Nippon Steel and Sumitomo Metal Corporation Steel part for machine structural use and manufacturing method thereof
JP2019076942A (en) * 2017-10-26 2019-05-23 ジヤトコ株式会社 Method for manufacturing pulley shaft for belt type stepless speed change device

Also Published As

Publication number Publication date
JPH07166235A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
JP3300500B2 (en) Method for producing hot forging steel excellent in fatigue strength, yield strength and machinability
JP3241897B2 (en) Non-heat treated steel for hot forging with excellent tensile strength, fatigue strength and machinability
JP3851147B2 (en) Non-tempered high strength and high toughness forged product and its manufacturing method
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3196579B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP3300511B2 (en) Manufacturing method of sub-hot forging steel excellent in toughness, durability ratio, yield ratio and machinability
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP3261552B2 (en) Manufacturing method of non-heat treated steel with excellent fatigue properties
JP2894184B2 (en) Steel for soft nitriding
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JPH04154936A (en) Precipitation hardening nitriding steel
JP4038361B2 (en) Non-tempered high strength and high toughness forged product and its manufacturing method
JP4232242B2 (en) High strength high toughness non-tempered steel
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JPH07157824A (en) Production of semi-hot forged non-heat treated steel material excellent in yield strength, toughness, and fatigue characteristic
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JPH111743A (en) High strength, high toughness tempered steel excellent in machinability
JP3238544B2 (en) Manufacturing method of non-heat treated hot forged parts
JPH10237582A (en) Free cutting non-heat treated steel with high strength and high toughness
JP2950713B2 (en) Non-heat treated steel for hot forging
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees