JPH01209642A - Brightness zoom-regulating device for electron microscope - Google Patents

Brightness zoom-regulating device for electron microscope

Info

Publication number
JPH01209642A
JPH01209642A JP3372988A JP3372988A JPH01209642A JP H01209642 A JPH01209642 A JP H01209642A JP 3372988 A JP3372988 A JP 3372988A JP 3372988 A JP3372988 A JP 3372988A JP H01209642 A JPH01209642 A JP H01209642A
Authority
JP
Japan
Prior art keywords
brightness
magnification
excitation current
irradiation lens
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3372988A
Other languages
Japanese (ja)
Other versions
JPH07105207B2 (en
Inventor
Toshikazu Honda
本田 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP63033729A priority Critical patent/JPH07105207B2/en
Publication of JPH01209642A publication Critical patent/JPH01209642A/en
Publication of JPH07105207B2 publication Critical patent/JPH07105207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To improve the response by finding a constant from the exciting current of an irradiation lens and the magnification of an expansion lens system at a set brightness, and controlling the exciting current of the irradiation lens responding to the variation of the magnification of the expansion lens system. CONSTITUTION:A constant K is found from the exciting current J of an irradiation lens 1 and the magnification M of an expansion lens system 7 by the first operation device 5, and the exciting current J of the irradiation lens 1 is controlled responding to the variation of the magnification M of the expansion lens system 7 by the second operation device 3. As a result, even though the magnification M of the expansion lens system 7 is converted as desired, the exciting current J of the irradiation lens 1 can be computed from the magnification M, and the exciting current J is controlled to obtain a specific brightness. Since the brightness is zoomed only by the operation-process in such a way, the exciting current J of the irradiation lens 1 can be determined instantly without delay. The response is improved consequently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、拡大レンズ系の倍率に応じて照射レンズの励
磁電流を制御して蛍光板に形成する像の明るさを安定化
する電子顕微鏡の明るさズーム調整装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electron microscope that stabilizes the brightness of an image formed on a fluorescent screen by controlling the excitation current of an irradiation lens according to the magnification of a magnifying lens system. The present invention relates to a brightness zoom adjustment device.

〔従来の技術〕[Conventional technology]

第4図は従来の明るさズームを備えた電子顕微鏡の制御
系の構成例を示す図であり、11は照射レンズ(CL)
、12は対物レンズ(OL)、13は中間レンズ(IL
)、14は投影レンズ(PL)、15は蛍光板(FS)
、16は倍率設定つまみ(MS)、17は検出回路(D
T) 、18は現在値測定回路、19は初期値記憶回路
、20と21は増幅器。22は明るさ設定つまみ(BS
)、23は切り換えスイッチ(S)、24は試料を示す
FIG. 4 is a diagram showing an example of the configuration of a control system of an electron microscope equipped with a conventional brightness zoom, and 11 is an irradiation lens (CL).
, 12 is an objective lens (OL), and 13 is an intermediate lens (IL).
), 14 is a projection lens (PL), 15 is a fluorescent screen (FS)
, 16 is the magnification setting knob (MS), 17 is the detection circuit (D
T), 18 is a current value measuring circuit, 19 is an initial value storage circuit, and 20 and 21 are amplifiers. 22 is the brightness setting knob (BS
), 23 is a changeover switch (S), and 24 is a sample.

従来、電子顕微鏡の明るさズームは、第4図に示すよう
に蛍光板15に検出回路17を接続して倍率変化に伴う
蛍光板15上の明るさを検出して照射レンズ11の励磁
を制御する負帰還制御系を採用している。検出回路17
は、螢光板15若しくはその近傍に設けられたCdS等
の電流検出素子により明るさに対応する信号を検出する
ものである。この例では、まず、切り換えスイッチ23
を図示の状態にしたまま明るさ設定つまみ22を操作し
て照射レンズ11の励磁を制御することによって所望の
明るさに設定する。そこで、この設定された明るさにお
ける検出回路17の検出値を初期値(目標値)として初
期値記憶回路19に記憶する。
Conventionally, the brightness zoom of an electron microscope has been carried out using a negative detection circuit that connects a detection circuit 17 to a fluorescent screen 15 to detect the brightness on the fluorescent screen 15 as the magnification changes and controls the excitation of the irradiation lens 11, as shown in FIG. A feedback control system is adopted. Detection circuit 17
A signal corresponding to brightness is detected by a current detection element such as CdS provided on or near the fluorescent plate 15. In this example, first, the changeover switch 23
The desired brightness is set by controlling the excitation of the irradiation lens 11 by operating the brightness setting knob 22 while keeping it in the state shown in the figure. Therefore, the detection value of the detection circuit 17 at this set brightness is stored in the initial value storage circuit 19 as an initial value (target value).

そして、この設定した明るさに保つようにする場合には
、切り換えスイッチ23を図示の状態から反転させ、検
出回路17を現在値測定回路18に接続すると共に増幅
器20を増幅器21に接続する。この回路接続の切り換
えによって、増幅器20で初期値記憶回路19に記憶さ
れた値すなわち設定明るさと、現在値測定回路18の出
力値すなわち検出回路17において検出されている現在
の明るさとが比較される。その結果、増幅器21により
この比較出力が増幅され照射レンズ11の励磁電流が制
御されるので、拡大レンズ系の倍率が変化しても、蛍光
板15上の明るさは、初期値記憶回路19に記憶された
設定明るさに制御されることになる。
If the set brightness is to be maintained, the changeover switch 23 is reversed from the illustrated state, the detection circuit 17 is connected to the current value measurement circuit 18, and the amplifier 20 is connected to the amplifier 21. By switching this circuit connection, the value stored in the initial value storage circuit 19 by the amplifier 20, that is, the set brightness, is compared with the output value of the current value measurement circuit 18, that is, the current brightness detected by the detection circuit 17. . As a result, the comparison output is amplified by the amplifier 21 and the excitation current of the irradiation lens 11 is controlled, so even if the magnification of the magnifying lens system changes, the brightness on the fluorescent screen 15 is stored in the initial value storage circuit 19. The brightness will be controlled according to the set brightness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の如き従来の明るさズームでは、蛍
光板15の電流が10−h〜10−” Aと微小であり
、この電流を検出するためには検出回路17が一般に高
インピーダンスにならざるを得ないという問題がある。
However, in the conventional brightness zoom as described above, the current of the fluorescent screen 15 is as small as 10-h to 10-''A, and in order to detect this current, the detection circuit 17 generally has to have a high impedance. The problem is that there is no.

そのため、検出回路17自体が比較的長い時定数のもの
になるので、明るさの検出に時間がかかり、早い変化に
追随できない。また、検出信号が微小であるため検出感
度が低下するという問題がある。
Therefore, since the detection circuit 17 itself has a relatively long time constant, it takes time to detect brightness and cannot follow rapid changes. Furthermore, since the detection signal is minute, there is a problem in that the detection sensitivity is reduced.

また、試料24と照射レンズ11との間には、−度クロ
スオーバーをもつような照射レンズ励磁の条件とクロス
オーバーをもたない照射レンズ励磁の条件がある。前者
をオーバー側、後者をアンダー側と呼ぶ。オーバー側で
励磁を増せば試料上でのビーム径は大きくなり、アンダ
ー側では逆に小さくなる。そのため、同じ暗さの状態か
ら所定の明るさにするための信号を発生させる場合にも
、明るさズームの起動をオーバー側の条件で行ったかア
ンダー側の条件で行ったかにより異なってくる。すなわ
ち、オーバー側の条件による起動では、照射レンズ11
の励磁を弱めなければならないのに対し、アンダー側の
条件による起動では、照射レンズ11の励磁を強めなけ
ればならない。従って、この明るさズームの可変範囲は
、いずれかの条件の範囲でしか使えないという制約条件
が必要であった。
Further, between the sample 24 and the irradiation lens 11, there are conditions for excitation of the irradiation lens with -degree crossover and conditions for excitation of the irradiation lens without crossover. The former is called the over side, and the latter is called the under side. If the excitation is increased on the over side, the beam diameter on the sample will increase, while on the under side it will become smaller. Therefore, even when generating a signal for changing the brightness to a predetermined level from the same dark state, the difference depends on whether the brightness zoom is activated under over or under conditions. In other words, when starting under the over side condition, the irradiation lens 11
The excitation of the irradiation lens 11 must be weakened, whereas the excitation of the irradiation lens 11 must be strengthened when starting under the under condition. Therefore, the variable range of this brightness zoom needed to be limited in that it could only be used within a certain range of conditions.

本発明は、上記の問題点を解決するものであって、倍率
の設定に応じて瞬時に所定の明るさに蛍光板の明るさを
設定制御することができる電子顕微鏡の明るさズーム調
整装置を提供することを目的とする。
The present invention solves the above-mentioned problems, and provides a brightness zoom adjustment device for an electron microscope that can instantly set and control the brightness of a fluorescent screen to a predetermined brightness according to the magnification setting. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の電子顕微鏡の明るさズーム調整装置
は、拡大レンズ系の倍率に応じて照射レンズの励磁電流
を制御して蛍光板に形成する像の明るさを安定化する電
子顕微鏡の明るさズーム調整装置であって、照射レンズ
の励磁電流と拡大レンズ系の倍率から所定の演算を行っ
て定数を求める第1の演算手段、定数と拡大レンズ系の
倍率から定数演算時と同等の明るさを得る照射レンズの
励磁電流を算出する第2の演算手段を備え、設定された
明るさにおける照射レンズの励磁電流と拡大レンズ系の
倍率から第1の演算手段により定数を求め、第2の演算
手段により拡大レンズ系の倍率の変化に対応して照射レ
ンズの励磁電流を制御することを特徴とするものである
To this end, the brightness zoom adjustment device for an electron microscope of the present invention stabilizes the brightness of an image formed on a fluorescent screen by controlling the excitation current of the irradiation lens according to the magnification of the magnifying lens system. The adjustment device includes a first calculation means for calculating a constant by performing a predetermined calculation from the excitation current of the irradiation lens and the magnification of the magnification lens system, and a first calculation means that calculates a constant from the constant and the magnification of the magnification lens system, and a brightness equivalent to that when calculating the constant from the constant and the magnification of the magnification lens system. a second calculation means for calculating the excitation current of the irradiation lens to be obtained; the first calculation means calculates a constant from the excitation current of the irradiation lens at the set brightness and the magnification of the magnifying lens system; The present invention is characterized in that the excitation current of the irradiation lens is controlled in response to changes in the magnification of the magnifying lens system.

〔作用〕[Effect]

本発明の電子顕微鏡の明るさズーム調整装置では、所望
の明るさになるように照射レンズの励磁電流と拡大レン
ズ系の倍率を設定し、第1の演算手段により定数の演算
を行わせると、拡大レンズ系の倍率を任意に変化させて
も、その倍率から照射レンズの励磁電流が演算され所定
の明るさが得られるように制御される。このように蛍光
板の明るさを検出して帰還する負帰還の制御系でなく、
演算処理のみで明るさズームを行なうため、照射レンズ
の励磁電流が時間遅れなく直ちに決定でき、応答性の向
上が図れる。また、蛍光板における明るさを直接検出し
ないので、蛍光板における明るさの検出感度に無関係に
制御できる。
In the brightness zoom adjustment device for an electron microscope of the present invention, when the excitation current of the irradiation lens and the magnification of the magnifying lens system are set so as to obtain the desired brightness, and the first calculation means performs a constant calculation, Even if the magnification of the magnifying lens system is arbitrarily changed, the excitation current of the irradiation lens is calculated from the magnification and controlled so as to obtain a predetermined brightness. This is not a negative feedback control system that detects the brightness of the fluorescent screen and feeds it back.
Since brightness zoom is performed using only arithmetic processing, the excitation current of the irradiation lens can be determined immediately without any time delay, improving responsiveness. Furthermore, since the brightness on the fluorescent screen is not directly detected, it can be controlled independently of the brightness detection sensitivity on the fluorescent screen.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係る電子顕微鏡の明るさズーム調整装
置の1実施例を示す図、第2図は本発明に係る明るさズ
ーム調整の流れを説明するための図である。
FIG. 1 is a diagram showing one embodiment of a brightness zoom adjustment device for an electron microscope according to the present invention, and FIG. 2 is a diagram for explaining the flow of brightness zoom adjustment according to the present invention.

第1図において、1は照射レンズ、2は励磁電流設定回
路、3は励磁電流演算制御回路、4は定数記憶回路、5
は定数演算回路、6は明るさズーム制御回路、7は拡大
レンズ系、8〜10はゲート回路を示す。励磁電流設定
回路2は、例えば調整つまみにより照射レンズ1の励磁
電流を設定するものであり、ゲート回路8.9を通して
照射レンズ1を制御する。励磁電流演算制御回路3は、
定数記憶回路4に記憶された定数kを読み出し、拡大レ
ンズ系7における倍率Mより所定の演算J=g (k、
M)を行って照射レンズ1の励磁電流Jを求め、ゲート
8.10を通して照射レンズ1を制御する。定数演算回
路5は、照射レンズ1の励磁電流Jと拡大レンズ系7に
おける倍率Mより所定の演算に=h (J、 M)を行
って定数kを求め、これを定数記憶回路4に格納する。
In FIG. 1, 1 is an irradiation lens, 2 is an excitation current setting circuit, 3 is an excitation current calculation control circuit, 4 is a constant storage circuit, and 5
1 is a constant calculation circuit, 6 is a brightness zoom control circuit, 7 is a magnifying lens system, and 8 to 10 are gate circuits. The excitation current setting circuit 2 sets the excitation current of the irradiation lens 1 using, for example, an adjustment knob, and controls the irradiation lens 1 through a gate circuit 8.9. The excitation current calculation control circuit 3 is
The constant k stored in the constant storage circuit 4 is read out, and a predetermined calculation J=g (k,
M) is performed to determine the excitation current J of the irradiation lens 1, and the irradiation lens 1 is controlled through the gate 8.10. The constant calculation circuit 5 calculates a constant k by performing a predetermined calculation =h (J, M) from the excitation current J of the irradiation lens 1 and the magnification M in the magnifying lens system 7, and stores this in the constant storage circuit 4. .

明るさズーム制御回路6は、例えばオペレータから明る
さズームオンの指令が入力されると、定数演算回路5を
動作させ、ゲート9.10を制御して照射レンズlの励
磁電流を励磁電流設定回路2から励磁電流演算制御回路
3に切り換えるものである。
When the brightness zoom control circuit 6 receives a command to turn on the brightness zoom from the operator, for example, it operates the constant calculation circuit 5, controls the gate 9.10, and changes the excitation current of the irradiation lens l to the excitation current setting circuit 2. This is to switch from the excitation current calculation control circuit 3 to the excitation current calculation control circuit 3.

次に第2図により本発明に係る明るさズーム調整を説明
する。まず、オペレータは、第2図(a)に示すように
例えば拡大レンズ系を倍率MAにし、励磁電流設定回路
2により調整つまみを操作して所望の明るさが得られる
ような励磁電流JAを設定する。
Next, the brightness zoom adjustment according to the present invention will be explained with reference to FIG. First, as shown in FIG. 2(a), the operator sets the magnification lens system to MA, for example, and operates the adjustment knob using the excitation current setting circuit 2 to set the excitation current JA to obtain the desired brightness. do.

そこで、明るさズームオンの指令を入力すると、明るさ
ズーム制御回路6により定数演算回路5が制御され定数
kAが求められて定数記憶回路4に格納され、この定数
kAと倍率MAから励磁電流演算制御回路3において励
磁電流JAが求められる。他方、ズーム制御回路6でゲ
ート回路9.10に対する切り換え制御信号が論理「0
」から論理「1」に反転させることによって、照射レン
ズ1の励磁電流を励磁電流演算制御回路3から供給する
ようにゲート回路9、lOの切り換えが行われる。
Therefore, when a command to turn on the brightness zoom is input, the constant calculation circuit 5 is controlled by the brightness zoom control circuit 6, a constant kA is calculated and stored in the constant storage circuit 4, and the excitation current calculation control is performed from this constant kA and the magnification MA. In circuit 3, excitation current JA is determined. On the other hand, the switching control signal for the gate circuit 9.10 in the zoom control circuit 6 is set to logic "0".
” to logic “1”, the gate circuits 9 and 1O are switched so that the excitation current for the irradiation lens 1 is supplied from the excitation current calculation control circuit 3.

従って、倍率設定つまみMSを使って第2図(blに示
すように倍率MAをM、に変えたとすると、励磁電流演
算制御回路3は、この倍率Mmと定数kAから新たな励
磁電流J、を求め、照射レンズ1の励磁電流を倍率の変
化に追従して制御する。
Therefore, if the magnification setting knob MS is used to change the magnification MA to M as shown in FIG. The excitation current of the irradiation lens 1 is controlled to follow the change in magnification.

この励磁電流J8は、第2図(C1に示すように蛍光板
上で同じ明るさを得るものとなる。
This excitation current J8 provides the same brightness on the fluorescent screen as shown in FIG. 2 (C1).

以下、拡大レンズ系の倍率Mの変化に対応して同じ明る
さを得るための励磁電流の算出導入について詳述する。
In the following, calculation and implementation of the excitation current to obtain the same brightness in response to changes in the magnification M of the magnifying lens system will be described in detail.

第3図は明るさズームを起動する前の試料照射の照射レ
ンズ光線図である。ここで、照射レンズCLの物面まで
の距離をa (mu) 、照射レンズCLの仮想の像面
までの距離をb(鰭)、照射レンズCLと試料との距離
をl(am)、照射レンズCLの倍率をMc、試料面上
での倍率をMsとする。
FIG. 3 is an irradiation lens ray diagram of sample irradiation before starting the brightness zoom. Here, the distance between the irradiation lens CL and the object surface is a (mu), the distance between the irradiation lens CL and the virtual image plane is b (fin), the distance between the irradiation lens CL and the sample is l (am), and the distance between the irradiation lens CL and the sample is l (am). The magnification of the lens CL is Mc, and the magnification on the sample surface is Ms.

実際には試料面上での像が蛍光板に投影される。In reality, the image on the sample surface is projected onto a fluorescent screen.

また、照射レンズCLの焦点距離をf(mm)とすると
、 b−f      f      f ・・・・・・(1) と表わされる。
Further, when the focal length of the irradiation lens CL is f (mm), it is expressed as b-f f f (1).

また、拡大レンズ系(OL−PL)にて、拡大された蛍
光板FSでの倍率をMとすれば明るさズームのためには
、 Ms−M=k         ・・・・・・(2)と
すれば良い。但し、kは起動の初期条件で決まる値であ
り、ズームに入ったあとでは基準値となる。
Also, if the magnification of the magnified fluorescent screen FS in the magnifying lens system (OL-PL) is M, then for brightness zoom, Ms-M=k (2). Good. However, k is a value determined by the initial conditions of activation, and becomes a reference value after entering zoom.

一方、照射レンズCLの焦点距離は近似的に、U″ f=25xDx□    ・・・・・・(3)で表され
る。ただし、D (wm)は照射レンズCLノホールピ
ース定数であり、ポールピースのギャップ長とボア径の
和で表される。また、J (A)は照射レンズCLの励
磁電流、U”  (V)は加速電圧相対補正値である。
On the other hand, the focal length of the irradiation lens CL is approximately expressed as U″ f=25xDx□ (3). However, D (wm) is the Nohole piece constant of the irradiation lens CL, It is expressed by the sum of the gap length of the pole piece and the bore diameter. Also, J (A) is the excitation current of the irradiation lens CL, and U'' (V) is the acceleration voltage relative correction value.

従って、(2)式に(1)式と(3)を代入すれば、 k= (−−1)M となり、初期条件には、励磁電流Jと拡大レンズ系の倍
率Mが判れば、p1単に演算できる演算可能な値である
Therefore, by substituting equations (1) and (3) into equation (2), we get k= (--1)M, and the initial conditions include, if the excitation current J and the magnification M of the magnifying lens system are known, p1 It is an arithmetic value that can be simply calculated.

上記のように明るさズーム起動前の拡大レンズ系倍率M
Aと照射レンズCL励磁電流JAにより、ると、ズーム
起動後のJ値(ズームを行なうための照射レンズCLの
励磁電流値)、例えば拡大レンズ系をの倍率をMlに変
化させた時の励磁電流値J、は、ズームの目標値kAと
倍率M8及び定数Kにより で与えることができる。
As shown above, the magnification lens system magnification M before starting the brightness zoom
A and the irradiation lens CL excitation current JA, then, the J value after zoom startup (the excitation current value of the irradiation lens CL for zooming), for example, the excitation when the magnification of the magnifying lens system is changed to Ml. The current value J can be given by the zoom target value kA, the magnification M8, and the constant K.

以上の説明から明らかなように ■明るさズームをオンにした時のkAの演算。As is clear from the above explanation ■Calculation of kA when brightness zoom is turned on.

■倍率を変えた時のJ、の演算。■Calculation of J when changing the magnification.

■CLのJlによる励磁。■Excitation by Jl of CL.

を満足させれば、倍率を変化させた時の明るさズームを
瞬時に行うことができる。また、この演算は符号も考慮
しであるので、ズーム起動時の条件に制約されない。即
ち、照射レンズCLが実像結像している状態でも虚像結
像をしている状態でも成立する。
If this is satisfied, brightness zoom can be instantaneously performed when changing the magnification. Furthermore, since this calculation takes the sign into account, it is not restricted by the conditions at the time of starting the zoom. That is, this holds true whether the irradiation lens CL is forming a real image or a virtual image.

問題点は、■光源として−様な光源を想定しているが、
実際には、ガウシアン分布をしていることである。但し
、明るさズーム起動の条件は、照射レンズCLの像面が
試料上ではなく、試料上ではデフォーカスになっている
。相対的には−様な光源とみなして何等問題はない。ま
た、■結像レンズ系からは、倍率情報のみを受けて演算
で処理する系(倍率に応じた照射域の制御)であるので
、試料内での吸収による明るさの変化は考慮されない。
The problem is that - - is assumed as a light source, but
In reality, it has a Gaussian distribution. However, the condition for starting the brightness zoom is that the image plane of the irradiation lens CL is not on the sample, but is defocused on the sample. Relatively speaking, there is no problem in considering it as a --like light source. Furthermore, (2) the system receives only magnification information from the imaging lens system and processes it through calculations (controlling the irradiation area according to the magnification), so changes in brightness due to absorption within the sample are not taken into account.

しかし、−J’IQに透過電子顕微鏡は非常に薄い試料
であり、出射電子線の入射電子線に対する割合が95%
以上の試料が一般的であるので、実用上何ら問題はない
However, in -J'IQ, a transmission electron microscope uses a very thin sample, and the ratio of the outgoing electron beam to the incoming electron beam is 95%.
Since the above samples are common, there is no problem in practical use.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、従来
の時定数の大きな検出回路と演算回路による負帰還制御
のかわりに倍率情報とズーム起動時の照射レンズ励磁電
流情報のみで、倍率変化後の適正な励磁電流を演算し、
設定するので、励磁電流を瞬時に最適値に設定できる。
As is clear from the above description, according to the present invention, instead of the conventional negative feedback control using a detection circuit with a large time constant and an arithmetic circuit, the magnification can be changed using only the magnification information and the irradiation lens excitation current information at the time of zoom startup. Calculate the appropriate excitation current after
The excitation current can be instantly set to the optimum value.

特に、検出電流の微小な蛍光板における明るさの検出に
よる負帰還の制御系でなく、演算処理のみで明るさズー
ムを行なうため、照射レンズの励磁電流が時間遅れな(
直ちに決定でき、応答性の向上が図れる。
In particular, since the brightness zoom is performed only by arithmetic processing, rather than by a negative feedback control system that detects brightness in a fluorescent screen with a small detection current, the excitation current of the irradiation lens is controlled with no time delay (
Decisions can be made immediately and responsiveness can be improved.

また、蛍光板における明るさを直接検出しないので、蛍
光板における明るさの検出感度に無関係に制御できる。
Furthermore, since the brightness on the fluorescent screen is not directly detected, it can be controlled independently of the brightness detection sensitivity on the fluorescent screen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電子顕微鏡の明るさズーム調整装
置の1実施例を示す図、第2図は本発明に係る明るさズ
ーム調整の流れを説明するための図、第3図は明るさズ
ームを起動する前の試料照射の照射レンズ光線図、第4
図は従来の明るさズームを備えた電子顕微鏡の回路構成
例を示す図である。 1・・・照射レンズ、2・・・励磁電流設定回路、3・
・・励磁電流演算制御回路、4・・・定数記憶回路、5
・・・定数演算回路、6・・・明るさズーム制御回路、
7・・・拡大レンズ系、8〜lO・・・ゲート回路。 d          !          ’+/
++/+−/
FIG. 1 is a diagram showing an embodiment of the brightness zoom adjustment device for an electron microscope according to the present invention, FIG. 2 is a diagram for explaining the flow of brightness zoom adjustment according to the present invention, and FIG. 3 is a diagram showing the brightness Irradiation lens ray diagram of sample irradiation before starting the zoom, 4th
The figure is a diagram showing an example of a circuit configuration of a conventional electron microscope equipped with a brightness zoom. 1... Irradiation lens, 2... Excitation current setting circuit, 3.
... Excitation current calculation control circuit, 4... Constant storage circuit, 5
... constant calculation circuit, 6 ... brightness zoom control circuit,
7... Magnifying lens system, 8~lO... Gate circuit. d! '+/
++/+-/

Claims (1)

【特許請求の範囲】[Claims] (1)拡大レンズ系の倍率に応じて照射レンズの励磁電
流を制御して蛍光板に形成する像の明るさを安定化する
電子顕微鏡の明るさズーム調整装置であって、照射レン
ズの励磁電流と拡大レンズ系の倍率から所定の演算を行
って定数を求める第1の演算手段、定数と拡大レンズ系
の倍率から定数演算時と同等の明るさを得る照射レンズ
の励磁電流を算出する第2の演算手段を備え、設定され
た明るさにおける照射レンズの励磁電流と拡大レンズ系
の倍率から第1の演算手段により定数を求め、第2の演
算手段により拡大レンズ系の倍率の変化に対応して照射
レンズの励磁電流を制御することを特徴とする電子顕微
鏡の明るさズーム調整装置。
(1) A brightness zoom adjustment device for an electron microscope that stabilizes the brightness of an image formed on a fluorescent screen by controlling the excitation current of the irradiation lens according to the magnification of the magnification lens system, which A first calculating means calculates a constant by performing a predetermined calculation from the magnification of the magnifying lens system, and a second calculating means calculates an excitation current of the irradiation lens to obtain the same brightness as when calculating the constant from the constant and the magnification of the magnifying lens system. The first calculating means calculates a constant from the excitation current of the irradiation lens and the magnification of the magnifying lens system at a set brightness, and the second calculating means calculates a constant corresponding to a change in the magnification of the magnifying lens system. A brightness zoom adjustment device for an electron microscope, characterized by controlling an excitation current of an irradiation lens.
JP63033729A 1988-02-16 1988-02-16 Brightness zoom adjustment device for electron microscope Expired - Lifetime JPH07105207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63033729A JPH07105207B2 (en) 1988-02-16 1988-02-16 Brightness zoom adjustment device for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63033729A JPH07105207B2 (en) 1988-02-16 1988-02-16 Brightness zoom adjustment device for electron microscope

Publications (2)

Publication Number Publication Date
JPH01209642A true JPH01209642A (en) 1989-08-23
JPH07105207B2 JPH07105207B2 (en) 1995-11-13

Family

ID=12394489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63033729A Expired - Lifetime JPH07105207B2 (en) 1988-02-16 1988-02-16 Brightness zoom adjustment device for electron microscope

Country Status (1)

Country Link
JP (1) JPH07105207B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362978A (en) * 1976-11-17 1978-06-05 Hitachi Ltd Electron microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362978A (en) * 1976-11-17 1978-06-05 Hitachi Ltd Electron microscope

Also Published As

Publication number Publication date
JPH07105207B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPH01209642A (en) Brightness zoom-regulating device for electron microscope
US4151417A (en) Electron beam exposure apparatus
JPH03134944A (en) Electron beam device
JPH0234139B2 (en)
JPS5853468B2 (en) scanning electron microscope
JP2000260382A (en) Charged particle beam device
JP3101089B2 (en) Brightness correction method for scanning electron microscope
US6933512B2 (en) Charged particle beam instrument
JPH0228601Y2 (en)
JPH03138841A (en) Scanning type electron microscope
JPS5810818B2 (en) electromagnetic lens device
JPS6115572Y2 (en)
JPS589545B2 (en) How to get the most out of your day
JPH073772B2 (en) Electronic beam focusing device
JPS6320049Y2 (en)
JPH03289036A (en) Signal detection device for electronic microscope
JPS6245286A (en) Image pickup tube device and its driving method
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPS614146A (en) Electron beam device
JPH0119225B2 (en)
JPH0133898B2 (en)
JPH051585B2 (en)
JPH02253221A (en) Autofocusing device for microscope
JPH04334858A (en) Observation mode switch-over method for transmission type electron microscope
JPH05325861A (en) Sample photographing device for use in scanning electron microscope, etc.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13