JPH01211636A - Air-fuel ratio control device for multicylinder internal combustion engine - Google Patents
Air-fuel ratio control device for multicylinder internal combustion engineInfo
- Publication number
- JPH01211636A JPH01211636A JP3642588A JP3642588A JPH01211636A JP H01211636 A JPH01211636 A JP H01211636A JP 3642588 A JP3642588 A JP 3642588A JP 3642588 A JP3642588 A JP 3642588A JP H01211636 A JPH01211636 A JP H01211636A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- air
- fuel ratio
- fuel injection
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 119
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 18
- 238000002347 injection Methods 0.000 claims abstract description 53
- 239000007924 injection Substances 0.000 claims abstract description 53
- 238000012937 correction Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 101001126806 Homo sapiens Phosphorylated adapter RNA export protein Proteins 0.000 description 4
- 102100030276 Phosphorylated adapter RNA export protein Human genes 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101150051715 Phax gene Proteins 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000012976 tarts Nutrition 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野〕
本発明は、気筒毎の筒内圧最大値を利用した多気筒内燃
taIIQの空燃比制till装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-fuel ratio control till device for a multi-cylinder internal combustion TAIIQ that utilizes the maximum value of in-cylinder pressure for each cylinder.
[従来の技術と発明が解決しようとする課題]従来から
、電子シリ御式燃料噴射装置(EGI)を装備するエン
ジンには、各逐vi領域での空燃比を最適な状態に維持
すべく、まず、各運転領域の基本燃料噴射3を求め、次
いで、このu木燃斜噴tAfillを、エンジンの運転
状態のパラメータに応じた各種補正項にて補正量るとと
もに、フィードバック制御により、実際の燃料噴射量を
求める交燃比制@装置が設けられている。[Prior art and problems to be solved by the invention] Conventionally, engines equipped with an electronically controlled fuel injection system (EGI) have been equipped with a system that maintains the air-fuel ratio in an optimum state in each continuous-vi range. First, the basic fuel injection 3 for each operating region is determined, and then this u wood fuel oblique injection tAfill is corrected using various correction terms depending on the parameters of the engine operating state, and feedback control is used to calculate the actual fuel injection value. An exchange/fuel ratio controller is provided to determine the injection amount.
上記基本燃料噴射ff1Tpは、吸入空気IQと、エン
ジン回転数Nとの関数で求められる。すなわlう 、
Tp =に−Q/N K :係数である。The basic fuel injection ff1Tp is determined as a function of the intake air IQ and the engine speed N. That is, Tp = -Q/NK: coefficient.
また、実際の燃料噴射ff1Tiは、
Ti=Tp−に^7F−KFB
KA/F:エンジン回転数、冷却水温、フロ゛ツ]〜ル
開度などに基づい
て設定される空燃比補正係数
KFB :排気ガス中のFiI素’fA度から求めた
空燃比フィードバック補
正量
で求められる。In addition, the actual fuel injection ff1Ti is determined by Ti=Tp-^7F-KFB KA/F: Air-fuel ratio correction coefficient KFB set based on engine speed, cooling water temperature, flow valve opening, etc. It is determined by the air-fuel ratio feedback correction amount determined from the FiI element 'fA degrees in the exhaust gas.
なお、上記吸入空気ff1Qは、エアクリーナ直下流側
に配設されたエアフロメータ、あるいは、スロットルバ
ルブ下流側のlアチャンバに設けられた吸入負圧センサ
などの吸入空気Rセンサで検出される。また、上記空燃
比フィードバック補正mKFBは、排気通路中に臨まさ
れた排気センサで検出される。The intake air ff1Q is detected by an air flow meter disposed immediately downstream of the air cleaner or an intake air R sensor such as an intake negative pressure sensor disposed in a chamber downstream of the throttle valve. Further, the air-fuel ratio feedback correction mKFB is detected by an exhaust sensor located in the exhaust passage.
ところで、一般に多気筒内燃機関においては、(1)吸
入管形状の複雑化、あるいは、吸入される空気の気筒間
の干渉などにより各気筒に吸入される空気量が相違Jる
。By the way, in general, in a multi-cylinder internal combustion engine, the amount of air taken into each cylinder differs due to (1) the complexity of the shape of the intake pipe or interference between the cylinders of the air taken in;
(2)各気筒の冷却順路などの影響で燃焼温度が各気筒
ごとに若干相違する。(2) The combustion temperature differs slightly from cylinder to cylinder due to the cooling route of each cylinder.
(3)各気筒の燃焼室容積、ピストン形状などに生産上
のバラツキが生じる。(3) Production variations occur in the combustion chamber volume, piston shape, etc. of each cylinder.
(4)インジェクタの#?1度誤差などによる燃料噴射
量の違いから空燃比が各気筒ごとに僅かながら相違する
。(4) Injector #? The air-fuel ratio differs slightly for each cylinder due to a difference in fuel injection amount due to a one-degree error or the like.
以上のごとき問題を有してはいるが、従来の理論空燃比
における燃焼制御では運転性能に大きな影響を及ぼすも
のではなかった。Although the above-mentioned problems exist, conventional combustion control at the stoichiometric air-fuel ratio does not have a large effect on operating performance.
しかし、最近の高出力、低燃費化の傾向にある高性能エ
ンジンでは、従来のような各気筒毎の僅かな空燃比のバ
ラツキでも、各気筒毎の出力変動に大きな影響を及ぼし
、エネルギーロスを生む。However, in high-performance engines, where there is a recent trend toward higher output and lower fuel consumption, even slight variations in the air-fuel ratio of each cylinder, as in the past, have a large impact on the output fluctuations of each cylinder, resulting in energy loss. give birth to
その結果、エンジンのトータル出力が低下するばかりで
なく、出力が不安定になり、振動を助長したり、空燃比
の制御性が悪くなる′などの問題が生じる。As a result, not only the total output of the engine decreases, but also problems such as output becoming unstable, vibrations being promoted, and air-fuel ratio controllability becoming worse occur.
また、各構成部品のバラツキによる出力のバラツキを解
消するものとして、例えば特開昭60−13943号公
報などに開示されているような、筒内圧センサを用い燃
焼室内の圧力を検出し、その燃焼圧ノコによって燃料噴
躬足を制御するものがある。しかしながら、上記公報は
スロットルバルブ全開時など過渡時のフィードバック制
御の行なわれない運転領域においては、燃焼室内の燃焼
圧力(図示平均有効圧力)を利用して閉ループ制御を形
成し、燃料噴射ら1を制御して出力のバラツキを解消し
ようとするものであり、フィードバック制御の行われる
領域での空燃比の気筒間バラツキを解消するまでには至
っておらず、排気エミッシヨンの悪化を招く問題がある
。Additionally, in order to eliminate variations in output due to variations in each component, a cylinder pressure sensor is used to detect the pressure inside the combustion chamber, as disclosed in Japanese Patent Laid-Open No. 60-13943, etc., and the combustion Some control the fuel injection foot using a pressure saw. However, the above-mentioned publication uses the combustion pressure (indicated mean effective pressure) in the combustion chamber to form closed-loop control in operating regions where transient feedback control is not performed, such as when the throttle valve is fully open, and controls fuel injection and other control. This method attempts to eliminate variations in output through control, but it has not yet gone so far as to eliminate variations in air-fuel ratio between cylinders in the region where feedback control is performed, leading to the problem of worsening exhaust emissions.
[発明の目的]
本発明は上記事情に鑑みてなされたもので、エンジンの
トータル出力の向上、J3よび、安定した出力特性が1
!?られるばかりでなく、低燃費化が実現でさるととも
に、丁ミッションの低減が達せられる多気筒内燃機関の
空燃比制御装置を提供することを目的としている。[Object of the Invention] The present invention has been made in view of the above circumstances, and aims to improve the total output of the engine, improve J3, and achieve stable output characteristics.
! ? It is an object of the present invention to provide an air-fuel ratio control device for a multi-cylinder internal combustion engine that not only achieves high fuel efficiency but also achieves low fuel consumption and a reduction in transmission.
[課題を解決するための手段及び作用〕本発明による多
気筒内燃機関の空燃比制御装置は吸入空気量センサから
の出カイ3号と回転数センナからの出力信号とに基づい
て基本燃わ1鳴躬吊を演亦する基本燃料噴0J足演算部
と、特定の基準気筒の排気通路に臨まされた排気センサ
からの出力信号に基づいて、基準気筒のフィードバック
補正量を演0するフィードバック補正倶演終部と、上記
基本燃料噴射a演算部からの出ノ〕信号と上記フィード
バック補正昂演算部からの出力信号とから基準気筒への
燃料噴口」蚤をi’pl出す球準燃料噴躬呈演算部と、
各気筒に配設された筒内圧センサの出ツク信qを取込ん
で気筒毎の筒内圧の最大値を弾出する気箇別筒内圧最大
値亦出部と、上記基準気筒の筒内圧最大値と気筒毎の筒
内圧最大値とを比較演算づる筒内圧比較演亦部と、上記
筒内圧センサΩ部からの出力信号を取込んで各気筒の筒
内圧最大値が上記71準気筒の筒内圧最大値となる燃r
1噴銅損を気筒毎に演篩する気筒別燃It噴射補正部と
を右りるしのであり、各局内圧センサからの出力信号を
基に各気筒の空燃比を制御し、空燃比の気115間バラ
ツキを解消する。[Means and operations for solving the problems] The air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention calculates the basic fuel ratio based on the output signal No. 3 from the intake air amount sensor and the output signal from the rotation speed sensor. A basic fuel injection 0J foot calculation unit that calculates noise suspension, and a feedback correction unit that calculates the feedback correction amount of the reference cylinder based on the output signal from the exhaust sensor facing the exhaust passage of a specific reference cylinder. A spherical semi-fuel injection system that sends out a fuel nozzle i'pl from the fuel injection port to the reference cylinder based on the output signal from the basic fuel injection a calculation section and the output signal from the feedback correction calculation section. an arithmetic unit;
A cylinder-specific maximum cylinder pressure value output unit that receives the output signal q from the cylinder pressure sensor installed in each cylinder and calculates the maximum value of the cylinder pressure for each cylinder, and An in-cylinder pressure comparator section that compares and calculates the maximum in-cylinder pressure value for each cylinder, and an output signal from the in-cylinder pressure sensor Ω section, calculates the maximum in-cylinder pressure value for each cylinder by calculating the maximum in-cylinder pressure value for each cylinder. Fuel r at which the internal pressure reaches the maximum value
The cylinder-specific fuel injection correction unit calculates the copper loss per cylinder for each cylinder, and controls the air-fuel ratio of each cylinder based on the output signal from the internal pressure sensor of each station, 115 to eliminate variations.
[発明の実施例]
以下、図面を参照して本発明の詳細な説明づる。図面は
本発明の−・実施例を示し、第1図はエンジンの要部概
略図、第2図はエンジンの概略平面図、第3図は第2図
の■−■断面図、第4図は第3図のIV −rV断面図
、第5図は空燃比制御手段のブロック図、第6図は空燃
比制御手段の構成図、第7図はW、軸に筒内圧最大値(
p HAX)、横軸に空燃比(A/F)を示づ相関図、
第8図は空燃比制御手段の動作手順を示づフローチャー
トである。[Embodiments of the Invention] The present invention will be described in detail below with reference to the drawings. The drawings show embodiments of the present invention; FIG. 1 is a schematic diagram of the main parts of the engine, FIG. 2 is a schematic plan view of the engine, FIG. 3 is a sectional view taken along the line ■-■ of FIG. 2, and FIG. is an IV-rV sectional view of FIG. 3, FIG. 5 is a block diagram of the air-fuel ratio control means, FIG. 6 is a block diagram of the air-fuel ratio control means, and FIG.
p HAX), a correlation diagram showing the air-fuel ratio (A/F) on the horizontal axis,
FIG. 8 is a flowchart showing the operating procedure of the air-fuel ratio control means.
図中の符号1は、多気筒内燃機関の一例である4気筒水
平対向形のエンジン本体であり、シリンダブロック2が
クランクシャフト3を中心として両側(Ll−1,RI
−1)のバンクに二分割されている。Reference numeral 1 in the figure indicates a four-cylinder horizontally opposed engine body, which is an example of a multi-cylinder internal combustion engine.
-1) It is divided into two banks.
更にウォータジャケットには水温センサ24が臨まされ
ており、上記シリンダブロック2のLHバンクどRHバ
ンクに設置ノられた8気fF12a、 2b、2c、2
dに嵌挿された各ピストン4が上記クランクシャフト3
にコネクティングロッド(図示せず)を介して連設され
ている。また、上記各気筒2a〜2dの上記ピストン4
どシリンダヘッド5a、5bとでlTl1級された部分
に燃焼室6a。Furthermore, a water temperature sensor 24 is placed on the water jacket, and the 8 air fF sensors 12a, 2b, 2c, and 2 installed in the LH bank and RH bank of the cylinder block 2 are connected to the water temperature sensor 24.
Each piston 4 inserted into the crankshaft 3
are connected to each other via a connecting rod (not shown). Further, the pistons 4 of each of the cylinders 2a to 2d
A combustion chamber 6a is located in a portion of the cylinder heads 5a and 5b that is classified as 1Tl1.
6b、6c、6dが各々形成されている。6b, 6c, and 6d are formed respectively.
また、上記各シリンダヘッド5a、5bの上記各気筒2
a〜2dに対応する位置に、筒内圧ピン ゛す7がア
ダプタ8を介して装着固定されており、この筒内圧セン
リフの先端検知部が上記各燃焼室68〜6dに臨まされ
ている。さらに、上記各シリンダヘッド5a、5bには
、上記8気ti2a〜2dに対応して点火プラグ9が装
着されている。Further, each cylinder 2 of each cylinder head 5a, 5b
Cylinder pressure pins 7 are mounted and fixed via adapters 8 at positions corresponding to a to 2d, and the tip detection portions of these cylinder pressure sensors face each of the combustion chambers 68 to 6d. Further, each of the cylinder heads 5a, 5b is equipped with a spark plug 9 corresponding to the 8-cylinder tires 2a to 2d.
なお、この筒内圧センサ7は上記シリンダヘッド5a、
5bに直接固着されていてもよい。Note that this cylinder pressure sensor 7 is connected to the cylinder head 5a,
It may be directly fixed to 5b.
また、上記燃焼室68〜6dに各々連通ずる吸入ボート
1aに、インジェクタ10a、10b。Further, injectors 10a and 10b are provided in the suction boat 1a that communicates with the combustion chambers 68 to 6d, respectively.
10c、10dが臨まされており、さらに、この各吸入
ボート1aの上流側が吸気マニホル、ド11を介してス
ロットルバルブ13を介装するスロットルチャンバ14
に連通され、このスロットルチャンバ14の上流側が吸
気管15を介してエアクリーナ17に連通されている。10c and 10d are facing, and furthermore, the upstream side of each intake boat 1a is an intake manifold, and a throttle chamber 14 in which a throttle valve 13 is installed via an intake manifold 11.
The upstream side of the throttle chamber 14 is connected to an air cleaner 17 via an intake pipe 15.
また、上記スロワ1−ルバルブ13の下流側には、吸入
空気母セン勺の一例である吸入負圧センサ25が連設さ
れている。この吸入負圧センサ25は、上記スロットル
バルブ下流に生じる吸入負圧を測定して測定信@POを
出力し、吸入空気化が割出される。Furthermore, on the downstream side of the throttle valve 13, an intake negative pressure sensor 25, which is an example of an intake air sensor, is connected. This suction negative pressure sensor 25 measures the suction negative pressure generated downstream of the throttle valve, outputs a measurement signal @PO, and determines the intake aeration.
また、上記クランクシャフト3にはエンジン回転数Nお
よびクランク角Crθを検出する回転数センサ18が連
設されている。なお、符号19はスロットル開度θを検
出するスロットルポジションセンサである。Further, a rotation speed sensor 18 is connected to the crankshaft 3 to detect the engine rotation speed N and the crank angle Crθ. Note that reference numeral 19 is a throttle position sensor that detects the throttle opening degree θ.
一方、上記エンジン本体1の特定の気筒にはその刊気通
路12に排気センサ22が臨まされており、この気筒を
基準気筒とする。尚、符号23は触媒コンバータである
。On the other hand, an exhaust sensor 22 faces the air passage 12 of a specific cylinder of the engine main body 1, and this cylinder is defined as a reference cylinder. In addition, the code|symbol 23 is a catalytic converter.
また、符号20は空燃比制御手段であり、中央Uユニッ
トCPLJ40.リードオンメモリROM41、ランダ
ムアクセスメモリRAM42、入力ボート44、出力ボ
ート46がシステムバス43で連結されてJ3す、更に
上記入ノ〕ボート44には上記各センサからのアナログ
信号をアナログ−ディジタル変換して上記入力ボート4
4へ入力するA/D変換器45が接続されている。上記
各センサのうち、スロットルポジションセンサ19゜水
温センサ24.吸入負圧センサ25及びチ1/−ジアン
ブ48の接続された筒内圧センサ7が上記A/D変換器
45に接続され、回転数センサー18゜排気センサ22
は必要に応じて設けられる図示しない波形整形回路を通
して上記入力ポート44に接続される。また上記出ノ〕
ポート46にはインジェクタ駆動部38a、38b’、
38c、38dが接°続され、上記インジェクタ10a
〜10dが各々独立して駆動される。Further, reference numeral 20 indicates an air-fuel ratio control means, and the central U unit CPLJ40. A read-on memory ROM 41, a random access memory RAM 42, an input port 44, and an output port 46 are connected to each other by a system bus 43. Furthermore, as noted above, the boat 44 converts analog signals from each sensor into analog-to-digital converters. The above input boat 4
An A/D converter 45 is connected to the input terminal 4. Among the above-mentioned sensors, throttle position sensor 19° water temperature sensor 24. The cylinder pressure sensor 7 to which the suction negative pressure sensor 25 and the engine block 48 are connected is connected to the A/D converter 45, and the rotation speed sensor 18 and the exhaust sensor 22
is connected to the input port 44 through a waveform shaping circuit (not shown) provided as necessary. Also from above]
The port 46 includes injector drive units 38a, 38b',
38c and 38d are connected to the injector 10a.
~10d are each driven independently.
また、上記空燃比制御手段20は、基本燃料咄射倒演算
部3oと、空燃比補正係数演算部32と、フィードバッ
ク補正ω演算部33と、基準燃料噴躬吊演界部31と、
気筒別筒内圧最大値n山部34と、筒内圧比較演算部3
5と、気筒別燃料噴躬補正部36と、空燃比学習マツプ
37と、インジェクタ駆動部38a〜38dとで構成さ
れている。Further, the air-fuel ratio control means 20 includes a basic fuel injection calculation unit 3o, an air-fuel ratio correction coefficient calculation unit 32, a feedback correction ω calculation unit 33, a reference fuel injection suspension calculation unit 31,
Cylinder-specific cylinder pressure maximum value n mountain portion 34 and cylinder pressure comparison calculation section 3
5, a cylinder-by-cylinder fuel injection correction section 36, an air-fuel ratio learning map 37, and injector drive sections 38a to 38d.
上記基本燃料噴!)J硲演算部30では、吸入負圧セン
サ25からの吸入空気量を割出す出力信号POと、回転
数センサ18からのエンジン回転数を示す出力信号Nと
に基づいて、基準燃料噴射団(パルス幅)Tpが演鯨処
理される。Basic fuel injection above! ) The J 硲 calculation unit 30 calculates the reference fuel injection group ( (pulse width) Tp is processed.
また、空燃比補正係数演算部32では、上記出力信号N
と水温センサ24からの冷却水温を示す出力信号Twと
スロットルポジションセンサ19からのスロットル開度
を示す出力信号θなどがら空燃比補正係数K A/Fを
演算する。一方、フィードバック補正a演算部33では
排気センサ22からの空燃比フィードバック値を示す出
力信号Eに基づいて空燃比フィードバック補正a K
FBを演算する。Further, in the air-fuel ratio correction coefficient calculating section 32, the above-mentioned output signal N
The air-fuel ratio correction coefficient K A/F is calculated from the output signal Tw indicating the cooling water temperature from the water temperature sensor 24 and the output signal θ indicating the throttle opening from the throttle position sensor 19. On the other hand, the feedback correction a calculation unit 33 performs air-fuel ratio feedback correction a K based on the output signal E indicating the air-fuel ratio feedback value from the exhaust sensor 22.
Calculate FB.
そして、基準燃料噴射O演算部31では、上記基本燃料
噴射量’r T pを上記空燃比補正係数K A/Fと
上記空燃比フィードバック補正U K FBにて補正し
た実際の燃料唱躬聞を演算し、その値に基づいてインジ
ェクタ駆動部38aから、基1?=気筒に配設されたイ
ンジェクタ10aに対し、吸入空気ωに適合する最適燃
斜唱射パルス幅Tiを出力ηる。Then, the reference fuel injection O calculation unit 31 calculates the actual fuel injection value obtained by correcting the basic fuel injection amount 'r T p using the air-fuel ratio correction coefficient K A/F and the air-fuel ratio feedback correction U K FB. Based on the calculated value, the injector drive unit 38a outputs the base 1? =Output η to the injector 10a disposed in the cylinder, with an optimum fuel injection pulse width Ti matching the intake air ω.
以上は公知のフィードバック制御が基準気筒に適用され
る事を示す。The above shows that the known feedback control is applied to the reference cylinder.
また、気筒別筒内圧最大値算出部34では、各気筒に配
設された筒内圧センサ7からの各気′kl内の圧力信号
11回転数センサ18からのクランク角に対応したCF
6、及び吸入負圧センサ25からの吸入管圧力信号PO
を取込んで、各気筒のクランク角に対応した筒内圧最大
値P HAXが検出される。尚、吸入負圧センサ”25
からの信号により筒内圧絶対値は零点補正されている。In addition, in the cylinder-by-cylinder maximum in-cylinder pressure calculation unit 34, the pressure signal 11 in each air 'kl from the in-cylinder pressure sensor 7 disposed in each cylinder 11 corresponds to the crank angle from the rotation speed sensor 18.
6, and the suction pipe pressure signal PO from the suction negative pressure sensor 25
The cylinder pressure maximum value PHAX corresponding to the crank angle of each cylinder is detected. In addition, the suction negative pressure sensor "25
The absolute value of cylinder pressure is zero-point corrected by the signal from.
ここで、一般にパーシャル領域においては第7図に示す
ように、P HAXが最大となるのは理論空燃比(A/
F=14.7)の時である。基準気筒がフィードバック
制御により空燃比が理論空燃比に保たれている運転領域
において、基準気筒の筒内圧最大値をP HAXoとす
ると、他の気筒の筒内圧最大値P HAXを基準気筒の
筒内圧最大値p HAXoに近づくよう制御する事によ
り、すべての気筒が理論空燃比に近づく事になる。Generally, in the partial region, as shown in Figure 7, PHAX is maximum at the stoichiometric air-fuel ratio (A/
F=14.7). In the operating range where the air-fuel ratio of the reference cylinder is maintained at the stoichiometric air-fuel ratio by feedback control, if the maximum value of the cylinder pressure of the reference cylinder is PHAXo, then the maximum cylinder pressure of the other cylinders PHAX is the cylinder pressure of the reference cylinder. By controlling to approach the maximum value p HAXo, all cylinders will approach the stoichiometric air-fuel ratio.
上記に基づき、筒内圧比較演算部35では、各気筒毎に
基準気筒の筒内圧最大値p HAXOと各気筒の筒内圧
最大値p HAXを比較演算し、基準気−の筒内圧最大
値p HAXOに対する各気筒の筒内圧最大値r HA
Xの偏差ΔPに対応する信号を気筒別燃料rJR射補正
部36に対し出部〕する。Based on the above, the cylinder pressure comparison calculation unit 35 compares and calculates the maximum cylinder pressure value pHAXO of the reference cylinder with the maximum cylinder pressure value pHAX of each cylinder for each cylinder, and calculates the maximum cylinder pressure value pHAXO of the reference air. Maximum in-cylinder pressure of each cylinder r HA
A signal corresponding to the deviation ΔP of X is outputted to the cylinder-specific fuel rJR injection correction unit 36.
そして、気筒別燃料噴側補正部36では上記筒内圧比較
演算部35からの信号に基づき、基準気筒の筒内圧最大
値p HAXoに対し、各気筒の筒内圧最大値P HA
Xがあらかじめ設定された許容値をもって等しくなるよ
うに燃料噴射補正ffmKLRNを増減させ、U準燃料
噴01演算部31よりの基準燃料噴射mに与え(T i
−”T 1−KLRN)、気筒毎に独立して設けられた
インジェクタ駆動部38b、38c、38dに対し各々
信号を出力してインジェクタ10b、10c、10dを
駆動する。さらに燃料噴射補正ff1KLRNを格納す
る空燃比学習マツプ37が書換えられ、燃料噴射補正f
f1KLRNは学習制御される。尚、上記空燃比学習マ
ツプ37は具体的には上記RAM42に格納されている
ものである。Then, the cylinder-specific fuel injection side correction section 36 calculates the cylinder pressure maximum value PHA of each cylinder based on the signal from the cylinder pressure comparison calculation section 35, with respect to the cylinder pressure maximum value PHAXo of the reference cylinder.
The fuel injection correction ffmKLRN is increased or decreased so that
-"T 1-KLRN), outputs a signal to the injector drive units 38b, 38c, and 38d provided independently for each cylinder to drive the injectors 10b, 10c, and 10d.Furthermore, stores fuel injection correction ff1KLRN. The air-fuel ratio learning map 37 is rewritten, and the fuel injection correction f
f1KLRN is under learning control. The air-fuel ratio learning map 37 is specifically stored in the RAM 42.
以上の動作により基準気筒以外の各気筒の筒内圧最大値
はり単気筒の筒内圧最大値に等しくなるように制御され
、第7図から明らかな様にずべての気筒が1!I!論空
燃比に保たれ、気筒間の空燃比および出力トルクのバラ
ツキが解消される。Through the above operations, the maximum cylinder pressure of each cylinder other than the reference cylinder is controlled to be equal to the maximum cylinder pressure of a single cylinder, and as is clear from FIG. 7, all cylinders are 1! I! The stoichiometric air-fuel ratio is maintained, eliminating variations in air-fuel ratio and output torque between cylinders.
次に、上記空燃比制御手段による各気筒の空燃比制御動
作を第8図のフローチャートに従って説明する。Next, the air-fuel ratio control operation of each cylinder by the air-fuel ratio control means will be explained according to the flowchart of FIG.
エンジンが稼動し、当初基準燃料鳴躬m演0部からの信
号ですべての気筒が運転されている状態から、基準気筒
の排気通路に臨まされた排気センサにより基準気筒が−
02フイードバツク制御され理論空燃比に保たれた運転
領域に達づると、各筒内圧センサの出力信号から、まず
ステップ100で基準気筒の筒内圧最大値P HAXo
が検出され、次にステップ101で各気筒毎の筒内圧最
大値PHへXが検出される。ついでステップ102で各
気筒毎の筒内圧最大値P HAXとν準気筒の筒内圧最
大値P HAXoが比較されp HAXo、!=(7)
差Δp = p HAXo−p HAXが演算ストアさ
れる。次にステップ103ではこのΔPがr[容値△P
INTT内にあるか、すなわち各気筒が基準気筒に対し
ム′[される空燃比の変動幅内にあるか判定される。△
P≦ΔPINITである気筒は許容値内と判定され燃料
噴射補正缶KLRNの補正はせずに再びステップ100
へ戻る。When the engine is running and all cylinders are being operated by the signal from the reference fuel output section, an exhaust sensor placed in the exhaust passage of the reference cylinder indicates that the reference cylinder is -
02 When the operating range is reached where the stoichiometric air-fuel ratio is maintained under feedback control, the maximum in-cylinder pressure of the reference cylinder P HAXo is determined in step 100 from the output signal of each in-cylinder pressure sensor.
is detected, and then in step 101, X is detected to reach the maximum cylinder pressure value PH for each cylinder. Next, in step 102, the cylinder pressure maximum value P HAX for each cylinder is compared with the cylinder pressure maximum value P HAXo of the ν quasi-cylinder, p HAXo,! =(7)
The difference Δp=p HAXo-p HAX is calculated and stored. Next, in step 103, this ΔP is r[capacity value ΔP
It is determined whether the air-fuel ratio is within INTT, that is, whether each cylinder is within the variation range of the air-fuel ratio relative to the reference cylinder. △
It is determined that the cylinder for which P≦ΔPINIT is within the allowable value, and the process returns to step 100 without making any correction to the fuel injection correction can KLRN.
Return to
一方、ΔP〉ΔP INITである気筒に対しては、ま
ず空燃比がリーンであると仮定し前記気筒の燃料噴射ω
を暑準燃料噴剣聞に対しX%(例えばΔPの大きさに応
じてマツプにストアされているM)増fii t ル(
K L RN −+−X ) 、 ソL/ T ステッ
プ105へ移行し再びその気筒の筒内圧最大値p’HA
Xを検出し、ついでステップ106へ移行する。ステッ
プ106では同様に基準気筒の筒内圧最大値p HAX
O,!: (1)差A P’ = PHAXo −P
’ )IAX ヲ比較演D5−46゜さらにステップ
107へ進み、ΔP′とステップ102でストアしたΔ
Pを比較し、ΔP≧ΔP′ならばステップ108へと進
み引続きその気筒の燃料噴射ωをざらにX%増が加C)
する(KLRN+X)、1’にわち、11 準燃If
In kj M ニ対して2X%増吊し、ステップ11
0へ移行する。On the other hand, for a cylinder where ΔP>ΔP INIT, it is assumed that the air-fuel ratio is lean, and the fuel injection ω of the cylinder is
Increase by X% (for example, M stored in the map depending on the size of ΔP) for the hot semi-fuel injection level (
K L RN - + -
X is detected, and then the process moves to step 106. Similarly, in step 106, the maximum cylinder pressure p HAX of the reference cylinder is determined.
O,! : (1) Difference A P' = PHAXo -P
)IAX wo comparison D5-46゜Proceeds to step 107, where ΔP' and Δ stored in step 102
P is compared, and if ΔP≧ΔP′, the process proceeds to step 108, where the fuel injection ω of that cylinder is roughly increased by X%C)
(KLRN+X), 1', 11 semi-combustible If
In kj M Increase the hanging by 2X%, step 11
Transition to 0.
逆に、ΔPくΔP′ならばステップ109へ移行し、ス
テップ104での空燃比がリーンであるとの仮定を訂正
ずべく燃s’a an ai mを基準燃わ1唱剣徨に
対しY%減fnlる(KLRN−Y)。ここでY%の減
量は第7図から明らかな如く、既にステップ104でX
%増伍されリッチ側へ移行してしまった分を含めY=3
X%の減量とするのが適当である。ステップ110’r
は空燃比学習マツプに格納されている燃料噴射補正fi
t、 K l−RNを書さ換え、ログラムを終了する。On the other hand, if ΔP - ΔP', the process moves to step 109, and in order to avoid correcting the assumption that the air-fuel ratio is lean in step 104, the fuel s'a an ai m is set as the reference fuel. % decrease fnl (KLRN-Y). Here, as is clear from FIG. 7, the Y% reduction has already been done in step 104.
Y = 3, including the amount increased by % and shifted to the rich side
A weight loss of X% is appropriate. Step 110'r
is the fuel injection correction fi stored in the air-fuel ratio learning map
t, K l-RN is rewritten and the program is terminated.
以上、本実施例では基準気筒以外の気筒に対りる燃料噴
射♀を基準気筒への燃利噴錦賞である基準燃料噴射Bに
対し補正する例について説明したが、本発明はこれに限
定されるものではなく、例えばあらかじめ実験等に基づ
いて求められた筒内圧最大値と燃料噴射昂の相関データ
を空燃比制御手段内のROMにマツプデータとして格納
しておき適宜ROM内マツプデータを参照、各気筒への
燃料噴rAfilを決める方法も考えられる。As described above, in this embodiment, an example has been described in which fuel injection ♀ for cylinders other than the reference cylinder is corrected with respect to reference fuel injection B, which is a fuel injection award for the reference cylinder, but the present invention is limited to this. For example, correlation data between the maximum in-cylinder pressure and fuel injection height, which has been determined in advance based on experiments, is stored as map data in the ROM in the air-fuel ratio control means, and the map data in the ROM is referred to as appropriate. Another possible method is to determine the fuel injection rAfil to the cylinder.
[発明の効果〕
以上説明したように本発明によれば、金気筒の筒内圧最
大値を算出し、各気筒ごとの筒内圧最大値が基準気筒の
筒内圧最大値となるように、燃料1射aを設定するので
、各気筒の空燃比のバラツキを制御することができ、そ
の結果、振動、エネルギーロスが少なくなり、エンジン
のトータル出力の向上、および、安定した出り特性が得
られるようになるばかりでなく、低燃費化が実現できる
どともに、静粛性が確保され、その上、エミッションの
低減が達せられるなど優れた効果が奏される。[Effects of the Invention] As explained above, according to the present invention, the maximum cylinder pressure of the gold cylinder is calculated, and the fuel 1 is calculated so that the maximum cylinder pressure of each cylinder becomes the maximum cylinder pressure of the reference cylinder. By setting the injection a, it is possible to control variations in the air-fuel ratio of each cylinder, resulting in less vibration and energy loss, improving the engine's total output and achieving stable output characteristics. Not only does it reduce fuel consumption, it also ensures quietness and reduces emissions.
図面は本発明の一実施例を示し、第1図はエンジンの要
部概略図、第2図はエンジンの概略平面図、第3図は第
2図の■−■断面図、第4図は第3図のIV −TV断
面図、第5図は空燃比制御手段のブロック図、第6図は
空燃比制御手段の構成図、第7図t、L縦軸に筒内圧最
大値(p )IAX)、横軸に空燃比(A/F)を示ず
相関図、第8図は空燃比制御手段の動作手順を示すフロ
ーチャートである。
2・・・シリンダブロック、2a〜2d・・・気筒、7
・・・筒内圧センサ、30・・・基本燃料噴射量演算部
、31・・・基準燃料噴ttJm演算部、32・・・空
燃比補正係数演算部、33・・・フィードバック補正ω
演惇部、34・・・気筒別筒内圧最大値鐸山部、35・
・・筒内圧比較演算部、36・・・気箇別燃料噴射補正
部、37・・・空燃比学習マツプ、P HAXo・・・
基準気筒の筒内圧最大値、P HAX・・・各気筒の筒
内圧最大値、N、Q。
Crθ、Tw、θ、E、PO、P・・・出力信号。
代理人 弁理士 伊 藤 進
第7図
第8図
TART
基季気箇の
PMAXO撲士
各気葡の
PMAXW4 ”
PMAXO−02
を演算
ΔP〉ΔPINITN。
ES
爆粁暉 o4
X%増量
P’MAX檜止
P’ 06
護
/107The drawings show one embodiment of the present invention, and FIG. 1 is a schematic diagram of the main parts of the engine, FIG. 2 is a schematic plan view of the engine, FIG. 3 is a sectional view taken along the line ■-■ of FIG. 2, and FIG. Fig. 3 is a cross-sectional view of IV-TV, Fig. 5 is a block diagram of the air-fuel ratio control means, Fig. 6 is a block diagram of the air-fuel ratio control means, and Fig. 7 is the maximum in-cylinder pressure (p) on the t and L vertical axes. FIG. 8 is a flowchart showing the operating procedure of the air-fuel ratio control means. 2...Cylinder block, 2a-2d...Cylinder, 7
. . . Cylinder pressure sensor, 30 . . . Basic fuel injection amount calculation section, 31 . . . Reference fuel injection ttJm calculation section, 32 . . . Air fuel ratio correction coefficient calculation section, 33 .
Performance section, 34... Maximum in-cylinder pressure for each cylinder Takuyama section, 35.
...Cylinder pressure comparison calculation section, 36...Separate fuel injection correction section, 37...Air-fuel ratio learning map, P HAXo...
Maximum cylinder pressure of the reference cylinder, PHAX... Maximum cylinder pressure of each cylinder, N, Q. Crθ, Tw, θ, E, PO, P...output signal. Agent Patent Attorney Susumu Ito Figure 7 Figure 8 TART PMAXW4 of Kikyo's PMAXO Fighter Each Kiba Calculate PMAXO-02 ΔP>ΔPINITN. P' 06 Mamoru/107
Claims (1)
出力信号に基づいて基本燃料噴射量を演算する基本燃料
噴射量演算部と、 特定の基準気筒の排気通路に臨まされた排気センサから
の出力信号に基づいて基準気筒のフィードバック補正量
を演算するフィードバック補正量演算部と、 上記基本燃料噴射量演算部からの出力信号と上記フィー
ドバック補正量演算部からの出力信号とから基準気筒へ
の燃料噴射量を割出す基準燃料噴射量演算部と、 各気筒に配設された筒内圧センサの出力信号を取込んで
気筒毎の筒内圧の最大値を算出する気筒別筒内圧最大値
算出部と、 上記基準気筒の筒内圧最大値と気筒毎の筒内圧最大値と
を比較演算する筒内圧比較演算部と、上記筒内圧比較演
算部からの出力信号を取込んで各気筒の筒内圧最大値が
上記基準気筒の筒内圧最大値となる燃料噴射量を気筒毎
に演算する気筒別燃料噴射補正部とを有する多気筒内燃
機関の空燃比制御装置。[Scope of Claims] A basic fuel injection amount calculating section that calculates a basic fuel injection amount based on an output signal from an intake air amount sensor and an output signal from a rotation speed sensor; a feedback correction amount calculation unit that calculates a feedback correction amount for the reference cylinder based on an output signal from the exhaust sensor, and an output signal from the basic fuel injection amount calculation unit and an output signal from the feedback correction amount calculation unit. A reference fuel injection amount calculation unit that calculates the fuel injection amount to the reference cylinder, and a cylinder-specific cylinder pressure unit that calculates the maximum value of the cylinder pressure for each cylinder by taking in the output signal of the cylinder pressure sensor installed in each cylinder. a maximum value calculation section; an in-cylinder pressure comparison calculation section that compares and calculates the maximum cylinder pressure value of the reference cylinder with the maximum cylinder pressure value of each cylinder; and an output signal from the cylinder pressure comparison calculation section that takes in the output signal from the cylinder pressure comparison calculation section An air-fuel ratio control device for a multi-cylinder internal combustion engine, comprising: a cylinder-by-cylinder fuel injection correction unit that calculates, for each cylinder, a fuel injection amount such that the maximum cylinder pressure of the reference cylinder becomes the maximum cylinder pressure of the reference cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3642588A JP2636298B2 (en) | 1988-02-18 | 1988-02-18 | Air-fuel ratio control device for multi-cylinder internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3642588A JP2636298B2 (en) | 1988-02-18 | 1988-02-18 | Air-fuel ratio control device for multi-cylinder internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01211636A true JPH01211636A (en) | 1989-08-24 |
JP2636298B2 JP2636298B2 (en) | 1997-07-30 |
Family
ID=12469473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3642588A Expired - Lifetime JP2636298B2 (en) | 1988-02-18 | 1988-02-18 | Air-fuel ratio control device for multi-cylinder internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2636298B2 (en) |
-
1988
- 1988-02-18 JP JP3642588A patent/JP2636298B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2636298B2 (en) | 1997-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3817991B2 (en) | Control device for internal combustion engine | |
US7347185B2 (en) | Unit and method for controlling internal combustion engines | |
JPH03164549A (en) | Engine control device of two-cycle engine | |
US7448360B2 (en) | Controller of internal combustion engine | |
JPH0240054A (en) | Air-fuel ratio control device for internal combustion engine for vehicle | |
JP4050229B2 (en) | Control apparatus and control method for 4-stroke engine | |
JPH11148410A (en) | Method and device for controlling pilot fuel injection quantity in engine | |
JP2008163815A (en) | Fuel injection control device for internal combustion engine | |
JPS62265445A (en) | Fuel controller for engine | |
JPH11141386A (en) | Method and device for controlling pilot fuel injection quantity for engine | |
JP4871307B2 (en) | Engine fuel control device | |
JP5276693B2 (en) | Control device for internal combustion engine | |
JPH01211636A (en) | Air-fuel ratio control device for multicylinder internal combustion engine | |
JP2004308532A (en) | Fuel injection control device for multicylinder engine | |
JPH07253042A (en) | Controller of multi-cylinder internal combustion engine | |
JP2013199838A (en) | Injection rate waveform generation method and control device for internal combustion engine | |
US11920549B2 (en) | Engine control method and engine control device | |
JPS62298654A (en) | Exhaust feedback control device of internal combustion engine | |
JP2007262941A (en) | Control device of internal combustion engine | |
JP3593162B2 (en) | Engine intake air volume detection method | |
JPH0814263B2 (en) | Fuel supply control device for internal combustion engine | |
JP2000186597A (en) | Direct injection type internal combustion engine | |
JP3916416B2 (en) | Control device for internal combustion engine | |
JP3720200B2 (en) | Damage detection device for intake manifold of internal combustion engine | |
JP3966463B2 (en) | Fuel injection device for internal combustion engine |