JPH01212219A - Production of thin oxide superconducting film - Google Patents

Production of thin oxide superconducting film

Info

Publication number
JPH01212219A
JPH01212219A JP63048963A JP4896388A JPH01212219A JP H01212219 A JPH01212219 A JP H01212219A JP 63048963 A JP63048963 A JP 63048963A JP 4896388 A JP4896388 A JP 4896388A JP H01212219 A JPH01212219 A JP H01212219A
Authority
JP
Japan
Prior art keywords
oxygen
thin film
temperature
atmosphere
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63048963A
Other languages
Japanese (ja)
Inventor
Toshiro Maruyama
丸山 敏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63048963A priority Critical patent/JPH01212219A/en
Publication of JPH01212219A publication Critical patent/JPH01212219A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the title thin film having >=77K critical temp. and high current density by applying a soln. contg. the salts of specified metal elements and copper on a substrate, heat-treating the substrate in an oxygen-contg. atmosphere, and then annealing the substrate. CONSTITUTION:The metal salt of a rare-earth metal, the metal salts of Ba and/or Sr, and the metal salt of copper are dissolved in a solvent (e.g., ethanol) to obtain a soln. contg. <=6.5wt.% of all the metal salt components. The soln. is then applied on a substrate (e.g., Yttrium-stabilized zirconium), and calcined at 400-600 deg.C in an oxygen-contg. atmosphere or in an inert gas atmosphere. The application and calcination are repeated more than twice to form a coating film having <=1.5mum thickness on the substrate. The substrate is then heat- treated at 850-930 deg.C for 3-30hr in an oxygen-contg. atmosphere, and then annealed to <=400 deg.C in an oxygen-contg. atmosphere.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化物超伝導薄膜の製造方法に関し、更に詳
しくは、液体窒素の沸点である77Kを超える臨界温度
(ゼロ抵抗温度)を持つ酸化物超伝導薄膜の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconducting thin film, and more specifically, to a method for producing an oxide superconducting thin film, and more specifically, an oxide superconducting thin film having a critical temperature (zero resistance temperature) exceeding 77 K, which is the boiling point of liquid nitrogen. This invention relates to a method for manufacturing a superconducting thin film.

発明の背景 高い臨界温度を示す酸化物伝導材料については、室温近
くで超伝導現象を示す材料の創製の対する研究と同時に
、実用化を0指した応用研究が活発に行なわれている。
BACKGROUND OF THE INVENTION Concerning oxide conductive materials exhibiting a high critical temperature, research is being actively conducted on the creation of materials exhibiting superconductivity near room temperature, as well as applied research aimed at practical application.

高温超伝導材料の利用形態として、焼結体と薄膜が考え
られ、中でも超伝導薄膜は、エレクトロニクスデバイス
などへの応用が期待されている。
High-temperature superconducting materials can be used in sintered bodies and thin films, and superconducting thin films are particularly expected to be used in electronic devices.

酸化物超伝導薄膜は、従来スパッタ法、蒸着法、スクリ
ーン印刷法などで形成されている。酸化物薄膜の形成方
法としては、液相熱分解法も知られており、この方法は
、装置が簡単であり、大面積。
Oxide superconducting thin films are conventionally formed by sputtering, vapor deposition, screen printing, and the like. Liquid phase pyrolysis is also known as a method for forming oxide thin films, and this method requires simple equipment and can be applied over a large area.

複雑な形状のものに均一に成膜することができるなど利
点を持ち、超伝導薄膜合成法として非常に有望である。
This method has the advantage of being able to form a uniform film on objects with complex shapes, making it a very promising method for synthesizing superconducting thin films.

液相熱分解法を採用した酸化物超伝導薄膜の形成は、熊
谷らにより、Chemistry Letters。
The formation of oxide superconducting thin films using liquid phase pyrolysis is described in Chemistry Letters by Kumagai et al.

1645−1646 (1987)に報告されているが
、得られた酸化物超伝導薄膜の臨界温度(ゼロ抵抗温度
)は液体窒素の沸点より低い。
1645-1646 (1987), the critical temperature (zero resistance temperature) of the obtained oxide superconducting thin film is lower than the boiling point of liquid nitrogen.

発明の目的 本発明の目的は、液体窒素の沸点77Kを越える臨界温
度(ゼロ抵抗温度)を持ち、しかも臨界電流密度が大き
い高温酸化物超伝導薄膜を有利に製造できる方法を提供
することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method that can advantageously produce a high-temperature oxide superconducting thin film that has a critical temperature (zero resistance temperature) exceeding the boiling point of liquid nitrogen, 77 K, and a high critical current density. .

発明の構成 上記目、的は、希土類金属、バリウムおよび/またはス
トロンチウム、並びに銅の各金属塩を含む溶液を、基材
に塗布し、酸素含有雰囲気中、850〜930℃の温度
で熱処理し、次いで酸素雰囲気中徐冷することを特徴と
する酸化物超伝導薄膜の製造方法により達成される。
Structure of the Invention The above object is to apply a solution containing metal salts of rare earth metals, barium and/or strontium, and copper to a base material, and heat-treat the solution at a temperature of 850 to 930°C in an oxygen-containing atmosphere. This is achieved by a method for producing an oxide superconducting thin film, which is characterized in that it is then slowly cooled in an oxygen atmosphere.

本発明の好ましい態様では、金属塩溶液を塗布した基材
を、熱処理前に、400〜600℃の温度で焼成する。
In a preferred embodiment of the invention, the substrate coated with the metal salt solution is fired at a temperature of 400 to 600° C. before heat treatment.

希土類金属としては、イツトリウム、ランタノイド元素
、およびこれらの混合物などが例示できる。
Examples of rare earth metals include yttrium, lanthanide elements, and mixtures thereof.

希土類金属、バリウムおよび/またはストロンチウム、
並びに銅の金属塩としては、有機酸塩(たとえば、ナフ
テン酸塩、カプリル酸塩、ステアリン酸塩)、キレート
錯体(たとえば、アセチルアセトン錯塩)、アルコキシ
ド(たとえば、メチレート、エチラート、イソプロピレ
ート)が好ましく用いられる。
rare earth metals, barium and/or strontium,
In addition, as the copper metal salt, organic acid salts (e.g., naphthenate, caprylate, stearate), chelate complexes (e.g., acetylacetone complex salt), and alkoxides (e.g., methylate, ethylate, isopropylate) are preferably used. It will be done.

溶液中の各金属塩の濃度は、得られる超伝導酸化物の組
成に合わせて調整される。一般に、全金属成分濃度は、
6.5重量%以下に調整されるが、この範囲に限定され
ることはない。
The concentration of each metal salt in the solution is adjusted according to the composition of the superconducting oxide to be obtained. Generally, the total metal component concentration is
The content is adjusted to 6.5% by weight or less, but is not limited to this range.

溶媒としては、アルコール(たとえば、エタノール、イ
ソプロパツール)、芳香族化合物(たとえば、ベンゼン
、トルエン、キシレン)、シクロヘキサン、ターペン、
灯油、酢酸ブチル、クロロホルム、エーテル、ケトンな
どが例示できる。
Solvents include alcohols (e.g. ethanol, isopropanol), aromatic compounds (e.g. benzene, toluene, xylene), cyclohexane, turpentine,
Examples include kerosene, butyl acetate, chloroform, ether, and ketone.

基材の種類は問わないが、イツトリウム安定化ジルコニ
ア(YSZ)が好ましい。
The type of base material does not matter, but yttrium stabilized zirconia (YSZ) is preferred.

本発明の製造方法では、基材を上記のような金属塩溶液
を基材に塗布する。好ましくは、溶液を塗布した基材を
、酸素含有雰囲気(たとえば、空気、酸素/不活性ガス
混合物)または不活性気体(窒素、ヘリウム、アルゴン
など)中、400〜600℃の温度で焼成する。この焼
成の初期段階を不活性気体中で行うと、より臨界電流密
度の大きい酸化物超伝導薄膜が得られる。
In the manufacturing method of the present invention, a metal salt solution as described above is applied to the base material. Preferably, the substrate coated with the solution is fired at a temperature of 400-600<0>C in an oxygen-containing atmosphere (eg air, oxygen/inert gas mixture) or inert gas (nitrogen, helium, argon, etc.). If this initial stage of firing is performed in an inert gas, an oxide superconducting thin film with a higher critical current density can be obtained.

−回の塗布および焼成によって所望の膜厚が得られない
場合には、塗布および焼成の工程を2回またはそれ以上
繰り返して、所定の厚さの薄膜を得ることができる。塗
膜の厚さは、1.5μ度を越えるのが好ましい。
- If the desired film thickness cannot be obtained by coating and baking twice, the coating and baking steps can be repeated two or more times to obtain a thin film of a predetermined thickness. The thickness of the coating film is preferably greater than 1.5 micro degrees.

焼成後、金属酸化物薄膜が塗布された基材を、酸素含有
雰囲気、特に純酸素気流中、850〜930℃、好まし
くは870〜920℃の温度で熱処理する。熱処理時間
は、通常3〜30時間である。好ましくは、酸素含有雰
囲気中で焼成を行った場合には4.5〜8.5時間であ
り、不活性気体雰囲気中′で初期焼成を行った場合には
12〜30時間である。
After firing, the substrate coated with the metal oxide thin film is heat treated in an oxygen-containing atmosphere, in particular in a stream of pure oxygen, at a temperature of 850-930°C, preferably 870-920°C. The heat treatment time is usually 3 to 30 hours. Preferably, the time is 4.5 to 8.5 hours when the firing is performed in an oxygen-containing atmosphere, and 12 to 30 hours when the initial firing is performed in an inert gas atmosphere.

熱処理後、基材を、酸素気流中、400℃以下の温度に
徐冷する。
After the heat treatment, the substrate is slowly cooled to a temperature of 400° C. or lower in an oxygen stream.

本発明の製造方法によれば、窒素の沸点77に以上の臨
界温度(ゼロ抵抗温度)を持つ酸化物超伝導薄膜を再現
性よく、かつ効率的に得ることができる。
According to the manufacturing method of the present invention, an oxide superconducting thin film having a critical temperature (zero resistance temperature) equal to or higher than the boiling point of nitrogen, 77, can be obtained efficiently and reproducibly.

寒貴桝 以下に実施例を示し、本発明をより詳しく説明する。Kankimasu EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1〜3および比較例1〜3 [薄膜合成] 酸化物超伝導薄膜の合成は、溶液調製一基板への塗布→
熱処理の手順で行った。
Examples 1 to 3 and Comparative Examples 1 to 3 [Thin film synthesis] Synthesis of oxide superconducting thin films consists of solution preparation, coating on a substrate →
This was done using a heat treatment procedure.

出発原料としてイツトリウム、バリウムおよび銅それぞ
れのナフテン酸金属塩を用いた。原子比がY :Ba:
Cu= 1 :2 :3となるように金属塩を混合し、
これをターペンで希釈して金属成分濃度6重量%の溶液
を調製した。
Naphthenic acid metal salts of yttrium, barium, and copper were used as starting materials. Atomic ratio is Y:Ba:
Mix metal salts so that Cu=1:2:3,
This was diluted with turpentine to prepare a solution having a metal component concentration of 6% by weight.

この溶液をデイプコーティング法によりYSZ基板に塗
布(引き上げ速度8 、7 am/分)した後、大気中
500℃で焼成した。所定の膜厚になるまで塗布−焼成
を繰り返し、さらに、酸素気流中、800℃(比較例1
)、900°C(実施例1〜3および比較例2)または
950°C(比較例3)で所定時間熱処理した後、20
0℃まで炉冷することにより、超伝導薄膜を合成した。
This solution was applied to a YSZ substrate by a deep coating method (pulling speed: 8, 7 am/min), and then baked at 500° C. in the air. The coating and baking process was repeated until a predetermined film thickness was obtained, and then the film was heated at 800°C in an oxygen stream (Comparative Example 1).
), 900°C (Examples 1 to 3 and Comparative Example 2) or 950°C (Comparative Example 3) for a predetermined period of time, then 20
A superconducting thin film was synthesized by furnace cooling to 0°C.

各実施例における膜厚(表面膜差計により測定)および
熱処理時間を第1表に示す。
Table 1 shows the film thickness (measured using a surface film difference meter) and heat treatment time in each example.

[測定コ 得られた薄膜試料を液体窒素を冷媒として冷却し、電気
抵抗の温度依存性および臨界温度を求めた。
[Measurement] The obtained thin film sample was cooled using liquid nitrogen as a coolant, and the temperature dependence of electrical resistance and critical temperature were determined.

抵抗測定は、端子を銀ペーストで接着し、直流4端子法
により行ったー。温度はCA熱電対により測定した。
The resistance was measured using the DC 4-terminal method with the terminals glued together with silver paste. Temperature was measured with a CA thermocouple.

臨界温度以上での抵抗の温度依存性については、温度が
下がるにつれて電気抵抗が上がる「半導体的挙動」、電
気抵抗が下がる「金属的挙動」、および温度によって電
気抵抗が変わらない「はぼ−定の挙動」に分類される。
Regarding the temperature dependence of resistance above the critical temperature, there are ``semiconductor-like behavior'' in which the electrical resistance increases as the temperature decreases, ``metallic behavior'' in which the electrical resistance decreases, and ``virtually constant behavior'' in which the electrical resistance does not change with temperature. behavior.

超伝導に転移する臨界温度としては、温度を下げていく
と抵抗がこれらの挙動からはずれて急激に下がり始める
オンセット温度T onsetと、抵抗が完全にゼロに
なるゼロ抵抗温度T zeroを第1表に示した。
The critical temperatures for transition to superconductivity are the onset temperature T onset, at which the resistance deviates from these behaviors and begins to drop rapidly as the temperature is lowered, and the zero resistance temperature T zero, at which the resistance becomes completely zero. Shown in the table.

この表の結果より明らかなように、抵抗の温度依存性と
臨界温度の間には強い相関関係が存在する。すなわち7
7に以上のゼロ抵抗温度を示すのは抵抗が金属的かある
いは一定の挙動を示す場合のみである。この場合の抵抗
変化を、273Kにおける抵抗値R79,との比R/R
t、aとして第1図に示す。図中、○は実施例1の結果
を、口は実施例2の結果を、△は実施例3の結果を示す
As is clear from the results in this table, there is a strong correlation between the temperature dependence of resistance and the critical temperature. i.e. 7
A zero resistance temperature of 7 or above is exhibited only when the resistance is metallic or exhibits a certain behavior. The resistance change in this case is expressed as the ratio R/R of the resistance value R79 at 273K.
It is shown in FIG. 1 as t and a. In the figure, ◯ indicates the results of Example 1, ◯ indicates the results of Example 2, and △ indicates the results of Example 3.

実施例4 初期焼成を窒素雰囲気中で行い、熱処理を900℃で1
6.5時間行う以外は実施例1と同様の方法で、酸化物
超伝導薄膜を形成した。0℃での抵抗率および臨界電流
密度を第2表に示す。
Example 4 Initial firing was performed in a nitrogen atmosphere, and heat treatment was performed at 900°C for 1 time.
An oxide superconducting thin film was formed in the same manner as in Example 1, except that the heating was carried out for 6.5 hours. The resistivity and critical current density at 0°C are shown in Table 2.

第2表 発明の効果 本発明の製造方法によれば、臨界温度(ゼロ抵抗温度)
が液体窒素の沸点をこえる酸化物超伝導薄膜が得られる
Table 2 Effects of the invention According to the manufacturing method of the invention, critical temperature (zero resistance temperature)
An oxide superconducting thin film whose temperature exceeds the boiling point of liquid nitrogen can be obtained.

また、本発明においては、薄膜形成の過程を2つの過程
、すなわち比較的低温での焼成過程(原料の熱分解過程
)と比較的高温での熱処理(結晶化・結晶成長過程)と
に別けて行っている。それ故、薄膜形成において薄膜の
ひび割れが無く、基材と酸化物薄膜との密着性に優れた
製品を得ることができる。
Furthermore, in the present invention, the process of thin film formation is divided into two processes: a firing process at a relatively low temperature (thermal decomposition process of raw materials) and a heat treatment at a relatively high temperature (crystallization/crystal growth process). Is going. Therefore, it is possible to obtain a product with no cracks in the thin film during thin film formation and excellent adhesion between the base material and the oxide thin film.

更に、比較的低温での焼成の初期過程を不活性気体雰囲
気中で行うと、酸化物薄膜の臨界電流密度が向上する。
Furthermore, if the initial stage of firing at a relatively low temperature is performed in an inert gas atmosphere, the critical current density of the oxide thin film is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1〜3で得られた酸化物超伝導薄膜の
抵抗変化を示すグラフである。
FIG. 1 is a graph showing the resistance changes of the oxide superconducting thin films obtained in Examples 1 to 3.

Claims (1)

【特許請求の範囲】 1、希土類金属またはビスマス、バリウム、カルシウム
およびストロンチウムから成る群から選ばれた少なくと
も1種の金属元素、並びに銅の各金属塩を含む溶液を、
基材に塗布し、酸素含有雰囲気中、850〜930℃の
温度で熱処理し、次いで酸素雰囲気中徐冷することを特
徴とする酸化物超伝導薄膜の製造方法。 2、金属塩溶液を塗布した基材を、酸素含有雰囲気中、
400〜600℃の温度で焼成した後、熱処理する特許
請求の範囲第1項記載の酸化物超伝導薄膜の製造方法。 3、金属塩溶液を塗布した基材を、ます不活性気体雰囲
気中、次いで酸素含有雰囲気中、400〜600℃の温
度で焼成した後、熱処理する特許請求の範囲第1項記載
の酸化物超伝導薄膜の製造方法。 4、希土類金属が、イットリウムである特許請求の範囲
第1項記載の製造方法。 5、溶液の塗布および400〜600℃での焼成を、1
.5μmを越える膜厚になるまで繰り返し行う特許請求
の範囲第2〜4項のいずれかに記載の製造方法。 6、850〜930℃での熱処理を3〜30時間行う特
許請求の範囲第1項記載の製造方法。 7、熱処理を純酸素気流中で行う特許請求の範囲第1項
または第6項記載の製造方法。
[Claims] 1. A solution containing a rare earth metal or at least one metal element selected from the group consisting of bismuth, barium, calcium, and strontium, and each metal salt of copper,
1. A method for producing an oxide superconducting thin film, which comprises coating on a substrate, heat-treating in an oxygen-containing atmosphere at a temperature of 850 to 930°C, and then slowly cooling in an oxygen atmosphere. 2. The base material coated with the metal salt solution is placed in an oxygen-containing atmosphere.
The method for producing an oxide superconducting thin film according to claim 1, wherein the oxide superconducting thin film is heat-treated after firing at a temperature of 400 to 600°C. 3. The base material coated with the metal salt solution is fired at a temperature of 400 to 600°C in an inert gas atmosphere, then in an oxygen-containing atmosphere, and then heat treated. Method for manufacturing conductive thin film. 4. The manufacturing method according to claim 1, wherein the rare earth metal is yttrium. 5. Applying the solution and baking at 400-600°C, 1.
.. The manufacturing method according to any one of claims 2 to 4, wherein the process is repeated until the film thickness exceeds 5 μm. 6. The manufacturing method according to claim 1, wherein heat treatment is performed at 850 to 930°C for 3 to 30 hours. 7. The manufacturing method according to claim 1 or 6, wherein the heat treatment is performed in a pure oxygen stream.
JP63048963A 1987-10-15 1988-03-02 Production of thin oxide superconducting film Pending JPH01212219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048963A JPH01212219A (en) 1987-10-15 1988-03-02 Production of thin oxide superconducting film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-262204 1987-10-15
JP26220487 1987-10-15
JP63048963A JPH01212219A (en) 1987-10-15 1988-03-02 Production of thin oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH01212219A true JPH01212219A (en) 1989-08-25

Family

ID=26389310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048963A Pending JPH01212219A (en) 1987-10-15 1988-03-02 Production of thin oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH01212219A (en)

Similar Documents

Publication Publication Date Title
JP2002284525A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
JPH01153526A (en) Superconductor of europium, barium, copper oxide film
Dawley et al. High J c YBa 2 Cu 3 O 7-δ films via rapid, low pO 2 pyrolysis
JPH05147941A (en) Production of superconductor and superconductor
JPH01212219A (en) Production of thin oxide superconducting film
JPS63239742A (en) Manufacture for film superconductor
EP0575968B1 (en) Manufacturing method of an oxide superconductor with high critical current density
Mcintyre et al. Metal‐Organic Decomposition and Microstructure Development in Ba2ycu3o7‐X Films from Metal Trifluoroacetate Precursors
JPH01313332A (en) Production of thin oxide superconducting film
JPH03109204A (en) Production of superconducting thin film
JP2796587B2 (en) Method for producing Bi-Pb-Sr-Ca-Cu-based oxide superconducting film
JP2002284526A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for producing superconductive thin film
JPH0211776A (en) Production of superconductive metal oxide film by pyrolysis
JPH02102123A (en) Production of superconductor
JPS63231819A (en) Manufacture of oxide superconductive material
JPH01126208A (en) Production of superconducting thin film
JP2822328B2 (en) Superconductor manufacturing method
JPH06216420A (en) Manufacture of oxide superconducting thin-film
JPH01203258A (en) Production of oxide superconducting sintered body
JPH0280580A (en) Production of superconductive oxide layer
Ihlefeld et al. Base metal bottom electrodes
JPH01138129A (en) Production of oxide superconductor thin film
JPH0453817B2 (en)
JP2955293B2 (en) Manufacturing method of dielectric thin film
JPH04342474A (en) Production of oxide superconducting film