JPH01209424A - Liquid crystal electrooptic device - Google Patents

Liquid crystal electrooptic device

Info

Publication number
JPH01209424A
JPH01209424A JP3419888A JP3419888A JPH01209424A JP H01209424 A JPH01209424 A JP H01209424A JP 3419888 A JP3419888 A JP 3419888A JP 3419888 A JP3419888 A JP 3419888A JP H01209424 A JPH01209424 A JP H01209424A
Authority
JP
Japan
Prior art keywords
liquid crystal
molecules
optical device
optical
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3419888A
Other languages
Japanese (ja)
Inventor
Hiroshi Watabe
渡部 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3419888A priority Critical patent/JPH01209424A/en
Publication of JPH01209424A publication Critical patent/JPH01209424A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Abstract

PURPOSE:To improve the performance of field angle, response, and display by eliminating twist structure and specifying a value DELTAn.d, orienting molecules contacting upper and lower substrates so that pretilt angles are not in parallel, and making the axes of polarization of polarizing plates cross each other at right angles and setting the angle between the axes of polarization and liquid crystal molecule major axes to almost 45 deg.. CONSTITUTION:Liquid crystal molecules 105 have no twist structure and are oriented so that the angles (pretilt angle) between the substrates and liquid crystal molecule major axes are such angles that molecules nearby the two substrates 102 are not parallel. The product (DELTAn.d) of the thickness of the liquid crystal layer and the effective refractive index anisotropy to light incident on the substrate 102 vertically is set to 0.2-0.35mum. Further, the liquid crystal layer is formed between the two polarizing plates 101 which are arranged so as to have their axes of polarization at right angles to each other, and the angle between the polarization axis and the liquid crystal molecule major axis projected on the substrate 102 is set to about 45 deg.. Consequently, performance exceeding a TN system in terms of the field angle, response, and display is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶電気光学装置の応用分野であるデイスプ
レィ、ライトバルブ、光変調器などの装置に用いられる
液晶電気光学装置。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal electro-optical device used in devices such as displays, light valves, and optical modulators, which are the applied fields of liquid crystal electro-optical devices.

〔従来の技術〕[Conventional technology]

従来の液晶電気光学的装置は、液晶層がねじれ構造を有
する、いわゆるTN方式か主に用いられている。
Conventional liquid crystal electro-optical devices mainly use the so-called TN system in which the liquid crystal layer has a twisted structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このような従来の液晶電気光学装置は、ねじれ
構造に帰因する分散特性の為、液晶層の層厚dと、光学
異方性△nとの積ΔnXdの値を高目に設定しなければ
ならず、視角特性が劣る傾向がある。また、プレティル
ト角を平行に付けた場合も視角が狭くなる傾向が出る。
However, in such conventional liquid crystal electro-optical devices, the value of the product ΔnXd of the layer thickness d of the liquid crystal layer and the optical anisotropy Δn is set to a high value due to the dispersion characteristics resulting from the twisted structure. The viewing angle characteristics tend to be poor. Furthermore, when the pretilt angles are set in parallel, the viewing angle tends to become narrower.

さらにΔn−dが0.35μmより大きいと視角による
色特性が大きく変化する為視角特性を劣化させている。
Furthermore, if Δn-d is larger than 0.35 μm, the color characteristics change greatly depending on the viewing angle, thereby degrading the viewing angle characteristics.

また、光学補償板を用いた場合、ねじれ構造を有すると
、△nXdの許容下限値が、ねじれ角が大きくなればな
るだけ高くなる為同一液晶材料(同一な△nの材料)を
用いると応答が遅くなる。
In addition, when using an optical compensator, if it has a twisted structure, the allowable lower limit value of △nXd increases as the twist angle increases, so if the same liquid crystal material (material with the same △n) is used, the response is delayed.

さらに、ねじれ構造を有するものは一軸性の光学補償板
では、完全に補償出来ず充分な特性を得る為には複数の
光学補償板を重ねるとか、液晶パネルを用いる方式が取
られており、コストが高くなっていた。
Furthermore, for those with a twisted structure, a uniaxial optical compensator cannot completely compensate, and in order to obtain sufficient characteristics, it is necessary to stack multiple optical compensators or use a liquid crystal panel, which is costly. was rising.

本発明の目的は、このような従来の欠点を解消し、視角
および応答特性にすぐれた液晶電気光学装置を提供する
ことにある。
An object of the present invention is to eliminate such conventional drawbacks and provide a liquid crystal electro-optical device with excellent viewing angle and response characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の液晶電気光学装置は、ねじれ構造をなくし、Δ
n−ciを0.2μmから0.35μmの間に設置し、
かつ上下基板に接する分子のブレティルI・角が反平行
と°なるよう配向すると共に、偏光板の偏光軸を直交さ
せ、かつこの偏光軸と液晶分子長軸との角度を45”付
近に設定したことを特徴とする。
The liquid crystal electro-optical device of the present invention eliminates the twisted structure and
n-ci is set between 0.2 μm and 0.35 μm,
In addition, the molecules in contact with the upper and lower substrates were oriented so that their bretil I angles were antiparallel, and the polarization axes of the polarizing plates were orthogonal, and the angle between this polarization axis and the long axis of the liquid crystal molecules was set to around 45". It is characterized by

これにより視角が広がり、応答も早くすることができる
。しかもオフ時の黒の光モレをなくし高いコントラスト
を得られるよう動作パネルと同じΔnXdを有する一軸
性光学補償板を設置し、さらに高分子の一軸延伸フイル
ムをもってこの光学補償板とする事により、安価にしか
も任意の形状にこれを設ける事を目的とする。
This allows for a wider viewing angle and faster response. Furthermore, by installing a uniaxial optical compensator with the same ΔnXd as the operating panel to eliminate black light leakage and obtain high contrast when off, and by using a uniaxially stretched polymer film as the optical compensator, the cost is reduced. Moreover, the purpose is to provide this in an arbitrary shape.

〔実 施 例〕〔Example〕

本発明に用いた液晶電気光学装置の構成を第1図に示す
、ここで、101は偏光板、102はガラス基板、10
3は透明電極、104は液晶を封じこめかつセル厚を所
定の値に設定する為のシール部、また、105は液晶分
子の配列を模式的に表わすもので、上基板と下基板とで
分子長軸が反平行となる様配向処理されている。配向処
理は103の電極上を薄くポリイミド樹脂で覆い、それ
を布で一方向にこするラビング処理により行なった。プ
レティルト角は約3°であった。ラビングのこすり方向
を上下基板同一とすることによりプレティルトの方向が
反平行の配向を得た。106は一軸性の光学補償板で、
高分子の延伸フィルムを用いた。第2図は、第1図の光
学補償板を201の液晶パネルで機能させたものである
The configuration of the liquid crystal electro-optical device used in the present invention is shown in FIG. 1, where 101 is a polarizing plate, 102 is a glass substrate, and 10
3 is a transparent electrode, 104 is a sealing part for sealing in the liquid crystal and setting the cell thickness to a predetermined value, and 105 is a schematic representation of the arrangement of liquid crystal molecules. The long axes are oriented antiparallel. The alignment treatment was performed by covering the electrode 103 thinly with polyimide resin and rubbing it in one direction with a cloth. The pretilt angle was approximately 3°. By making the rubbing direction the same for the upper and lower substrates, an orientation in which the pretilt directions were antiparallel was obtained. 106 is a uniaxial optical compensation plate,
A stretched polymer film was used. FIG. 2 shows a liquid crystal panel 201 in which the optical compensator shown in FIG. 1 functions.

第3図は本発明において用いた構成要素部分の光学的な
配置を表わし、301.302は上ないし下側閤光板の
偏光軸で、各々直交するかほぼ直交した配置を有し、さ
らに303は液晶分子の分子長軸方向を基板面ノ\投影
した状態を表わし301と302の偏光軸に対しほぼ4
5°の配置を有する。
FIG. 3 shows the optical arrangement of the component parts used in the present invention, in which 301 and 302 are the polarization axes of the upper and lower polarizing plates, which are orthogonal or almost orthogonal to each other, and 303 is the polarization axis of the upper and lower polarizing plates. It represents the state in which the long axis direction of liquid crystal molecules is projected onto the substrate surface, and is approximately 4 degrees with respect to the polarization axes of 301 and 302.
It has a 5° configuration.

さらに、光学補償板を用いた場合の光軸の方向を第4図
に示す、ここで401は光軸方向を示しており、303
の分子長軸の投影方向と直交するかほぼ直交の位置に配
せられている。
Furthermore, the direction of the optical axis when using an optical compensator is shown in FIG. 4, where 401 indicates the optical axis direction, and 303
It is arranged at a position perpendicular or almost perpendicular to the projection direction of the long axis of the molecule.

(実施例−1) 光学補償板を用いない、第3図の配置の実施例を示す、
550nmの波長における△nが0゜095で誘電異方
性が+5.3の液晶材料を、セル厚2.9μmの液晶パ
ネルに封入し、第3図の光学配置に設置しながら、10
0Hzの矩形波を0■。−2から6■。、まで変化させ
た時の光学変化の様子を第5図501の曲線で表わす、
この場合電界印加時に黒となるポジ型モードとなる。こ
の際、パネルの鉛直方向から60°傾いた視角における
コントラスト比を全方向にわたり、従来のTN型と比較
しながら第6図に示す、ここで701は本実験のセルで
あり702は従来のTN型のポジモードのものである0
図中で、目盛はコントラスト比を表わす、駆動電圧は各
々15V。−2である。
(Example-1) An example of the arrangement shown in FIG. 3 without using an optical compensation plate is shown.
A liquid crystal material with Δn of 0°095 and dielectric anisotropy of +5.3 at a wavelength of 550 nm was sealed in a liquid crystal panel with a cell thickness of 2.9 μm, and while installed in the optical arrangement shown in Fig. 3,
0Hz square wave 0■. -2 to 6 ■. The state of the optical change when changed to , is shown by the curve 501 in FIG.
In this case, it becomes a positive mode in which the color becomes black when an electric field is applied. At this time, the contrast ratio at a viewing angle tilted 60 degrees from the vertical direction of the panel is shown in Fig. 6 in all directions and compared with the conventional TN type. Here, 701 is the cell used in this experiment and 702 is the conventional TN type. 0, which is the positive mode of the type.
In the figure, the scale represents the contrast ratio, and the driving voltage is 15V each. -2.

応答速度は、本発明のものか、室温6Vo−p駆動で立
ち上り、立ち下りともに4msであるのに対しTN型で
は同一条件で、各々20m5と約5倍程本発明のものが
速い。
The response speed of the present invention is 4 ms for both rise and fall when driven at room temperature with 6Vo-p, whereas the response speed of the present invention is about 5 times faster at 20 m5 each under the same conditions for the TN type.

(実施例−2) 光学補償板を使用した第4図の配置の実施例を示す、4
01の光学補償板には、高分子の一軸延伸フィルムを使
用し、550 n mにおける△n×dが0,28のも
のを使用した。液晶パネルは実施例1のものを使用し第
4図の配置に設置し、対向する電極間に100 Hzの
矩形波を0■。−3から6Vo−まで印加した。その際
の透過率変化を第5図502の曲線に示す、この場合、
電界印加時に白く抜けるネガ型モードとなる。TN型の
場合のネガ型モードの特性を504に示すが、電界無印
加時、黒レベルの光モレが見られる。この原因は第7図
に示す様な、液晶パネルの透過率波長依存性に帰因して
おり、701.703はそれぞれ本発明とTN型のオフ
状態である黒レベルの波長特性を表わし、702.70
4はそれぞれ本発明とTN型におけるオン状態つまり白
レベルの波長特性を示している。ここで見られる通りT
N型のネガモードでは、黒レベルが波長によって光モレ
を起こしているのに対し、本発明の液晶電気光学装置で
は全波長に渡り均一な遮光がなされ黒がより黒くなる結
果が得られた。
(Example 2) Showing an example of the arrangement shown in FIG. 4 using an optical compensator, 4
For the optical compensator No. 01, a uniaxially stretched polymer film was used, and Δn×d at 550 nm was 0.28. The liquid crystal panel used in Example 1 was installed in the arrangement shown in Figure 4, and a 100 Hz rectangular wave was applied between the opposing electrodes. -3 to 6Vo- was applied. The transmittance change at that time is shown in the curve 502 of FIG. 5, in this case,
When an electric field is applied, it becomes a negative mode that appears white. The characteristics of the negative mode in the case of the TN type are shown in 504, and light leakage at the black level is observed when no electric field is applied. The cause of this is due to the wavelength dependence of the transmittance of the liquid crystal panel as shown in FIG. .70
4 shows the wavelength characteristics of the on-state, that is, white level, in the present invention and the TN type, respectively. As seen here T
In the N-type negative mode, light leakage occurs in the black level depending on the wavelength, whereas in the liquid crystal electro-optical device of the present invention, light is uniformly blocked over all wavelengths, resulting in a blacker black.

(実施例−3) 実施例−1に用いた液晶パネルを2組使用し第2図に示
す構成で配置し片方のパネルのみ通電した場合も実施例
−2と全く同一の効果が得られた。
(Example 3) When two sets of liquid crystal panels used in Example 1 were used and arranged in the configuration shown in Figure 2, and only one panel was energized, exactly the same effect as Example 2 was obtained. .

(実施例−4) 実施例−2において、高分子−軸延伸フィルムを部分的
に設置した場合の表示を第8図に示す。
(Example 4) FIG. 8 shows the display when the polymer-axially stretched film was partially installed in Example 2.

801は、光学補償板なし、802は光学補償板を入れ
た場合で表示を容易にネガ・ポジ反転出来る。
801 is a display without an optical compensation plate, and 802 is a display with an optical compensation plate, so that the display can be easily reversed from negative to positive.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明を用いれば、視角・応答ならびに表
示性能の点で従来のTN方式を上回わる性能が得られる
As described above, by using the present invention, performance superior to the conventional TN system can be obtained in terms of viewing angle, response, and display performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は、本発明における液晶電気光学装置の構成
を示している図、第3.4図は、本発明における液晶電
気光学装置の光学要素の配置を示している図、第5図は
、本発明及び従来のTN方式の電圧・透過率特性を示し
ている図。第6図は、本発明における装置の視角特性を
従来のTN方式との比較で示している図。第7図は、本
発明における液晶電気光学装置の透過率の波長特性を、
従来のTN方式と比較して示している図。第8図は部分
的に光学補償板を設置した場合の表示の反転を示してい
る図。 以  上 出願人 セイコーエプソン株式会社 二〇=工===ゴヴlot +01 第1図 第2図 第5図 j]o。 第6図 堤&[η− 第7図
1.2 is a diagram showing the configuration of a liquid crystal electro-optical device according to the present invention, FIG. 3.4 is a diagram showing the arrangement of optical elements of the liquid crystal electro-optical device according to the present invention, and FIG. FIG. 2 is a diagram showing voltage/transmittance characteristics of the present invention and a conventional TN system. FIG. 6 is a diagram showing the viewing angle characteristics of the device according to the present invention in comparison with a conventional TN system. FIG. 7 shows the wavelength characteristics of the transmittance of the liquid crystal electro-optical device according to the present invention.
The figure which shows comparison with the conventional TN system. FIG. 8 is a diagram showing the inversion of the display when an optical compensation plate is partially installed. Applicant Seiko Epson Co., Ltd. 20 = Engineering = = = Govlot +01 Figure 1 Figure 2 Figure 5 j] o. Figure 6 Bank & [η- Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)対向する2枚の基板上に電極を設け、その電極間
に液晶材料を挟持してなる液晶電気光学装置において、
かかる液晶層における液晶分子の配列がねじれ構造を有
せず、しかも基板と液晶分子長軸とのなす角度(プレテ
ィルト角)が、2枚の基板各々の付近の分子どうし平行
とならない配向構造を有し、かつ液晶層の層厚と基板と
垂直方向に入射する光に対する実効的な屈折率異方性と
の積が0.2μmから0.35μmの間に入る様設定さ
れ、さらに偏光軸が直行するよう配置された2枚の偏光
板の間に液晶層を有し、かつその偏光軸と基板に投影さ
れた液晶分子長軸との角度が45°付近に位置するよう
設定されたことを特徴とする液晶電気光学装置。
(1) In a liquid crystal electro-optical device in which electrodes are provided on two opposing substrates and a liquid crystal material is sandwiched between the electrodes,
The arrangement of liquid crystal molecules in such a liquid crystal layer does not have a twisted structure, and the angle between the substrate and the long axis of the liquid crystal molecules (pretilt angle) has an alignment structure in which the molecules near each of the two substrates are not parallel to each other. In addition, the product of the thickness of the liquid crystal layer and the effective refractive index anisotropy for light incident perpendicular to the substrate is set to be between 0.2 μm and 0.35 μm, and the polarization axis is orthogonal. It is characterized by having a liquid crystal layer between two polarizing plates arranged to Liquid crystal electro-optical device.
(2)使用される液晶材料の誘電率の異方性が正であり
、かつプレティルト角が45°以下である事を特徴とす
る第1項記載の液晶電気光学装置。
(2) The liquid crystal electro-optical device according to item 1, wherein the liquid crystal material used has positive dielectric anisotropy and a pretilt angle of 45° or less.
(3)分子長軸方向と直交しかつ液晶層厚と実効的光学
異方性との積の値に等しいかほぼ等しい値を有す一軸性
光学補償板を液晶層といずれか一方の偏光板との間に、
画面全体かあるいは部分的にわたつて設置し表示モード
を電界印加時黒のポジ型から電界印加時白のネガ型に切
り換え可能とした事を特徴とする第1項記載の液晶電気
光学装置。
(3) A uniaxial optical compensator that is perpendicular to the long axis direction of the molecules and has a value equal to or almost equal to the product of the liquid crystal layer thickness and effective optical anisotropy is attached to the liquid crystal layer and one of the polarizing plates. Between,
2. The liquid crystal electro-optical device according to claim 1, wherein the liquid crystal electro-optical device is installed over the entire screen or a portion of the screen, and is capable of switching the display mode from a black positive type when an electric field is applied to a white negative type when an electric field is applied.
JP3419888A 1988-02-17 1988-02-17 Liquid crystal electrooptic device Pending JPH01209424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3419888A JPH01209424A (en) 1988-02-17 1988-02-17 Liquid crystal electrooptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3419888A JPH01209424A (en) 1988-02-17 1988-02-17 Liquid crystal electrooptic device

Publications (1)

Publication Number Publication Date
JPH01209424A true JPH01209424A (en) 1989-08-23

Family

ID=12407467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3419888A Pending JPH01209424A (en) 1988-02-17 1988-02-17 Liquid crystal electrooptic device

Country Status (1)

Country Link
JP (1) JPH01209424A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188419A (en) * 1989-12-18 1991-08-16 Matsushita Electric Ind Co Ltd Liquid crystal display device and its production
JPH03228016A (en) * 1990-02-01 1991-10-09 Sharp Corp Liquid crystal display device
US5061043A (en) * 1988-12-24 1991-10-29 Samsung Electron Devices Co., Ltd. Color liquid crystal display device with a green dye
JPH0498221A (en) * 1990-08-17 1992-03-30 Nec Corp Liquid crystal element
JPH08313909A (en) * 1995-05-23 1996-11-29 Fujitsu Ltd Liquid crystal display panel
US5627665A (en) * 1993-07-15 1997-05-06 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US5668651A (en) * 1994-03-18 1997-09-16 Sharp Kabushiki Kaisha Polymer-wall LCD having liquid crystal molecules having a plane-symmetrical bend orientation
GB2314642A (en) * 1996-06-26 1998-01-07 Sharp Kk Twisted nematic liquid crystal device
EP0872757A1 (en) * 1995-09-26 1998-10-21 Chisso Corporation Homeotropic sprayed-nematic liquid crystal display device
JP2005292674A (en) * 2004-04-05 2005-10-20 Alpine Electronics Inc Display device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061043A (en) * 1988-12-24 1991-10-29 Samsung Electron Devices Co., Ltd. Color liquid crystal display device with a green dye
JPH03188419A (en) * 1989-12-18 1991-08-16 Matsushita Electric Ind Co Ltd Liquid crystal display device and its production
JPH03228016A (en) * 1990-02-01 1991-10-09 Sharp Corp Liquid crystal display device
JPH0498221A (en) * 1990-08-17 1992-03-30 Nec Corp Liquid crystal element
US5706109A (en) * 1993-04-27 1998-01-06 Sharp Kabushiki Kaisha Liquid crystal display with polymeric support
USRE38288E1 (en) * 1993-04-27 2003-10-28 Sharp Kabushiki Kaisha Liquid crystal display with polymeric support
US5627665A (en) * 1993-07-15 1997-05-06 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US5668651A (en) * 1994-03-18 1997-09-16 Sharp Kabushiki Kaisha Polymer-wall LCD having liquid crystal molecules having a plane-symmetrical bend orientation
JPH08313909A (en) * 1995-05-23 1996-11-29 Fujitsu Ltd Liquid crystal display panel
EP0872757A1 (en) * 1995-09-26 1998-10-21 Chisso Corporation Homeotropic sprayed-nematic liquid crystal display device
EP0872757A4 (en) * 1995-09-26 1999-11-24 Chisso Corp Homeotropic sprayed-nematic liquid crystal display device
GB2314642A (en) * 1996-06-26 1998-01-07 Sharp Kk Twisted nematic liquid crystal device
US5880798A (en) * 1996-06-26 1999-03-09 Sharp Kabushiki Kaisha Twisted nematic liquid crystal device
JP2005292674A (en) * 2004-04-05 2005-10-20 Alpine Electronics Inc Display device
JP4640759B2 (en) * 2004-04-05 2011-03-02 アルパイン株式会社 Display device

Similar Documents

Publication Publication Date Title
US9618779B2 (en) LCD viewing angle control method, LCD panel and LCD
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
JPH0449929B2 (en)
JPH02176625A (en) Liquid crystal display device
JPH01209424A (en) Liquid crystal electrooptic device
JPH0235416A (en) Liquid crystal display device
JPH03209440A (en) Liquid crystal display element
US20220269128A1 (en) Display device and vehicle-use display device
KR20010065169A (en) Liquid crystal display device
JP2789595B2 (en) Liquid crystal electro-optical element
JP2855649B2 (en) Projection display device
JPH0643452A (en) Liquid crystal display device
JPH05303099A (en) Liquid crystal display panel and liquid crystal display device
JPS581777B2 (en) exiyoirohiyoujisouchi
JP2809980B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0749493A (en) Liquid crystal display panel
US7307678B2 (en) Liquid crystal display and fabricating method thereof
KR100293807B1 (en) Liquid crystal display
KR20020057671A (en) Liquid crystal display
KR20000039660A (en) Liquid crystal display device
JPH02304526A (en) Liquid crystal display element
JPH05232478A (en) Liquid crystal display element
JPH03215831A (en) Liquid crystal display element
KR100466394B1 (en) Fringe field switching mode lcd
JP3074805B2 (en) Display element