JPH01210507A - Vibrationproof structure for cable constructed for structure - Google Patents

Vibrationproof structure for cable constructed for structure

Info

Publication number
JPH01210507A
JPH01210507A JP3275588A JP3275588A JPH01210507A JP H01210507 A JPH01210507 A JP H01210507A JP 3275588 A JP3275588 A JP 3275588A JP 3275588 A JP3275588 A JP 3275588A JP H01210507 A JPH01210507 A JP H01210507A
Authority
JP
Japan
Prior art keywords
cable
cables
wind
diameter
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3275588A
Other languages
Japanese (ja)
Other versions
JPH0814088B2 (en
Inventor
Toru Saito
斎藤 通
Kimisuke Watabe
公介 渡部
Masaru Miyake
勝 三宅
Noboru Tomita
冨田 昇
Shozaburo Miura
三浦 章三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3275588A priority Critical patent/JPH0814088B2/en
Publication of JPH01210507A publication Critical patent/JPH01210507A/en
Publication of JPH0814088B2 publication Critical patent/JPH0814088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PURPOSE:To prevent vibrations by a wind by bringing the space of two parallel cables constructed to a diagonal cable bridge, a steel tower, etc. to fixed times as long as the diameter of the cable. CONSTITUTION:A pair of parallel cables 13 are disposed in tension between a main tower 11 and a bridge girder 12 for a diagonal cable bridge, arranging spacers 14 so that a space between the centers of each cable is brought to 1.2-2.0 times as long as the diameter of the cable. Accordingly, when a wind blows against the cables, wake-galopping, in which the rear stream side cable is vibrated largely in the direction rectangular to the wind by the peeling current of the front stream side cable, can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は斜張橋や吊橋、及び鉄塔や煙突等の構造物に架
設されるケーブル、鉄塔間に架設される送電や通信等の
ケーブルの防振構造に係るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to cables installed on structures such as cable-stayed bridges, suspension bridges, and steel towers and chimneys, and cables for power transmission and communications installed between steel towers. This relates to vibration-proof structure.

(従来の技術) 第5図は一般的な斜張橋の構造図を示し、主塔(])と
橋桁(2)との間にケーブル(3)を張設し、橋桁(2
)を主塔(1)より釣支する構造となっている。
(Prior art) Figure 5 shows a structural diagram of a general cable-stayed bridge, in which a cable (3) is stretched between the main tower (]) and the bridge girder (2),
) is suspended from the main tower (1).

前記ケーブル(3)は一般に第6図に示すように2本並
行して張設される場合が多く、通常取付ソケットの大き
さから中心間隔でケーブル直径の3倍以上離隔して配置
されている。
Generally, two cables (3) are often installed in parallel as shown in Fig. 6, and they are usually spaced apart from each other by at least three times the cable diameter based on the size of the mounting socket. .

前記並列ケーブルに風(4)が吹いたとき、第7図に示
すように後流側ケーブル(3b)は前流側ケーブル(3
a)より発生する剥離流(5)によって、風(4)と直
角方向(6)に大きく振動するウエイクギャロッピング
が生起する。
When the wind (4) blows on the parallel cable, the wake side cable (3b) blows on the front side cable (3) as shown in Fig. 7.
The separated flow (5) generated by a) causes wake galloping, which vibrates greatly in the direction (6) perpendicular to the wind (4).

このウエイクギャロツピングは、前流側ケーブル(3a
)より発生する剥離流(5)が後流側ケーブル(3b)
の上下面にスイッチし、その結果、前記両ケーブル(3
a) (3b)間にギャップフローが発生することが原
因と考えられる。
This wake galloping is performed using the upstream cable (3a
) The separation flow (5) generated from the downstream cable (3b)
As a result, both cables (3
This is thought to be caused by a gap flow occurring between a) and (3b).

従来は前記振動を抑制するために、第8図に示すように
、各ケーブル(3)に対してほぼ直角に固定したワイヤ
(7)を主塔(1)の脚部に指向して張設し、また第9
図に示すように各ケーブル(3)間に橋桁(2)とほぼ
平行にワイヤ(7)を張設したケーブルの防振構造が採
用されていた。
Conventionally, in order to suppress the vibration, wires (7) fixed at almost right angles to each cable (3) were strung toward the legs of the main tower (1), as shown in Figure 8. And also the 9th
As shown in the figure, a cable vibration isolation structure was adopted in which wires (7) were stretched between each cable (3) almost parallel to the bridge girder (2).

(発明が解決しようとする課題) 前記従来のケーブル間にワイヤーを張設する防振構造は
、ケーブルを保護するため、その外周に捲装されたラッ
ピング材を毀…する惧れがある。
(Problems to be Solved by the Invention) The conventional vibration isolation structure in which a wire is stretched between cables has the risk of damaging the wrapping material wrapped around the outer periphery of the cable to protect the cable.

また道路の起終点、街や港の記念碑となる橋においては
、前記のようにケーブル間にワイヤーを張設した構造は
美観上、好ましくない。
Furthermore, for bridges that serve as monuments at the beginning and end of roads, towns, and ports, structures in which wires are stretched between cables as described above are undesirable from an aesthetic point of view.

本発明はこのような従来技術の有する問題点に鑑みて提
案されたもので、その目的とする処は、ケーブル間にワ
イヤーを張設することなく、風によって振動しない構造
物架設ケーブルの防振構造を提供する点にある。
The present invention was proposed in view of the problems of the prior art, and its purpose is to provide vibration isolation for cables installed in structures that do not vibrate due to wind, without having to stretch wires between the cables. The point is to provide structure.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る構造物架設ケ
ーブルの防振構造は、構造物に架設される並列ケーブル
相互の中心間隔を、ケーブル直径の1.2倍乃至2倍と
なるように構成されている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the vibration isolation structure for a cable installed in a structure according to the present invention sets the distance between the centers of parallel cables installed in a structure to 1.0% of the cable diameter. It is configured to be twice or twice as large.

(作用) 本発明においては前記したように、構造物に架設された
並列ケーブル相互の中心間隔を、ケーブル直径の1.2
倍乃至2倍と絞ったことによって、後流側ケーブルが前
流側ケーブルより発生する剥離流の内部に完全に入り、
同剥離流が後流側ケーブルの上下面にスイッチすること
がなく、ウエイクギャロツピングが生起することがなく
なり、振動が発生しなくなる。
(Function) As described above, in the present invention, the center distance between parallel cables installed in a structure is set to 1.2 of the cable diameter.
By narrowing down to twice or twice, the wake cable completely enters the separation flow generated from the front cable,
The separation flow does not switch to the upper and lower surfaces of the downstream cable, so wake galloping does not occur, and vibrations do not occur.

(実施例) 以下本発明を斜張橋におけるケーブルの防振構造に適用
した図示の実施例について説明する。
(Example) The illustrated example in which the present invention is applied to a cable vibration isolation structure in a cable-stayed bridge will be described below.

第1図において01)は主塔で、同主塔(11)と橋桁
(12+との間に互いに平行な一双のケーブル09が張
設され、橋桁0りが主塔(11)から懸吊されている。
In Figure 1, 01) is the main tower, and a pair of parallel cables 09 are stretched between the main tower (11) and the bridge girder (12+), and the bridge girder 09 is suspended from the main tower (11). ing.

而して前記−双のケーブル面はスペーサ04によってそ
の長手方向の大部分において、中心間隔がケーブル直径
′0)1.2〜2.0倍となるように配設される。
The two cable surfaces are arranged by spacers 04 in most of their longitudinal directions so that the distance between the centers is 1.2 to 2.0 times the cable diameter '0).

なお主塔(11)や橋桁0りとケーブル面との取付部近
傍のケーブル間隔は任意に設定される。
Note that the cable spacing near the attachment point between the main tower (11) or the bridge girder and the cable surface is set arbitrarily.

図示の実施例によれば前記したように、主塔(11)と
橋桁0りとの間に張設された一双のケーブル側の中心間
隔λがケーブル直径dの1.2〜2.0倍に絞られてい
るので、第2回に示すように、後流側ケーブル(’13
b)が前流側ケーブル(13a)から発生する7り乱流
(5)の内部に完全に入り、同剥離流(5)が後流側ケ
ーブル(13b)の上下面にスイッチすることがなく、
振動が発生しなくなる。
According to the illustrated embodiment, as described above, the center distance λ of the pair of cables stretched between the main tower (11) and the bridge girder is 1.2 to 2.0 times the cable diameter d. As shown in Part 2, the downstream cable ('13
b) completely enters the inside of the turbulent flow (5) generated from the upstream side cable (13a), and the separated flow (5) does not switch to the upper and lower surfaces of the downstream side cable (13b). ,
Vibration will no longer occur.

なお前記λ/dの値が2を超すと、前記従来のケーブル
同様に前記両ケーブル(13a) (13b)間にギャ
ップフローが発生し、ウエイクギャロツピングが生起す
る。
Note that when the value of λ/d exceeds 2, a gap flow occurs between the cables (13a) and (13b) as in the conventional cable, and wake galloping occurs.

またλ/4の値が1.2より小になるとケーブル(13
a) (13b)間の間隙が小さくなり、両ケーブル(
13a) (13b)が1体としての特性を示すように
なる。
Moreover, when the value of λ/4 becomes smaller than 1.2, the cable (13
a) The gap between (13b) becomes smaller and both cables (
13a) (13b) now exhibits the characteristics of a single body.

即ち僅かに傾いた風(後述のαが小)が作用すると、負
方向に大きな揚力が発生する。これはギヤロッピング振
動の発生メカニズムとして周知の原理に基く現象であり
、後述のようにα=0のときや、α≧10@では安定と
なることもそのためである。
That is, when a slightly tilted wind (α, which will be described later is small) acts, a large lift force is generated in the negative direction. This is a phenomenon based on a well-known principle as a generation mechanism of gearropping vibration, and is also the reason why it becomes stable when α=0 or when α≧10@, as will be described later.

また前流側ケーブル(13a)に近接して後流側ケーブ
ル(13b)が配設されることによって、風雨時のケー
ブル表面を流れる水みちの形状が変り、レインバイブレ
ーションによる振動がなくなる。
Furthermore, by arranging the downstream cable (13b) close to the upstream cable (13a), the shape of the water path flowing on the cable surface changes during wind and rain, and vibrations caused by rain vibrations are eliminated.

第3図は平行に配設された一双のケーブルθ9の矢示方
向からの風に対するケーブル中心間隔λと振動の発生状
態を調べた風洞実験結果を示す図で、図中点線で示した
矢印は後流側ケーブルの振動方向を示す。
Figure 3 is a diagram showing the results of a wind tunnel experiment that investigated the cable center spacing λ and vibration generation state in response to wind from the arrow direction of a pair of cables θ9 arranged in parallel. Indicates the direction of vibration of the downstream cable.

なお実験風速Vは0〜25m/s 、供試ケーブル直径
d−160mm φ、長さ=27.00mmである。
The experimental wind speed V was 0 to 25 m/s, the test cable diameter was d-160 mm φ, and the length was 27.00 mm.

第4a図乃至第4d図は前記第3図におけるλ/4の4
つの領域における風速(vm / s )とケーブル直
径(d)に対するケーブルの振幅(Δ)を示し、λはケ
ーブルの中心間隔、αはケーブルに入る風向である。
Figures 4a to 4d are 4 of λ/4 in Figure 3 above.
Figure 3 shows the cable amplitude (Δ) versus wind speed (vm/s) and cable diameter (d) in two regions, where λ is the cable center spacing and α is the wind direction entering the cable.

ここでいう安定とは振動振幅(Δ)がケーブル直径(d
)の5%以下とした。
Stability here means that the vibration amplitude (Δ) is equal to the cable diameter (d
) below 5%.

第4a図は一双のケーブルが密着している場合のα−3
°、及びα−5°のデータである。但しα=0″では安
定であり、α≧10″′でも振幅は小さい。
Figure 4a shows α-3 when one pair of cables are in close contact with each other.
°, and α-5° data. However, it is stable when α=0″, and the amplitude is small even when α≧10″′.

第4b図は安定域であり、振動振幅Δがケーブル直径d
の5%以下の安定域にあることが判る。
Figure 4b shows the stability region, where the vibration amplitude Δ is the cable diameter d
It can be seen that it is in a stable range of 5% or less.

第4C図はλ=4d1α=0″のデータで、λ=5dで
も同様な結果が得られる。
FIG. 4C shows data for λ=4d1α=0″, and similar results can be obtained for λ=5d.

第4d図はλ=10d、αζ18@の場合で後流側ケー
ブルは「ふれ廻りJする。
Figure 4d shows the case where λ=10d and αζ18@, and the downstream cable "wobbles around."

なお前記第1図に示す実施例において、主塔(11)を
アンテナ塔や、展望基等の長尺構造物に置き換え、橋桁
02)を地面としてもよく、また図示を省略したが吊橋
の主ケーブルから橋桁を懸吊するハンガーロープについ
ても本発明を適用できる。
In the embodiment shown in FIG. 1, the main tower (11) may be replaced with a long structure such as an antenna tower or an observatory, and the bridge girder 02) may be used as the ground. The present invention can also be applied to hanger ropes for suspending bridge girders from cables.

(発明の効果) 本発明によれば前記したように、構造物に架設された並
列ケーブル相互の間隔を、ケーブル直径の1.2倍乃至
2倍としたことによって、ケーブルのウエイクギャロツ
ピングによる振動の発生を防止し、またこのように前流
側ケーブルに後流側ケーブルに近接して配設することに
より、レインバイブレーションによる振動を防止しうる
ものである。
(Effects of the Invention) According to the present invention, as described above, by setting the distance between the parallel cables installed in the structure to 1.2 to 2 times the cable diameter, wake galloping of the cables is prevented. It is possible to prevent vibrations from occurring, and by arranging the upstream cable in close proximity to the downstream cable in this way, it is possible to prevent vibrations caused by rain vibrations.

このように本発明によれば従来のように構造物架設ケー
ブル間にワイヤを張設することなく、振動を防止しうる
ものである。
As described above, according to the present invention, vibration can be prevented without having to stretch wires between cables for constructing a structure as in the conventional case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る構造物架設ケーブルの防振構造の
一実施例を示す斜面図、第2図はその風速と振動振幅と
の関係を示す図表、第3図はその風洞実験結果を示す図
表、第4a図乃至第4d図は第3図における各領域にお
ける風速とケーブル直径に対するケーブルの振幅との関
係を示す図表、第5図は斜張橋の正面図、第6図はその
部分斜面図、第7図はウエイクギャロッピング振動の概
念図、第8図及び第9図は夫々従来のケーブルの防振構
造を示す正面図である。 (11)−・−主塔  0粉・・・橋桁  面一・−ケ
ーブル代理人 弁理士 岡 本 重 文 外2名 肩2m 采す図 Aq図
Fig. 1 is a perspective view showing an example of the vibration isolation structure for cables installed in structures according to the present invention, Fig. 2 is a chart showing the relationship between wind speed and vibration amplitude, and Fig. 3 shows the results of wind tunnel experiments. Figures 4a to 4d are diagrams showing the relationship between wind speed and cable amplitude in each region in Figure 3 and cable diameter, Figure 5 is a front view of the cable-stayed bridge, and Figure 6 is its part. FIG. 7 is a conceptual diagram of wake galloping vibration, and FIGS. 8 and 9 are front views showing conventional cable vibration isolation structures, respectively. (11)--Main tower 0 powder...Bridge girder flush--Cable agent Patent attorney Shige Okamoto 2 people shoulder 2m outside the building Diagram Aq

Claims (1)

【特許請求の範囲】[Claims] 構造物に架設された並列ケーブル相互の中心間隔を、ケ
ーブル直径の1.2倍乃至2倍としてなることを特徴と
する構造物架設ケーブルの防振構造。
A vibration isolation structure for cables installed in a structure, characterized in that the distance between the centers of parallel cables installed in the structure is 1.2 to 2 times the cable diameter.
JP3275588A 1988-02-17 1988-02-17 Vibration isolation structure for construction cables Expired - Fee Related JPH0814088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3275588A JPH0814088B2 (en) 1988-02-17 1988-02-17 Vibration isolation structure for construction cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3275588A JPH0814088B2 (en) 1988-02-17 1988-02-17 Vibration isolation structure for construction cables

Publications (2)

Publication Number Publication Date
JPH01210507A true JPH01210507A (en) 1989-08-24
JPH0814088B2 JPH0814088B2 (en) 1996-02-14

Family

ID=12367658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3275588A Expired - Fee Related JPH0814088B2 (en) 1988-02-17 1988-02-17 Vibration isolation structure for construction cables

Country Status (1)

Country Link
JP (1) JPH0814088B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726510A (en) * 1993-07-09 1995-01-27 S Ii:Kk Damping method of diagonal material cable
CN103061244A (en) * 2011-10-19 2013-04-24 张志新 Combination line-shaped bearing cable suspension bridge and construction method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726510A (en) * 1993-07-09 1995-01-27 S Ii:Kk Damping method of diagonal material cable
CN103061244A (en) * 2011-10-19 2013-04-24 张志新 Combination line-shaped bearing cable suspension bridge and construction method thereof
CN103061244B (en) * 2011-10-19 2015-02-11 张志新 Combination line-shaped bearing cable suspension bridge and construction method thereof

Also Published As

Publication number Publication date
JPH0814088B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
CN105220616A (en) A kind of rope net damping system being used for oblique pull-suspension cable cooperation bridge
JP2015503896A (en) Space damper used for 4-conductor bundle
US3992566A (en) Aerodynamic aerial conductor vibration damper
JPH01210507A (en) Vibrationproof structure for cable constructed for structure
US3128330A (en) Vibration damping method and device
CN202503249U (en) Three-linear damper line for field of high voltage transmission
JPH07216820A (en) Arched bridge
JPH07102525A (en) Wind-resistant vibration mitigating structure in building suspension bridge
Tornquist et al. Galloping conductors and a method for studying them
JPH10183529A (en) Lighting protecting method for cable stayed bridge
JPH0767236A (en) Traversal swing preventer for jumper wire
JPS5855729B2 (en) How to prevent gearoping in self-supporting cables
JPH09302614A (en) Suspension bridge
JPH09137408A (en) Suspension bridge
JP2801356B2 (en) Auxiliary spacer for multi-conductor transmission line
JPH01214209A (en) Anti-galloping method for overhead transmission wire
JPH08184009A (en) Suspension bridge
JPH11350420A (en) Wind-resistant vibration damping method for cable and its device
JP3462630B2 (en) Anti-vibration bridge
JPH0333163Y2 (en)
SU714509A1 (en) Electric power transmission line wire
US1917600A (en) Transmission line
JPH0745916Y2 (en) Discharge electrode
JPH06165356A (en) Jumper device
Seidel et al. Mode switching of rain–wind-induced vibrations

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees