JPH01211937A - Evaluation of strength of damage to wafer with distortion - Google Patents

Evaluation of strength of damage to wafer with distortion

Info

Publication number
JPH01211937A
JPH01211937A JP3629388A JP3629388A JPH01211937A JP H01211937 A JPH01211937 A JP H01211937A JP 3629388 A JP3629388 A JP 3629388A JP 3629388 A JP3629388 A JP 3629388A JP H01211937 A JPH01211937 A JP H01211937A
Authority
JP
Japan
Prior art keywords
wafer
damage
mirror
damage intensity
mirror surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3629388A
Other languages
Japanese (ja)
Inventor
Etsuro Morita
悦郎 森田
Mari Sakurai
桜井 真理
Yasushi Shimanuki
島貫 康
Hideo Seki
英男 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Japan Silicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp, Japan Silicon Co Ltd filed Critical Mitsubishi Metal Corp
Priority to JP3629388A priority Critical patent/JPH01211937A/en
Publication of JPH01211937A publication Critical patent/JPH01211937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to conduct measurement and evaluation of the strength of damage inflicted on an arbitrary place in a noncontact state and by a simple operation by a method wherein a mirror wafer, which is used as a matter to be evaluated, is put in a process for inflicting damage to a mirror surface and after the damage is inflicted to the mirror surface, an optical technique is applied to this mirror surface. CONSTITUTION:A wafer mirror finished by polishing is manufactured (a wafer polishing process 1). Then, a sandblasting is performed on the mirror surface of the wafer (a sandblasting process 2). Moreover, after the wafer performed the sandblasting is rinsed (a rinsing process 3), an elliprometry is performed using elliprometery (a measuring process 4). Thereby, the strength of damage inflicted on an arbitrary place can be measured and evaluated in a noncontact state, a nondestructive state and moreover, by a simple operation without applying any treatment at all to the mirror wafer which is used as a matter to be evaluated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シリコンウェーハ等の半導体ウェーハの裏面
に施される歪付けの大ぎさ(以下、ダメージ強度という
)の評価方法に関するものであり、この歪付けの方法と
しては、研磨の有無等の表面状態に依存しないサンドブ
ラスト等が対象となる。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for evaluating the degree of strain (hereinafter referred to as damage intensity) applied to the back surface of a semiconductor wafer such as a silicon wafer. As a method for applying this distortion, sandblasting or the like is applicable, which does not depend on the surface condition such as whether or not it has been polished.

〔従来の技術〕[Conventional technology]

一般に、IC,LSI等の製造工程において、シリコン
ウェーハが重金属等の不純物に汚染されると、加熱工程
においてウェーハの表面に微小欠陥が発生する。そして
、この微小欠陥は、バイポーラ型半導体素子にあっては
耐圧不良を引き起こし、また、MO8型半導体素子にあ
っては保持時間の低下をもたらす。このため、従来にお
いては、サンドブラスト、ポリシリコン薄膜成長、レー
ザー照射などにより、ウェーハの裏面に歪付けを施し、
この歪付は部分に汚染物質を取り込み、半導体素子を作
製するのに必要なウェーハの表面側が汚染されることを
防いでいる。
Generally, when a silicon wafer is contaminated with impurities such as heavy metals during the manufacturing process of ICs, LSIs, etc., micro defects are generated on the surface of the wafer during the heating process. This microdefect causes a breakdown voltage failure in a bipolar semiconductor element, and also causes a reduction in retention time in an MO8 type semiconductor element. For this reason, in the past, the backside of the wafer was strained by sandblasting, polysilicon thin film growth, laser irradiation, etc.
This distortion prevents contaminants from being introduced into the part and contaminating the front side of the wafer, which is necessary for manufacturing semiconductor devices.

ところで、微小欠陥の低減効果は、ダメージ強度の大き
さにしたがって増大するが、その一方、ダメージ強度が
過大になると、ウェーハを熱処理した場合にウェーハに
スリップ転位が発生することがある。そして、−旦スリ
ップ転位が発生すると、そのウェーハは使用できなくな
り、ウェーハの歩留り低下を招来する。そこで、ウェー
ハの裏面に歪付けを施す場合には、ダメージ強度を測定
Incidentally, the effect of reducing microdefects increases as the damage intensity increases, but on the other hand, if the damage intensity becomes excessive, slip dislocations may occur in the wafer when the wafer is heat treated. Once a slip dislocation occurs, the wafer becomes unusable, leading to a decrease in wafer yield. Therefore, when applying distortion to the backside of a wafer, we measure the damage intensity.

評価するようにしている。I'm trying to evaluate it.

しかしながら、上記ダメージ強度の測定、評価方法とし
て、従来、簡便な方法がないのが実情である。すなわち
、従来のダメージ強度の測定方法としては、■ウェーハ
を1100℃程度に加熱して熱酸化させた侵に、化学的
な選択エツチングを行ない、OS F (0xidat
ion 1nduced StackingFault
s酸化後表面下に発生する積層欠陥)の面密度の測定値
からダメージ強度を測定するO8F密度測定法、■X線
のロッキングカーブの半値幅からダメージ強度を測定す
るX線測定法、■特開昭61−290347号公報に記
載されたウェーハの表裏両面のライフタイムの比からダ
メージ強度を測定するライフタイム測定法等が知られて
いる。なお、上記各測定法にあっては、歪付けを施した
製品用のウェーハを直接用いるのではなく、通常、ダミ
ーとして投入したウェーハを測定に用いている。
However, the reality is that there is currently no simple method for measuring and evaluating the damage intensity. That is, the conventional method for measuring damage intensity is: (1) heating the wafer to about 1100°C to thermally oxidize it, followed by chemical selective etching, and
ion 1induced Stacking Fault
■O8F density measurement method that measures damage intensity from the measured value of areal density of stacking faults (which occur under the surface after oxidation), ■X-ray measurement method that measures damage intensity from the half width of the X-ray rocking curve, A lifetime measurement method for measuring damage intensity from the ratio of lifetimes of both the front and back surfaces of a wafer is known, as described in Japanese Patent Publication No. 61-290347. Note that in each of the above measurement methods, a wafer for use as a product that has been subjected to distortion is not directly used, but a wafer introduced as a dummy is usually used for measurement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の測定法にはそれぞれ次のよう
な問題がある。すなわち、上記■及び■の測定法にあっ
ては、熱処理を行なわなければならないため、歪付けを
施した直後のダメージ強度の測定、評価ができないとい
う問題がある。また、上記■のX線測定法にあっては、
測定のための装置及び放射線漏洩防止用の設備が大がか
りになり、装置全体の費用が嵩む。しかも、低レベルの
ダメージ強度の測定が困難な上に、ウェーハ内のダメー
ジ強度の分布を測定する場合は膨大な時間がかかるとい
う問題がある。さらに、第4図に示すように、ダメージ
強度と半値幅の相関は良いとは言えない。
However, each of the conventional measurement methods described above has the following problems. That is, in the measurement methods (1) and (2) above, there is a problem in that the damage intensity cannot be measured or evaluated immediately after straining because heat treatment must be performed. In addition, in the X-ray measurement method described in ■ above,
The equipment for measurement and the equipment for preventing radiation leakage become large-scale, which increases the cost of the entire equipment. Moreover, it is difficult to measure low-level damage intensity, and it takes an enormous amount of time to measure the damage intensity distribution within a wafer. Furthermore, as shown in FIG. 4, the correlation between damage intensity and half width cannot be said to be good.

そこで、本発明者等が、上記課題を解決するために鋭意
研究を行なった結果、偏光解析の光学的手法で得られた
測定値とダメージ強度との間に所定の相関関係が有るこ
とが判明した。
Therefore, the present inventors conducted intensive research to solve the above problem, and as a result, it was found that there is a certain correlation between the measured values obtained by the optical method of polarization analysis and the damage intensity. did.

本発明は、上記知見に鑑みてなされたもので、その目的
とするところは、安価な上に非接触かつ簡単な操作で任
意の場所のダメージ強度の測定。
The present invention has been made in view of the above findings, and its purpose is to measure damage intensity at any location at an inexpensive, non-contact and simple operation.

評価を行なうことができ、しかも測定対象を破壊するこ
となく、かつ短時間に評価をくだすことができる歪付け
ウェーハのダメージ強度の評価方法を提供することにあ
る。
It is an object of the present invention to provide a method for evaluating the damage intensity of a strained wafer, which allows evaluation to be performed in a short time without destroying the object to be measured.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するた、めに、本発明は、裏面ダメージ
を与える工程に被評価体として鏡面ウェーハを投入し、
鏡面にダメージを与えた後に、この鏡面のダメージ強度
を光学的手法により評価するものである。
In order to achieve the above object, the present invention introduces a mirrored wafer as an object to be evaluated in the process of damaging the backside,
After damaging a mirror surface, the damage intensity of this mirror surface is evaluated using an optical method.

上記裏面ダメージを与えるものとしては、サンドブラス
トを用いるのが好ましい。また、上記鏡面ウェーハとし
ては研磨ウェーハもしくは両面研磨ウェーハを用い、さ
らに光学的手法としては偏光解析を用いるのが望ましい
It is preferable to use sandblasting to give the back surface damage. Further, it is preferable to use a polished wafer or a double-sided polished wafer as the mirror-finished wafer, and to use polarization analysis as the optical method.

〔作用〕[Effect]

本発明の歪付けウェーハのダメージ強度の評価方法にあ
っては、鏡面ウェーハのダメージが与えられた鏡面に光
を照射する光学的手法を用いることにより、上記鏡面ウ
ェーハに対して非接触、非破壊でダメージ強度を測定す
る。
In the method for evaluating the damage intensity of a strained wafer according to the present invention, by using an optical method of irradiating light onto the damaged mirror surface of the mirror wafer, the method is applied to the mirror wafer in a non-contact and non-destructive manner. to measure the damage intensity.

〔実施例〕 以下、第1図ないし第3図に基づいて本発明の実施例に
ついて説明する。
[Example] Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.

第1図は本発明の一実施例の工程図を示すものである。FIG. 1 shows a process diagram of an embodiment of the present invention.

この図に示すように、まず、研磨(ポリッシング)によ
り鏡面仕上げされたウェーハを製作した(工程1)。次
いで、上記ウェーハの鏡面にサンドブラストを施した(
工程2)。この場合、ウェーハの鏡面に与えられたダメ
ージ強度は、粒子の速度を一定にし、かつウェーハにあ
たる数だけでコントロールした。さらに、上記リーンド
ブラストを施したウェーハを水洗した(工程3)後、偏
光解析装置(エリプソメーター)を用いて、偏光解析(
エリプソメトリ−)を行ない、甲及びΔを求めた(工程
4)。この偏光解析装置は、光源と偏光子と補償板とを
この順に取付けてなるコリメータアームと、検光子と光
検出器とを取付【プでなるテレスコープアームとが、光
軸を含む平面内で、しかも光軸の交点を中心に回転でき
るように構成されたものである。そして、既知の偏光状
態の光を、上記鏡面ウェーハのダメージを与えられた鏡
面に入射させて、その反射光の偏光状態を測定すること
により、P成分(反射光の電気ベクトルのうち光の入射
面方向の成分)とS成分(光の入射面に垂直方向の成分
)の振幅反射率の絶対値の比はtaIIvとして、かつ
反射によって生じた偏光間の位相差はΔとして求まる。
As shown in this figure, first, a mirror-finished wafer was manufactured by polishing (step 1). Next, the mirror surface of the wafer was sandblasted (
Step 2). In this case, the damage intensity applied to the mirror surface of the wafer was controlled by keeping the particle velocity constant and controlling only the number of particles hitting the wafer. Furthermore, after washing the wafer subjected to the above lead blasting with water (step 3), polarization analysis (
Ellipsometry) was performed to determine A and Δ (Step 4). This polarization analyzer consists of a collimator arm, which has a light source, a polarizer, and a compensator attached in this order, and a telescope arm, which has an analyzer and a photodetector attached, within a plane that includes the optical axis. , and is configured to be able to rotate around the intersection of the optical axes. Then, by making light with a known polarization state incident on the damaged mirror surface of the mirror wafer and measuring the polarization state of the reflected light, the The ratio of the absolute values of the amplitude reflectances of the S component (component in the plane direction) and the S component (component in the direction perpendicular to the light incident plane) is determined as taIIv, and the phase difference between the polarized lights caused by reflection is determined as Δ.

このようにして得られた甲、Δのうち、甲とダメージ強
度との関係を第2図に示した。この図からも明らかなよ
うに、ダメージ強度と里とは良好な相関関係を有してお
り、低いダメージから高いダメージになるにつれて里の
値は直線的に増加していることから、ウェーハの研磨面
(鏡面)にダメージを与え、偏光解析を行なえばダメー
ジ強度の測定ができることがわかる。
Among the insteps and Δ thus obtained, the relationship between the insteps and the damage intensity is shown in FIG. As is clear from this figure, there is a good correlation between damage intensity and RI, and the value of RI increases linearly as damage increases from low damage to high damage. It can be seen that damage intensity can be measured by damaging a surface (mirror surface) and performing polarization analysis.

このようにして、ウェーハに与えられたダメージ強度を
非接触、非破壊でかつ短時間に測定できるから、従来の
ダメージ強度の測定法ではダメージを与える工程内での
評価は不可能であったのに対して、本実施例にあっては
、インラインの測定。
In this way, the damage intensity inflicted on the wafer can be measured non-contact, non-destructively, and in a short time, making it impossible to evaluate damage intensity during the damage-inflicting process using conventional damage intensity measurement methods. On the other hand, in this example, in-line measurement is performed.

評価が可能となった。evaluation is now possible.

また、研磨したウェーハを被評価体として用いる点につ
いては、従来、通常、ダメージ強度を評価するウェーハ
は製品とは異なるダミーウェーハを用いていることから
、研磨ウェーハをダミーとして用いても、これまでの評
価法に比べて、何ら問題はなく、しかも、鏡面ウェーハ
をダミーウェーハとして用いると、識別が容易になると
いった利点も有する。
Regarding the use of polished wafers as evaluation objects, conventionally the wafers used to evaluate damage strength are usually dummy wafers that are different from the products. There is no problem with this evaluation method compared to the evaluation method described above, and furthermore, using a mirror-finished wafer as a dummy wafer has the advantage that identification becomes easier.

なお、上記実施例においては、偏光解析で得られた里と
ダメージ強度との間の相関関係について説明したが、Δ
とダメージ強度との間においても相関関係があるから、
この関係を用いてダメージ強度の評価を行なってもよい
In addition, in the above example, the correlation between the village and damage intensity obtained by polarization analysis was explained, but Δ
There is also a correlation between
Damage intensity may be evaluated using this relationship.

さらに、第3図は両面研磨ウェーハに適用した場合の工
程図を示寸ものである。この図においては、まず両面研
磨を行なってウェーハの両面を鏡面仕上げした後に(工
程10)、このウェーハの一方の鏡面(裏面)にサンド
ブラストを施しく工程11)、水洗して(工程12)、
偏光回折によりダメージ強度の測定を行なう(工程13
)。次いで、この測定結果に基づいて、ウェーハのダメ
ージ強度の判定を行ない(工程14)、ダメージ強度が
不足している場合には、再度、サンドブラストを施すと
共に、ダメージ強度が過多であった場合には、不良とし
て排出する。また、ダメージ強度が設定範囲内におさま
っていれば、良品と判定し、上記ウェーハの他方の鏡面
(表面)を仕上研磨した後に(工程15)、最終洗浄を
行ない(工程16)、製品として搬出する。
Furthermore, FIG. 3 shows a process diagram when applied to a double-sided polished wafer. In this figure, first, both sides of the wafer are polished to a mirror finish (step 10), one mirror surface (back side) of the wafer is sandblasted (step 11), and washed with water (step 12).
Damage intensity is measured by polarized diffraction (Step 13)
). Next, the damage intensity of the wafer is determined based on the measurement results (step 14). If the damage intensity is insufficient, sandblasting is performed again, and if the damage intensity is excessive, sandblasting is performed. , discharged as defective. If the damage intensity is within the set range, it is determined to be a good product, and the other mirror surface (surface) of the wafer is finished polished (step 15), and final cleaning is performed (step 16), and the product is shipped. do.

このように、両面研磨ウェーハをダメージ強度の測定に
適用する場合には、製品として仕上げるウェーハをその
まま使用してダメージ強度を測定、評価することが可能
であるから、ウェーハ全数について計測することも可能
になった。
In this way, when double-sided polished wafers are used to measure damage intensity, it is possible to measure and evaluate damage intensity using the wafers that will be finished as products, so it is also possible to measure the damage intensity for all wafers. Became.

なお、上記実施例においては、測定対象となるウェーハ
として研磨ウェーハを用いて説明したが、エツチングに
よって鏡面を出しだウェーハを用いてダメージ強度を測
定することも可能である。
In the above embodiment, a polished wafer was used as the wafer to be measured, but it is also possible to measure the damage intensity using a wafer whose mirror surface has been exposed by etching.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、裏面ダメージを与える
工程に被評価体として鏡面ウェーハを投入し、鏡面にダ
メージを与えた後に、この鏡面のダメージ強度を光学的
手法により評価するものであるから、何ら被評価体とし
ての鋳面つ■−ハに処理を加えることなく、ダメージ強
度の評価が可能である。しかも、偏光解析装置等の光学
的装置は、安価で非接触、非破壊かつ簡単な操作で任意
の場所のダメージ強度が測定できる。また、サンドブラ
スト等のウェーハにダメージを与える■程において、容
易に本発明の方法ににる評価装置を組み込むことができ
るから、工程へのフィードバックが容易となり、工程管
理が行ない易い。
As explained above, in the present invention, a mirror wafer is introduced as an object to be evaluated in the process of applying damage to the back surface, and after damage is caused to the mirror surface, the damage intensity of this mirror surface is evaluated by an optical method. It is possible to evaluate the damage strength without applying any treatment to the cast surface as the object to be evaluated. Moreover, optical devices such as polarization analyzers are inexpensive, non-contact, non-destructive, and can measure damage intensity at any location with simple operation. In addition, since the evaluation device according to the method of the present invention can be easily incorporated into the step (2) of sandblasting, etc., which damages the wafer, feedback to the process is easy and process control is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程図、第2図はダメ
ージ強度と里との関係を示す特性図、第3図は本発明の
他の実施例を示す工程図、第4図はX線測定法による半
値幅とダメージ強度との関係を示す特性図である。
Fig. 1 is a process diagram showing one embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between damage intensity and village, Fig. 3 is a process diagram showing another embodiment of the present invention, and Fig. 4 is a characteristic diagram showing the relationship between half width and damage intensity measured by X-ray measurement.

Claims (5)

【特許請求の範囲】[Claims] (1)裏面ダメージを与える工程に被評価体として鏡面
ウェーハを投入し、鏡面にダメージを与えた後に、この
鏡面のダメージ強度を光学的手法により評価することを
特徴とする歪付けウェーハのダメージ強度の評価方法。
(1) Damage intensity of a strained wafer, which is characterized in that a mirror wafer is introduced as an object to be evaluated in the process of applying damage to the back surface, and after damage is caused to the mirror surface, the damage intensity of this mirror surface is evaluated by an optical method. evaluation method.
(2)鏡面ウェーハの鏡面にサンドブラストによってダ
メージを与えることを特徴とする請求項1記載の歪付け
ウェーハのダメージ強度の評価方法。
(2) The method for evaluating damage intensity of a strained wafer according to claim 1, characterized in that the mirror surface of the mirror wafer is damaged by sandblasting.
(3)鏡面ウェーハとして研磨ウェーハを用いることを
特徴とする請求項1記載の歪付けウェーハのダメージ強
度の評価方法。
(3) The method for evaluating damage intensity of a strained wafer according to claim 1, characterized in that a polished wafer is used as the mirror-finished wafer.
(4)鏡面ウェーハとして両面研磨ウェーハを用いるこ
とを特徴とする請求項1記載の歪付けウェーハのダメー
ジ強度の評価方法。
(4) The method for evaluating damage intensity of a strained wafer according to claim 1, characterized in that a double-sided polished wafer is used as the mirror-finished wafer.
(5)光学的手法として偏光解析を用いることを特徴と
する請求項1記載の歪付けウェーハのダメージ強度の評
価方法。
(5) The method for evaluating damage intensity of a strained wafer according to claim 1, characterized in that polarization analysis is used as the optical method.
JP3629388A 1988-02-18 1988-02-18 Evaluation of strength of damage to wafer with distortion Pending JPH01211937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3629388A JPH01211937A (en) 1988-02-18 1988-02-18 Evaluation of strength of damage to wafer with distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3629388A JPH01211937A (en) 1988-02-18 1988-02-18 Evaluation of strength of damage to wafer with distortion

Publications (1)

Publication Number Publication Date
JPH01211937A true JPH01211937A (en) 1989-08-25

Family

ID=12465761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3629388A Pending JPH01211937A (en) 1988-02-18 1988-02-18 Evaluation of strength of damage to wafer with distortion

Country Status (1)

Country Link
JP (1) JPH01211937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835220A (en) * 1995-10-27 1998-11-10 Nkk Corporation Method and apparatus for detecting surface flaws

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150248A (en) * 1979-05-10 1980-11-22 Nec Corp Method of evaluating strain of semiconductor wafer
JPS5890148A (en) * 1981-11-25 1983-05-28 Nec Corp Measuring method of refractive index and thickness of transparent thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150248A (en) * 1979-05-10 1980-11-22 Nec Corp Method of evaluating strain of semiconductor wafer
JPS5890148A (en) * 1981-11-25 1983-05-28 Nec Corp Measuring method of refractive index and thickness of transparent thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835220A (en) * 1995-10-27 1998-11-10 Nkk Corporation Method and apparatus for detecting surface flaws

Similar Documents

Publication Publication Date Title
US7068370B2 (en) Optical inspection equipment for semiconductor wafers with precleaning
JPH0779119B2 (en) Workpiece inspection method
JPH0851090A (en) Method of grinding patterned layer on semiconductor substrate
KR102385259B1 (en) Silicon Wafer Evaluation Method
TWI745781B (en) Evaluation method and manufacturing method for semiconductor wafer, and manufacturing process management method for semiconductor wafer
JPH01211937A (en) Evaluation of strength of damage to wafer with distortion
US5287167A (en) Method for measuring interstitial oxygen concentration
Rigatti Cleaning process versus laser damage threshold of coated optical components
JP2508530B2 (en) Evaluation method of gettering ability of warped wafer
JPH085569A (en) Particle measuring apparatus and particle inspection method
KR20070065732A (en) Method for evaluation of damage distribution on whole wafer
WO2024029159A1 (en) Semiconductor wafer evaluation method and semiconductor wafer production method
JP2985583B2 (en) Inspection method of damaged layer on mirror-finished surface of silicon wafer and thickness measurement method
Dennis et al. Detection of a new surface killer defect on starting Si material using Nomarski principle of differential interference contrast
JPH0493837A (en) Foreign matter detector and manufacture of semiconductor device
JPH03238348A (en) Method and device for measuring fine defect of material in non-destuctive manner
JPH01251629A (en) Estimation method of particle
JPS60122360A (en) Optical inspecting device
Takahashi et al. Optical measurement of COP defects on silicon wafer surface by laser scattered defect pattern
JPH04109648A (en) Manufacture of silicon wafer
Yarling et al. Investigation of rapid thermal process-induced defects in ion-implanted Czochralski silicon
JPH0545335A (en) Magnetic particle inspecting method using magnetization by pulse current
JP2001118894A (en) Method for inspecting semiconductor wafer
JPS6239705A (en) Apparatus for inspecting front and back surfaces of wafer
Tröger et al. Automated tool for measuring nanotopography of 300 mm wafers at early stages of wafer production