JPH01212214A - Production of magnesium hydroxide - Google Patents

Production of magnesium hydroxide

Info

Publication number
JPH01212214A
JPH01212214A JP3278588A JP3278588A JPH01212214A JP H01212214 A JPH01212214 A JP H01212214A JP 3278588 A JP3278588 A JP 3278588A JP 3278588 A JP3278588 A JP 3278588A JP H01212214 A JPH01212214 A JP H01212214A
Authority
JP
Japan
Prior art keywords
ion
ions
obtd
magnesium hydroxide
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3278588A
Other languages
Japanese (ja)
Inventor
Toshio Nakamura
俊夫 中村
Shigenobu Nakatani
中谷 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP3278588A priority Critical patent/JPH01212214A/en
Publication of JPH01212214A publication Critical patent/JPH01212214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain Mg(OH)2 having high quality, high activity and excellent absorbing power for SO2, by hydrating MgO in an aq. medium contg. specified cation and anion. CONSTITUTION:The MgO having <=100mum mean particle size is obtd. by crushing lightly calcined magnesite obtd. by calcining magnesite at 400-850 deg.C. The soln. contg. 0.25-2.5g ion/l one or more kinds of cation selected among alkali (earth) metal ions and ammonium ion, and 0.25-2.5g ion/l one or more kinds of anion selected among hydroxyl ion, nitrate, ion, carbonate ion, chloride ion and sulfate ion is obtd. by dissolving water-soluble electrolyte compd. (e.g., NaOH) in the aq. medium. Then, 7-35wt.% the MgO above-mentioned is added to the soln. above-mentioned to bring about hydration reaction at 30-100 deg.C for 0.1-20hr while stirring at 7-14pH value and thereafter, the Mg(OH)2 obtd. by solid-liq. separation, is dried.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水酸化マグネシウムの製造方法に関し、詳しく
は排煙脱硫用あるいは排水中和用等に有効な水酸化マグ
ネシウムを効率よ(製造する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing magnesium hydroxide, and more specifically, a method for efficiently producing magnesium hydroxide, which is effective for flue gas desulfurization, wastewater neutralization, etc. Regarding.

〔従来の技術及び発明が解決しようとする課題〕一般に
、排煙の脱硫や排水の中和のために、水酸化マグネシウ
ムが利用されているが、その製造法としては天然に産出
するマグネサイトを原料とするもの、あるいは海水中の
マグネシウムを原料とするものなど各種の方法が知られ
ている。
[Prior art and problems to be solved by the invention] Magnesium hydroxide is generally used for desulfurizing flue gas and neutralizing wastewater, but its production method uses naturally occurring magnesite. Various methods are known, including those using magnesium as a raw material and those using magnesium in seawater as a raw material.

しかし、マグネサイトを原料とする従来の方法では水和
率が充分に高(ならないため、水酸化マグネシウムの製
造効率が低く、残留酸化マグネシウム(MgO)がSS
分として排水へ流出するという問題がある。また、海水
中のマグネシウムを原料とする方法では、海水中のマグ
ネシウムが1200ppm程度にしか存在していないた
め、脱炭酸、沈降、洗浄、濃縮等の各工程を必要とし、
製造工程が煩雑であって製造効率が低いという問題があ
る。
However, in the conventional method using magnesite as a raw material, the hydration rate is not sufficiently high, so the manufacturing efficiency of magnesium hydroxide is low, and the residual magnesium oxide (MgO) becomes SS.
There is a problem that the amount of waste water flows out into the wastewater. In addition, in the method using magnesium in seawater as a raw material, since magnesium in seawater is only present at about 1200 ppm, various steps such as decarboxylation, sedimentation, washing, and concentration are required.
There is a problem that the manufacturing process is complicated and manufacturing efficiency is low.

そこで、本発明者らは上記従来技術の課題を解決し、高
品質で活性の高い水酸化マグネシウムを効率よく製造す
る方法を開発すべく鋭意研究を重ねた。
Therefore, the present inventors have conducted extensive research in order to solve the above-mentioned problems of the prior art and to develop a method for efficiently producing high-quality, highly active magnesium hydroxide.

〔課題を解決するための手段〕[Means to solve the problem]

その結果、平均粒径100μm以下の酸化マグネシウム
を用いると共に、この水酸化マグネシウムの水和反応を
特定の陽イオン及び陰イオンの存在下で行うことにより
、上記の課題を解決できることを見出した0本発明はか
かる知見に基いて完成したものである。
As a result, we found that the above problems could be solved by using magnesium oxide with an average particle size of 100 μm or less and carrying out the hydration reaction of this magnesium hydroxide in the presence of specific cations and anions. The invention was completed based on this knowledge.

すなわち、本発明は平均粒径1100p以下の酸化マグ
ネシウムを(a)アルカリ金属イオン、アルカリ土類金
属イオンおよびアンモニウムイオンよりなる群から選ば
れた一種または二種以上の陽イオンおよびら)水酸イオ
ン、硝酸イオン、炭酸イオン、塩素イオンおよび硫酸イ
オンよりなる群から選ばれた一種または二種以上の陰イ
オンを含有する水性媒体中で水和させることを特徴とす
る水酸化マグネシウムの製造方法を提供するものである
That is, the present invention uses magnesium oxide having an average particle size of 1,100p or less in combination with (a) one or more cations selected from the group consisting of alkali metal ions, alkaline earth metal ions, and ammonium ions, and (a) hydroxide ions. Provided is a method for producing magnesium hydroxide, which comprises hydrating the magnesium hydroxide in an aqueous medium containing one or more anions selected from the group consisting of nitrate ions, carbonate ions, chloride ions, and sulfate ions. It is something to do.

本発明の方法に用いる酸化マグネシウムは、平均粒径が
100μm以下のものでなければならず、好ましくは5
0μm以下、更に好ましくは20μm以下である。ここ
で酸化マグネシウムの平均粒径が100μmを超えるも
のでは、水酸化マグネシウムスラリーの懸濁安定性が悪
く(つまり、スラリー中の水酸化マグネシウムが沈降し
やすい)、また未反応残留物がスケーリングやSS負荷
を増大させるという不都合が生ずる。
The magnesium oxide used in the method of the present invention must have an average particle size of 100 μm or less, preferably 5 μm or less.
It is 0 μm or less, more preferably 20 μm or less. If the average particle size of magnesium oxide exceeds 100 μm, the suspension stability of the magnesium hydroxide slurry is poor (that is, the magnesium hydroxide in the slurry tends to settle), and unreacted residues may cause scaling or SS. This causes the inconvenience of increasing the load.

上述の如き平均粒径100μm以下の酸化マグネシウム
は、各種の方法により得ることができるが、通常は天然
に産出するマグネサイトを400〜850℃程度で焼成
し、得られた軽焼マグネサイト(酸化マグネシウムが主
成分)を上記平均粒径に粉砕したものを用いればよい。
Magnesium oxide with an average particle size of 100 μm or less as described above can be obtained by various methods, but it is usually obtained by calcining naturally occurring magnesite at about 400 to 850 ° C. Magnesium is the main component) which has been pulverized to the above average particle size may be used.

ここで焼成温度が850℃を超えると不活性な酸化マグ
ネシウムの生成が多(なり好ましくない。また、400
℃未満では酸化マグネシウムの生成量が少なく、しかも
結晶化も不充分である。
If the firing temperature exceeds 850°C, a large amount of inert magnesium oxide will be produced (which is undesirable).
If the temperature is below .degree. C., the amount of magnesium oxide produced is small and crystallization is also insufficient.

このようにして入手した平均粒径100μm以下の酸化
マグネシウムを水和するにあたっては、特定の(a)陽
イオンおよび(ロ)陰イオンを含有する水性媒体を用い
ることが必要である。この(a)陽イオンとしては、ナ
トリウムイオン、カリウムイオン。
In order to hydrate the magnesium oxide having an average particle size of 100 μm or less obtained in this manner, it is necessary to use an aqueous medium containing specific (a) cations and (b) anions. The (a) cations include sodium ions and potassium ions.

セシウムイオン、ルビジウムイオン等のアルカリ金属イ
オン、マグネシウムイオン、カルシウムイオン、ストロ
ンチウムイオン、バリウムイオン等のアルカリ土類金属
イオンあるいはアンモニウムイオンがあげられ、これら
を一種あるいは二種以上水性媒体に含有させる。このう
ち、特にナトリウムイオンやカリウムイオンが好ましい
Examples include alkali metal ions such as cesium ions and rubidium ions, alkaline earth metal ions such as magnesium ions, calcium ions, strontium ions, barium ions, and ammonium ions, and one or more of these are contained in the aqueous medium. Among these, sodium ions and potassium ions are particularly preferred.

一方、(b)陰イオンとしては、水酸イオン、硝酸イオ
ン、炭酸イオン、塩素イオンあるいは硫酸イオンがあげ
られ、これらの一種あるいは二種以上を水性媒体に含有
させればよい。このうち、特に水酸イオン、塩素イオン
、炭酸イオンが好ましい。
On the other hand, (b) anions include hydroxide ions, nitrate ions, carbonate ions, chloride ions, and sulfate ions, and one or more of these may be contained in the aqueous medium. Among these, hydroxide ions, chloride ions, and carbonate ions are particularly preferred.

また、これらの(a)陽イオンおよび(ロ)陰イオンを
水性媒体中に存在させるには、水溶性の電解質化合物を
水性媒体に溶解させて、上記(a)陽イオンおよび(b
)陰イオンを生ぜしめればよい。
In addition, in order to make these (a) cations and (b) anions exist in an aqueous medium, a water-soluble electrolyte compound is dissolved in an aqueous medium, and the above (a) cations and (b) anions are present in an aqueous medium.
) It is sufficient to generate anions.

この電解質化合物(水和促進剤)としては、上記(a)
陽イオンと上記(ロ)陰イオンの両方を生じさせるもの
は勿論のこと、上記(a)陽イオンと他種の陰イオン(
つまり、上記(b)陰イオン以外のもの)を発生させる
化合物と上記(ロ)陰イオンと他種の陽イオン(つまり
、上記(a)陽イオン以外のもの)を発生させる化合物
を併用してもよい、しかし、Ba5O,Ca5O,等の
難溶性塩を生成するような陽イオンと陰イオンの組合せ
は好ましくなく、また特に一つの化合物で上記(a)陽
イオンと上記(ロ)陰イオンの両者を生じさせるものが
好ましい。
As this electrolyte compound (hydration accelerator), the above (a)
Of course, there are those that produce both cations and (b) anions mentioned above, as well as those that produce both the above (a) cations and other types of anions (
In other words, by using a compound that generates the above (b) anion), and a compound that generates the above (b) anion and another type of cation (that is, something other than the above (a) cation), However, combinations of cations and anions that produce poorly soluble salts such as Ba5O, Ca5O, etc. are not preferred, and in particular, combinations of the above (a) cations and the above (b) anions in one compound are not preferred. Those that produce both are preferred.

このような電解質化合物の具体例をあげれば、水酸化ナ
トリウム、水酸化カリウム、塩化ナトリウム、炭酸ナト
リウム、塩化マグネシウム、アンモニア水、硫酸ナトリ
ウムなどがある。
Specific examples of such electrolyte compounds include sodium hydroxide, potassium hydroxide, sodium chloride, sodium carbonate, magnesium chloride, aqueous ammonia, and sodium sulfate.

本発明の方法では、前述した平均粒径1100I1以下
の酸化マグネシウムを水性媒体に加えて撹拌し、水和反
応を行うが、この際の水性媒体に加える酸化マグネシウ
ムの量は、特に制限はなく、状況に応じて適宜室めれば
よい。通常は酸化マグネシウム濃度として7〜35重量
%、生成する水酸化マグネシウム濃度として10〜50
重量%のスラリーとなるように富周整すればよい。
In the method of the present invention, the above-mentioned magnesium oxide having an average particle size of 1100I1 or less is added to an aqueous medium and stirred to perform a hydration reaction, but the amount of magnesium oxide added to the aqueous medium at this time is not particularly limited, You can leave the room as appropriate depending on the situation. Usually, the concentration of magnesium oxide is 7 to 35% by weight, and the concentration of magnesium hydroxide produced is 10 to 50%.
What is necessary is to prepare the slurry in a rich manner so that it becomes a slurry of % by weight.

なお、ここで用いる水性媒体とは、水を主成分とする流
体であって、−aには前記(a)陽イオンおよびら)陰
イオンと水より構成されるが、そのほか必要に応じては
他の流体あるいは添加剤を加えてもよい。
Note that the aqueous medium used here is a fluid whose main component is water, and -a is composed of the above-mentioned (a) cations and (b) anions and water, and other substances are added as necessary. Other fluids or additives may be added.

また、水性媒体中に存在せしめる(a)陽イオンおよび
ら)陰イオンの濃度は、各イオンの種類や水和反応条件
等により異なるが、通常は両イオン共に0.25〜2.
5グラムイオン#!(0,1〜1.0重量%)、好まし
くは0.37〜1.5グラムイオン#!(0,15〜0
.6重量%)の範囲で選定する。
The concentrations of (a) cations and (3) anions present in the aqueous medium vary depending on the type of each ion, hydration reaction conditions, etc., but usually both ions are 0.25 to 2.
5g ion #! (0.1-1.0% by weight), preferably 0.37-1.5 g ion #! (0,15~0
.. 6% by weight).

これらの(a)陽イオンおよび(ロ)陰イオンのいずれ
か一方あるいは両方が水性媒体中に存在しないと、酸化
マグネシウムの水和反応が効率よく進行せず、水酸化マ
グネシウムの収率が低下し、また、得られる水酸化マグ
ネシウムの活性(脱硫能力等)が充分高いものとならな
い。
If either or both of these (a) cations and (b) anions are not present in the aqueous medium, the hydration reaction of magnesium oxide will not proceed efficiently and the yield of magnesium hydroxide will decrease. Moreover, the activity (desulfurization ability, etc.) of the magnesium hydroxide obtained is not sufficiently high.

水和反応の条件については、特に制限はないが、通常は
反応系を充分に撹拌しながら温度30〜100°C1好
ましくは80〜10o″c1時間0.1〜20時間、好
ましくは5〜10時間、pH7〜14、好ましくは11
〜14の範囲で適宜選定する。
There are no particular restrictions on the conditions for the hydration reaction, but usually the temperature is 30 to 100°C, preferably 80 to 10°C, 1 hour to 0.1 to 20 hours, preferably 5 to 10°C, with sufficient stirring of the reaction system. time, pH 7-14, preferably 11
to 14 as appropriate.

上記水和反応にあたって、前述の(a)陽イオンおよび
(b)陰イオンは予め水性媒体中に存在させておき(つ
まり、これらのイオンを生ずる電解質化合物を加えてお
き)、シかる後に酸化マグネシウムを加えてもよく、ま
た酸化マグネシウムを加えると共に、あるいはその後に
(a)陽イオンおよび(b)陰イオンを生ずる電解質化
合物(水和促進剤)を加えてもよい。
In the above hydration reaction, the above-mentioned (a) cations and (b) anions are made to exist in an aqueous medium in advance (that is, an electrolyte compound that produces these ions is added), and after hydration, magnesium oxide is added. may be added, and an electrolyte compound (hydration accelerator) that produces (a) a cation and (b) an anion may be added together with or after the addition of magnesium oxide.

水和反応後、生成した水酸化マグネシウムを固液分離し
、さらに乾燥処理すれば、所望する高純度かつ高活性の
水酸化マグネシウムを得ることができる。
After the hydration reaction, the produced magnesium hydroxide is separated into solid and liquid and further dried to obtain the desired highly pure and highly active magnesium hydroxide.

〔実施例〕〔Example〕

次に本発明を実施例および比較例によりさらに詳しく説
明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1〜18および比較例1〜5 温度850℃で焼成した中国軸岩産経焼マグネサイ) 
(MgO含量94重量%)を粉砕機を用いて所定の粒径
に粉砕した。
Examples 1 to 18 and Comparative Examples 1 to 5 Sankei-yaki magnesai, a Chinese rock fired at a temperature of 850°C)
(MgO content: 94% by weight) was pulverized to a predetermined particle size using a pulverizer.

次に、水400gに所定の水和促進剤を加えて攪拌しな
がら昇温し、前記の粉砕マグネサイトを加え、一定時間
これを保持し水和反応を行った。
Next, a predetermined hydration accelerator was added to 400 g of water, the temperature was raised while stirring, the above-mentioned crushed magnesite was added, and the mixture was held for a certain period of time to perform a hydration reaction.

生成した水酸化マグネシウムを固液分離した後、温度8
0〜100℃で乾燥した。得られた固形物はX線回折が
可能な粒度になるまでメノウ乳鉢で微粉砕した。
After solid-liquid separation of the produced magnesium hydroxide, the temperature is 8.
Dry at 0-100°C. The obtained solid was pulverized in an agate mortar until it had a particle size that allowed X-ray diffraction.

得られた微粉砕試料からX線回折により、その水和率を
測定した。即ち、Xla回折は市販のX線回折装置を用
いて、前記微粉砕試料とMg(OH)zおよびMgOの
市販標準試薬を測定し、得られた回折チャートより格子
面間隔(d)が1.79±0.02人、2.37±0.
02人、4.77±0.02人の3本のMg(Of()
zに基づく回折ピーク強度の平均値4.77と2.11
±0.02人のMgOに基づく回折ピーク強度のそれぞ
れを比較することによって、微粉砕試料の水和率を算出
した。
The hydration rate of the obtained finely ground sample was measured by X-ray diffraction. That is, for Xla diffraction, the finely pulverized sample and commercially available standard reagents of Mg(OH)z and MgO are measured using a commercially available X-ray diffractometer, and the obtained diffraction chart shows that the lattice spacing (d) is 1. 79±0.02 people, 2.37±0.
02 people, 4.77±0.02 people three Mg(Of()
Average values of diffraction peak intensity based on z 4.77 and 2.11
The hydration rate of the finely ground sample was calculated by comparing the respective diffraction peak intensities based on ±0.02 MgO.

また、得られた微粉砕試料について、次の手順でその性
能を評価した。
Furthermore, the performance of the obtained finely pulverized sample was evaluated according to the following procedure.

まず、上記の30%スラリー試料5gを蒸留水31で希
釈して吸収液を調製する。次にSO□を250ppm含
有する排ガスを101/分の割合で脱硫率が98%以上
に維持÷きるようにガスを前記吸収液(温度は15〜2
0℃)に吹き込み(つまり、吸収液のpHが6付近まで
低下した時点でガスの吹き込みを停止する)、シかる後
に、吸収液中のS Oa”−、S Os”−量をイオン
クロマトグラフィーにて測定することによって、SO□
吸収、量、脱硫率および生成5sl(表面浮遊物の生成
量)を算出した。一方、吸収液を通過した排ガスはさら
にガス洗浄液(3%過酸化水素を含量する水溶液30(
ld)を通して、系外に排気した。
First, 5 g of the above 30% slurry sample is diluted with distilled water 31 to prepare an absorption liquid. Next, exhaust gas containing 250 ppm of SO□ was pumped into the absorption liquid (at a temperature of 15 to 2
0°C) (in other words, stop blowing the gas when the pH of the absorption liquid drops to around 6), and then measure the amount of SOa”- and SOs”- in the absorption liquid by ion chromatography. By measuring at SO□
Absorption, amount, desulfurization rate, and production 5sl (amount of surface suspended matter produced) were calculated. On the other hand, the exhaust gas that has passed through the absorption liquid is further treated with a gas cleaning liquid (an aqueous solution containing 3% hydrogen peroxide) (
It was exhausted to the outside of the system through ld).

なお、上記のSO□吸収量、脱硫率および生成SS量は
下記式により算出した。
Note that the above SO□ absorption amount, desulfurization rate, and generated SS amount were calculated using the following formula.

吸’IX敢貢 (g) (但し、吸収液量は濃度30%のスラリーで換算した。Su' IX Gankou (g) (However, the amount of absorption liquid was calculated using a slurry with a concentration of 30%.

) (但し、吸収液量は濃度30%のスラリーで換算した。) (However, the amount of absorption liquid was calculated using a slurry with a concentration of 30%.

) これらの結果を第1表に示す。) These results are shown in Table 1.

*l  Mg(OR)tに換算した濃度*2  MgO
に対する重量% *30H−が0.3%NaOHと等量 *4  C1−が0.3%MgCj!zと等量*5  
Na”が0.3%NaOHと等量〔発明の効果〕 畝上の如く、本発明の方法によれば、高品質。
*l Concentration converted to Mg(OR)t *2 MgO
Weight % relative to *30H- is equivalent to 0.3% NaOH *4 C1- is 0.3% MgCj! Equivalent to z*5
Equivalent amount of Na'' to 0.3% NaOH [Effects of the Invention] As seen above, the method of the present invention provides high quality.

高活性の水酸化マグネシウムを安価かつ簡便に製造する
ことができ、また得られる水酸化マグネシウムの取扱も
容易である。
Highly active magnesium hydroxide can be produced cheaply and easily, and the obtained magnesium hydroxide is also easy to handle.

したがって、本発明の方法は水酸化マグネシウムの工業
的な製造方法として、利用価値の高いものである。さら
に、この方法で得られる水酸化マグネシウムは、Sot
ガスの吸収能にすぐれているため、排煙の脱硫や排水の
中和に有効に利用することができる。
Therefore, the method of the present invention is highly useful as an industrial method for producing magnesium hydroxide. Furthermore, the magnesium hydroxide obtained by this method is Sot
Because it has excellent gas absorption ability, it can be effectively used for desulfurizing flue gas and neutralizing wastewater.

Claims (2)

【特許請求の範囲】[Claims] (1)平均粒径100μm以下の酸化マグネシウムを(
a)アルカリ金属イオン、アルカリ土類金属イオンおよ
びアンモニウムイオンよりなる群から選ばれた一種また
は二種以上の陽イオンおよび(b)水酸イオン、硝酸イ
オン、炭酸イオン、塩素イオンおよび硫酸イオンよりな
る群から選ばれた一種または二種以上の陰イオンを含有
する水性媒体中で水和させることを特徴とする水酸化マ
グネシウムの製造方法。
(1) Magnesium oxide with an average particle size of 100 μm or less (
a) one or more cations selected from the group consisting of alkali metal ions, alkaline earth metal ions, and ammonium ions; and (b) consisting of hydroxide ions, nitrate ions, carbonate ions, chloride ions, and sulfate ions. A method for producing magnesium hydroxide, which comprises hydrating it in an aqueous medium containing one or more anions selected from the group.
(2)平均粒径100μm以下の酸化マグネシウムが、
マグネサイトを400〜850℃で焼成して得られるも
のである請求項1記載の水酸化マグネシウムの製造方法
(2) Magnesium oxide with an average particle size of 100 μm or less,
The method for producing magnesium hydroxide according to claim 1, which is obtained by firing magnesite at 400 to 850°C.
JP3278588A 1988-02-17 1988-02-17 Production of magnesium hydroxide Pending JPH01212214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3278588A JPH01212214A (en) 1988-02-17 1988-02-17 Production of magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3278588A JPH01212214A (en) 1988-02-17 1988-02-17 Production of magnesium hydroxide

Publications (1)

Publication Number Publication Date
JPH01212214A true JPH01212214A (en) 1989-08-25

Family

ID=12368505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3278588A Pending JPH01212214A (en) 1988-02-17 1988-02-17 Production of magnesium hydroxide

Country Status (1)

Country Link
JP (1) JPH01212214A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208810A (en) * 1992-01-30 1993-08-20 Sobue Kuree Shoji Kk Production of active magnesium hydroxide
KR100395610B1 (en) * 2000-09-29 2003-08-21 태성화학(주) Method for preparing magnesium hydroxide slurries
WO2015058236A1 (en) 2013-10-24 2015-04-30 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
US20150368154A1 (en) * 2013-02-19 2015-12-24 S.A. Lhoist Recherche Et Developpement Method for the Dry Slaking of Calcium and Magnesium Oxides from Calcomagnesian Compounds
US20150376059A1 (en) * 2013-02-19 2015-12-31 S.A. Lhoist Recherche Et Developpement Method for the Wet Slaking of Calcium and Magnesium Oxides from Calcomagnesian Compounds

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208810A (en) * 1992-01-30 1993-08-20 Sobue Kuree Shoji Kk Production of active magnesium hydroxide
KR100395610B1 (en) * 2000-09-29 2003-08-21 태성화학(주) Method for preparing magnesium hydroxide slurries
US20150368154A1 (en) * 2013-02-19 2015-12-24 S.A. Lhoist Recherche Et Developpement Method for the Dry Slaking of Calcium and Magnesium Oxides from Calcomagnesian Compounds
US20150376059A1 (en) * 2013-02-19 2015-12-31 S.A. Lhoist Recherche Et Developpement Method for the Wet Slaking of Calcium and Magnesium Oxides from Calcomagnesian Compounds
US9725361B2 (en) * 2013-02-19 2017-08-08 S. A. Lhoist Recherche et Developpment Method for the wet slaking of calcium and magnesium oxides from calcomagnesian compounds
US9725360B2 (en) * 2013-02-19 2017-08-08 S.A. Lhoist Recherche Et Developpement Method for the dry slaking of calcium and magnesium oxides from calcomagnesian compounds
EP2958856B1 (en) 2013-02-19 2019-08-28 S.A. Lhoist Recherche Et Developpement Method for the dry slaking of calcium oxides and magnesium from calcomagnesian compounds
WO2015058236A1 (en) 2013-10-24 2015-04-30 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
US10358364B2 (en) 2013-10-24 2019-07-23 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
US10800683B2 (en) 2013-10-24 2020-10-13 Calix Ltd Process for manufacture of hydroxide slurry
US11401183B2 (en) 2013-10-24 2022-08-02 Calix Ltd Process for manufacture of hydroxide slurry

Similar Documents

Publication Publication Date Title
Cook et al. Zeolite A hydrolysis and degradation
EP0069961A1 (en) Slaked lime, process for its production, and its use
JP4845188B2 (en) Waste water treatment agent and method for reducing fluorine ions in waste water
JPH01212214A (en) Production of magnesium hydroxide
JPH07144915A (en) Production of cerium carbonate and cerium oxide
JP4330182B2 (en) Synthesis method of carbonated hydrocalumite
US2523892A (en) Extraction process for cerium
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP2007137716A (en) Method for manufacturing zeolite
ES442448A1 (en) Synthetic amorphous sodium aluminosilicate base exchange materials
RU2739197C1 (en) Method of removing cations of heavy metals from aqueous phase
CZ137296A3 (en) Process for preparing a solution of cesium and rubidium salts
CN103638745A (en) Method for improving filtering property of alkaline coal ash slurry
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
RU2632437C1 (en) Method of producng aluminium oxide
JP3957660B2 (en) Method for synthesizing reactive oxygen species inclusion materials
EP1314696A1 (en) Method for preparing aluminum sulfate, aluminum sulfate and waste water treatment using the obtained aluminum sulfate
JP3970208B2 (en) Method for synthesizing reactive oxygen species inclusion materials
JP4343467B2 (en) Method for producing aluminum sulfate
JP3505730B2 (en) Amorphous aluminosilicate and its use
JP4696017B2 (en) Treatment method for boron-containing wastewater
RU2814124C1 (en) Method for processing sodium-fluorine-carbon-containing waste from electrolytic aluminium production
US2013334A (en) Method of producing magnesium chloride from calcium chloride
JP2001162287A (en) Method for treating boron-containing water and treatment agent
Sizyakov et al. Physical and chemical transformations of calcium in aluminate solutions from alumina production