JPH05303099A - Liquid crystal display panel and liquid crystal display device - Google Patents
Liquid crystal display panel and liquid crystal display deviceInfo
- Publication number
- JPH05303099A JPH05303099A JP10948592A JP10948592A JPH05303099A JP H05303099 A JPH05303099 A JP H05303099A JP 10948592 A JP10948592 A JP 10948592A JP 10948592 A JP10948592 A JP 10948592A JP H05303099 A JPH05303099 A JP H05303099A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal display
- display panel
- substrate
- substrates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、画像表示を行なう液晶
表示パネルおよび液晶表示装置に関し、特に表示品位の
高い液晶表示パネルおよび液晶表示装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display panel and a liquid crystal display device for displaying an image, and more particularly to a liquid crystal display panel and a liquid crystal display device having high display quality.
【0002】[0002]
【従来の技術】液晶表示装置の中でも特に表示品位の高
い画像を得るために、近年薄膜トランジスタをスイッチ
ング素子として用いたアクティブマトリクス駆動方式の
表示装置の開発が盛んである。これは、スイッチング素
子のない単純マトリクス駆動方式に比べて、走査電極数
に関係なく高いコントラスト比が得られること、解像度
が高い大容量表示においても鮮明な画像が得られること
による。2. Description of the Related Art In order to obtain an image with a particularly high display quality among liquid crystal display devices, active matrix drive type display devices using thin film transistors as switching elements have been actively developed in recent years. This is because a high contrast ratio can be obtained regardless of the number of scanning electrodes and a clear image can be obtained even in a large-capacity display with high resolution, as compared with a simple matrix driving method without a switching element.
【0003】このようなアクティブマトリクス方式の液
晶表示装置において広く用いられている液晶表示モード
に、TN(Twisted Nematic)方式のNW(Normally Wh
ite)モードがある。TN方式は基板間で液晶分子が90
゜捩れた構成をもつ液晶表示パネルを2枚の偏光板で挟
んだものである。また2枚の偏光板の偏光軸方向が互い
に直交し、また一方の偏光板はその偏光軸が一方の基板
に接している液晶分子の長軸方向と平行か垂直になるよ
うに貼り合わせているモードがNWモードである。この
TN方式のNWモードの場合、電圧無印加またはあるし
きい値電圧付近の低電圧において白表示、それより高い
電圧において黒表示となる。A liquid crystal display mode widely used in such an active matrix type liquid crystal display device is a TN (Twisted Nematic) type NW (Normally Wh).
ite) mode. The TN method has 90 liquid crystal molecules between the substrates.
A liquid crystal display panel having a twisted structure is sandwiched between two polarizing plates. The polarization axes of the two polarizing plates are orthogonal to each other, and the one polarizing plate is bonded so that the polarization axis is parallel or perpendicular to the long axis direction of the liquid crystal molecules in contact with one substrate. The mode is the NW mode. In the TN mode NW mode, white display is performed at no voltage applied or at a low voltage near a certain threshold voltage, and black display is performed at a higher voltage.
【0004】このように表示画像が得られるのは、液晶
表示パネルに電圧を印加すると液晶分子は捩れ構造をほ
どきながら電界の向きに配列しようとし、この分子の配
列状態により液晶表示パネルを通過してくる光の偏光特
性が変わり、光の透過率が変調されるからである。とこ
ろで同じ分子配列の状態でも液晶表示パネルに入射して
くる光の入射方向によって光の偏光特性は変化するの
で、入射方向に対して光の透過率は異なってくる。した
がって、液晶表示パネルの特性は視角依存性を持つこと
になる。この視角依存性は次のような特徴を有してい
る。まずNWモードの場合は、電圧印加によって液晶分
子が基板に対して立ち上がっていく黒表示付近で顕著で
ある。そしてその時の視角依存性は液晶層中心部付近の
液晶分子の長軸を含み、かつ基板に垂直な平面に対して
ほぼ対称の特性を持ち、この平面内に進行方向を持つ光
線の基板への入射角度によって透過率が著しく変化する
ので、この方向での視角特性の変化が大きい。The display image is obtained as described above because when a voltage is applied to the liquid crystal display panel, the liquid crystal molecules try to align in the direction of the electric field while unwinding the twisted structure, and the liquid crystal molecules pass through the liquid crystal display panel depending on the alignment state of the molecules. This is because the polarization characteristics of the incoming light change and the light transmittance is modulated. By the way, even in the state of the same molecular arrangement, the polarization characteristics of light change depending on the incident direction of the light incident on the liquid crystal display panel, so that the light transmittance differs depending on the incident direction. Therefore, the characteristics of the liquid crystal display panel have viewing angle dependence. This viewing angle dependency has the following features. First, in the NW mode, it is remarkable in the vicinity of black display in which liquid crystal molecules stand up with respect to the substrate by applying a voltage. The viewing angle dependency at that time has characteristics that include the long axis of the liquid crystal molecules near the center of the liquid crystal layer and that is substantially symmetrical with respect to a plane perpendicular to the substrate, and that the light beam having a traveling direction in this plane is directed to the substrate. Since the transmittance significantly changes depending on the incident angle, the viewing angle characteristics change greatly in this direction.
【0005】従来の液晶表示パネルにおけるラビング処
理方向を図10に示したが、一般には、画面に対してそ
れぞれ手前側基板21に矢印23方向で、対向する基板
22に矢印24方向でラビング処理を施すので、液晶層
中心部付近の液晶分子の長軸方向は基板21,22に垂
直な平面内で整列し、したがって視角特性の変化の大き
い方向は画面の上下方向25であり、左右に対しては対
称である。FIG. 10 shows the rubbing treatment direction in the conventional liquid crystal display panel. Generally, the rubbing treatment is performed on the front substrate 21 in the direction of arrow 23 and on the opposite substrate 22 in the direction of arrow 24 with respect to the screen. As a result, the major axis directions of the liquid crystal molecules near the center of the liquid crystal layer are aligned in a plane perpendicular to the substrates 21 and 22, so that the direction in which the viewing angle characteristics change greatly is the vertical direction 25 of the screen, and Is symmetric.
【0006】[0006]
【発明が解決しようとする課題】しかしながら上記の従
来のNWモードでのTN型液晶表示パネルでは、以下の
ような課題を有していた。However, the above-mentioned conventional TN type liquid crystal display panel in the NW mode has the following problems.
【0007】NWモードの場合、電圧を印加して液晶分
子が基板面に対して完全に垂直に立ち上がれば、基板に
垂直な方向から見て真の黒となる。これは液晶分子は、
分子の長軸方向が光の進行方向に平行な時には光学的な
位相差は生じず、光は偏光成分を変化することなく液晶
層を通過するためである。しかしながら、実際には電圧
をかなり印加しても、基板界面付近の液晶分子は基板と
の相互作用が強く立ち上がりにくい。また液晶層中心部
の液晶分子も完全には立ち上がらないので、基板に垂直
な方向に進行する光に対して、光学的な位相差は無くな
らず、真の黒とはならない。In the NW mode, when a voltage is applied and the liquid crystal molecules rise completely vertically to the substrate surface, the liquid crystal molecules become true black when viewed from the direction perpendicular to the substrate. This is a liquid crystal molecule
This is because when the major axis direction of the molecule is parallel to the traveling direction of light, no optical phase difference occurs and the light passes through the liquid crystal layer without changing the polarization component. However, in reality, even when a considerable voltage is applied, the liquid crystal molecules near the substrate interface have a strong interaction with the substrate and are hard to rise. Further, since the liquid crystal molecules in the central portion of the liquid crystal layer do not rise completely, the optical phase difference does not disappear with respect to the light traveling in the direction perpendicular to the substrate, and true black is not obtained.
【0008】一方このような分子配列の状態では、液晶
層中心部の液晶分子の長軸方向にほぼ等しい進行方向の
光の方が基板に垂直な方向を進行する光より光学的な位
相差が少なくなる。したがって、基板に対して垂直より
数度だけ上下いずれかの方向に傾けて光を入射(以下視
角方向の入射角度という)させた方が黒の沈み込むコン
トラスト比の良好な表示が得られる。しかしながら、こ
の視角方向の入射角度と基板法線に対して対称な角度か
ら入射(以下逆視角方向の入射角度という)した光は急
激に黒が沈み込まなくなる。したがって、実際の液晶表
示パネルでは基板法線を中心として画面の上下方向に対
してその視角特性が図11に示す従来の液晶表示パネル
の視角特性図のように著しく非対称となってしまってい
る。On the other hand, in such a state of the molecular alignment, the light having a traveling direction substantially equal to the major axis direction of the liquid crystal molecules at the center of the liquid crystal layer has an optical phase difference more than the light traveling in the direction perpendicular to the substrate. Less. Therefore, it is possible to obtain a display with a good contrast ratio in which black sinks when the light is incident (hereinafter referred to as an incident angle in the viewing angle direction) at an angle of up or down with respect to the substrate by several degrees. However, black does not suddenly sink in light that is incident from an angle that is symmetrical with respect to the incident angle in the viewing angle direction and the substrate normal line (hereinafter referred to as an incident angle in the reverse viewing angle direction). Therefore, in the actual liquid crystal display panel, the viewing angle characteristic is remarkably asymmetrical with respect to the vertical direction of the screen centering on the substrate normal, as shown in the viewing angle characteristic diagram of the conventional liquid crystal display panel shown in FIG.
【0009】このような非対称性を持つ液晶表示パネル
を用いた直視型大画面の液晶表示装置の場合、液晶表示
パネルの上下で輝度の異なる不均一な表示となったり、
液晶表示パネルを見る角度を少しでも上下方向で変える
と液晶表示パネル各部の表示輝度が急激に変化して非常
に見にくい表示となる。In the case of a direct-view large-screen liquid crystal display device using a liquid crystal display panel having such an asymmetry, uneven display with different brightness is produced above and below the liquid crystal display panel,
If the viewing angle of the liquid crystal display panel is changed in the vertical direction even a little, the display brightness of each part of the liquid crystal display panel changes abruptly, and the display becomes very difficult to see.
【0010】またこのような非対称性を持つ液晶表示パ
ネルを高コントラスト比を必要とする投射型映像システ
ムに用いた場合、次のような問題が生じる。Further, when the liquid crystal display panel having such an asymmetry is used in a projection type image system requiring a high contrast ratio, the following problems occur.
【0011】まず投写型の場合にはその画像を明るくす
るために、投写レンズのFナンバーを小さくし、レンズ
へできるだけ広い角度で光を入射させることが望まし
い。このことは液晶表示パネルへも広い入射角で光を取
り込むことを意味する。したがって、逆視角方向の入射
角度の光も入射されることになるので、黒表示の輝度は
浮いたものとなりコントラスト比の低い画像となってし
まう。また光源からの光をできるだけ液晶表示パネルに
取り込むために集光レンズ等で光を集める必要がある。
さらに光源にはメタルハライドランプ等が用いられる
が、このような実際の光源は点光源ではないため平行光
束を作ることは難しい。これらの光学系での制約から、
実際のシステムでは液晶表示パネルの画面内の各部分に
おいてその光線の入射角およびその入射角分布(どのく
らい広い角度で光を取り込むか)が少しづつ異なってし
まう。このことより液晶表示パネルの視角特性が非対称
な場合、画面のあらゆる部分において液晶表示パネルの
視角依存性が異なり、液晶表示パネル透過率が変化して
画面内での不均一な輝度むらを引き起こすことになる。First, in the case of the projection type, in order to make the image bright, it is desirable that the F number of the projection lens is made small and light is made incident on the lens at a wide angle. This means that light is taken into the liquid crystal display panel at a wide incident angle. Therefore, since light having an incident angle in the reverse viewing angle direction is also incident, the brightness of black display is raised and an image with a low contrast ratio is obtained. Further, it is necessary to collect the light from a light source by a condenser lens or the like in order to take the light into the liquid crystal display panel as much as possible.
Further, a metal halide lamp or the like is used as the light source, but it is difficult to form a parallel light flux because such an actual light source is not a point light source. Due to the limitations of these optical systems,
In an actual system, the incident angle of the light beam and the incident angle distribution (how wide angle the light is captured) are slightly different in each part in the screen of the liquid crystal display panel. As a result, when the viewing angle characteristics of the liquid crystal display panel are asymmetric, the viewing angle dependence of the liquid crystal display panel is different in all parts of the screen, and the transmittance of the liquid crystal display panel changes, causing uneven brightness unevenness in the screen. become.
【0012】本発明は上記従来の課題を解決するもの
で、TNモードではなく単純な構造を有しかつ電界制御
複屈折効果を用いた液晶表示パネルの上下方向に対する
視角特性を対称にし、画面内での不均一な輝度むらのな
い表示を実現できる液晶表示パネルを提供することを目
的とする。The present invention is to solve the above-mentioned conventional problems. The liquid crystal display panel having a simple structure instead of the TN mode and utilizing the electric field control birefringence effect makes the viewing angle characteristics in the vertical direction symmetrical, and It is an object of the present invention to provide a liquid crystal display panel that can realize a display without uneven brightness unevenness.
【0013】また本発明は液晶表示パネルに入射する光
の主軸を基板法線方向から傾けることなく液晶表示パネ
ルの上下方向に対する視角特性を対称にして、画面内の
不均一な輝度むらがなく、かつコントラスト比の高い高
画質な映像表示が実現できる液晶表示装置を提供するこ
とを目的とする。Further, according to the present invention, the viewing angle characteristics with respect to the vertical direction of the liquid crystal display panel are made symmetrical without inclining the main axis of the light incident on the liquid crystal display panel from the substrate normal direction, and there is no uneven brightness in the screen. An object of the present invention is to provide a liquid crystal display device that can realize high-quality image display with a high contrast ratio.
【0014】[0014]
【課題を解決するための手段】この目的を達成するめに
本発明の液晶表示パネルは、異なるプレチルト角の配向
処理が施された2枚の基板がその配向処理方向が同一方
向になるようにして貼り合わせられ、その間隙にネマテ
ィック液晶を封入した構成を有している。In order to achieve this object, the liquid crystal display panel of the present invention is configured so that two substrates subjected to alignment treatment with different pretilt angles have the same alignment treatment direction. It has a structure in which it is pasted and nematic liquid crystal is sealed in the gap.
【0015】また本発明の第2の液晶表示パネルは、基
板面より45゜以上の同じプレチルト角の配向処理が施
されている2枚の基板がその配向処理方向が同一方向に
なるようにして貼り合わせられ、その間隙にネマティッ
ク液晶を封入した構成を有している。Further, in the second liquid crystal display panel of the present invention, the two substrates that have been subjected to the alignment treatment with the same pretilt angle of 45 ° or more from the substrate surface have the same alignment treatment direction. It has a structure in which it is pasted and nematic liquid crystal is sealed in the gap.
【0016】[0016]
【作用】この構成によって、上下方向どちらの入射角の
光も液晶層中を通過する過程において視角方向を向いて
いる液晶分子と逆視角方向を向いている液晶分子の影響
を受けるので複屈折量が上下の方向でほぼ等しくなり、
したがって液晶表示パネルの上下方向に対する視角特性
をほぼ対称にすることができ、画面内で不均一な輝度む
らを生じない良好な画像表示を得ることができる。さら
には液晶表示パネルに残留している複屈折を光学位相差
板で補償することにより、コントラスト比の高い高画質
な画像表示を得ることができる。、With this configuration, the light having both incident angles in the vertical direction is affected by the liquid crystal molecules oriented in the viewing angle direction and the liquid crystal molecules oriented in the reverse viewing angle direction in the process of passing through the liquid crystal layer. Become almost equal in the vertical direction,
Therefore, the viewing angle characteristics of the liquid crystal display panel with respect to the vertical direction can be made substantially symmetrical, and a good image display can be obtained without causing uneven brightness unevenness in the screen. Furthermore, by compensating the birefringence remaining in the liquid crystal display panel with the optical retardation plate, it is possible to obtain a high-quality image display with a high contrast ratio. ,
【0017】[0017]
【実施例】以下本発明の第1の実施例における液晶表示
パネルおよび液晶表示装置について、図面を参照しなが
ら説明する。図1は本発明の第1の実施例における液晶
表示パネルの液晶分子の配向を示す構成断面図である。
このような液晶表示パネルは次のようにして製作され
る。まず透明な行電極2Aが形成されたガラス基板(以
下、行電極基板という)1Aの上にポリイミド配向膜3
A(例えば、日本合成ゴム社製のJALS−199)を
オフセット印刷により形成する。次に透明な列電極2B
が形成された別の基板(以下、列電極基板という)1B
上にポリイミド配向膜3B(例えば、日本合成ゴム社製
のJALS−194)をオフセット印刷により形成す
る。この2枚の基板を190℃で1時間加熱し、溶剤を
蒸発させて基板上の配向膜を硬化する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid crystal display panel and a liquid crystal display device according to a first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the arrangement of liquid crystal molecules in a liquid crystal display panel according to the first embodiment of the present invention.
Such a liquid crystal display panel is manufactured as follows. First, a polyimide alignment film 3 is formed on a glass substrate (hereinafter referred to as a row electrode substrate) 1A on which a transparent row electrode 2A is formed.
A (for example, JALS-199 manufactured by Japan Synthetic Rubber Co., Ltd.) is formed by offset printing. Next transparent column electrode 2B
Another substrate (hereinafter, referred to as a column electrode substrate) 1B on which is formed
A polyimide alignment film 3B (for example, JALS-194 manufactured by Japan Synthetic Rubber Co., Ltd.) is formed on the top by offset printing. The two substrates are heated at 190 ° C. for 1 hour to evaporate the solvent and cure the alignment film on the substrates.
【0018】次に、レーヨン布を用いて行電極基板1
A、列電極基板1B上の配向膜3A、3Bに8A、8B
のような方向でラビング処理を施す。この行電極基板1
Aと列電極基板1Bとを電極側が向かい合うように対向
して貼合わせる。このようなパネルにメルク社製の液晶
材料ZLI−4792を注入し、液晶表示パネルを得
た。なお4、5はプレチルト角、6は液晶層中間部での
液晶分子7の傾きを示している。Next, using a rayon cloth, the row electrode substrate 1
A, 8A and 8B on the alignment films 3A and 3B on the column electrode substrate 1B
The rubbing process is performed in such a direction. This row electrode substrate 1
A and the column electrode substrate 1B are bonded so as to face each other so that the electrode sides face each other. Liquid crystal material ZLI-4792 manufactured by Merck & Co. was injected into such a panel to obtain a liquid crystal display panel. Note that reference numerals 4 and 5 indicate the pretilt angle, and reference numeral 6 indicates the inclination of the liquid crystal molecules 7 in the middle portion of the liquid crystal layer.
【0019】以上の配向膜材料、液晶材料を用いた場合
のラビングにより生じるプレチルト角を知るために、ク
リスタルローテーション法による測定を行った。測定に
は、同じ配向膜を塗布してラビング処理を施した2枚の
透明基板をセル厚20μmでホモジニアス配向になるよう
に貼合わせ、液晶材料を注入した測定用のセルを用い
た。測定の結果、JALS−199を用いたパネルでは
プレチルト角4が約3°、JALS−194を用いたパ
ネルではプレチルト角5が約4°であることが判明し、
本実施例における液晶表示パネルの配向が図1のような
構成をとることがわかった。In order to know the pretilt angle caused by rubbing in the case of using the above alignment film material and liquid crystal material, measurement by the crystal rotation method was performed. For the measurement, two transparent substrates coated with the same alignment film and subjected to a rubbing treatment were attached to each other with a cell thickness of 20 μm so as to have a homogeneous alignment, and a measurement cell into which a liquid crystal material was injected was used. As a result of the measurement, it was found that the panel using JALS-199 had a pretilt angle 4 of about 3 °, and the panel using JALS-194 had a pretilt angle 5 of about 4 °.
It was found that the orientation of the liquid crystal display panel in this example had a configuration as shown in FIG.
【0020】以上のようにして作成された液晶表示パネ
ルの外側の一方の面にラビング方向と45゜の角度をな
すように偏光軸を設定した第1の偏光板を設け、もう一
方の面には偏光軸が第1の偏光板の偏光軸と直交するよ
うにして第2の偏光板を設けた。このように構成された
液晶表示パネルに電圧を印加してパネルの上下方向での
透過率に対する視角依存性を測定したところ図2のよう
な特性を示し、液晶表示パネルの基板法線に対してやや
下視角方向で黒が沈み込む傾向はあるが上下方向でほぼ
対称な特性を得ることができた。The first polarizing plate whose polarization axis is set so as to form an angle of 45 ° with the rubbing direction is provided on one surface on the outside of the liquid crystal display panel produced as described above, and the other surface is provided on the other surface. The second polarizing plate was provided so that the polarizing axis was orthogonal to the polarizing axis of the first polarizing plate. A voltage was applied to the liquid crystal display panel configured as described above, and the viewing angle dependence of the vertical transmittance of the panel was measured. As a result, the characteristics shown in FIG. 2 were obtained, and with respect to the substrate normal line of the liquid crystal display panel. Although there is a tendency for black to sink in the direction of the lower viewing angle, we were able to obtain almost symmetrical characteristics in the vertical direction.
【0021】なお比較例として図3に示すように行電極
基板1Aと列電極基板1Bとに同一配向膜(例えばJA
LS−194配向膜)3Bを印刷で形成した後、ラビン
グにより両基板とも同じプレチルト角5を有するように
処理を行い、この両基板が8A、8Bのようなラビング
方向をとるようにして電極側を対向させて貼合わせ、液
晶を注入した。この液晶表示パネルの両側に偏光板を第
1の実施例における液晶表示パネルと同じような向きで
貼付け電圧を印加したところ、2種類の配向領域が不規
則に出現し、一方の配向領域では上方向視角、もう一方
の配向領域では下方向視角という不均一で見にくい液晶
表示パネルとなった。As a comparative example, as shown in FIG. 3, the row electrode substrate 1A and the column electrode substrate 1B have the same alignment film (for example, JA).
LS-194 alignment film) 3B is formed by printing, and then processed by rubbing so that both substrates have the same pretilt angle 5, and both substrates take the rubbing direction like 8A, 8B on the electrode side. Were opposed to each other and bonded, and liquid crystal was injected. When a sticking voltage was applied to both sides of this liquid crystal display panel in the same direction as that of the liquid crystal display panel in the first embodiment, two kinds of alignment regions appeared irregularly, and one alignment region had an upper surface. The liquid crystal display panel has a non-uniform viewing angle and a downward viewing angle in the other alignment region, making it difficult to see.
【0022】このような現象が出現した理由は次の通り
である。比較例としての液晶表示パネルは両基板1A,
1Bの液晶分子7のプレチルト角5が等しいので図3に
示すように液晶層中心部の液晶分子7は傾きを持たず、
その長軸は基板面に平行に配列する。この場合、電圧を
基板間に印加すると液晶層中心部の液晶分子7は、基板
法線に対して図4に示すように画面上下方向で角度10
A(+θm)、角度10B(−θm)のどちらで傾いて立
ち上がっても弾性変形時のエネルギーは等しくなる。し
たがって、この場合の液晶表示パネルの視角特性は、角
度10Aで立ち上がれば基板に垂直な方向よりもやや上
側でより黒が沈み込むような特性となり、角度10Bで
立ち上がればやや下側でより黒が沈み込むような特性と
なる。そこでこのような配向では、視角方向の異なる2
つの配向が不規則に生じることになる。The reason why such a phenomenon appears is as follows. A liquid crystal display panel as a comparative example has both substrates 1A,
Since the pretilt angles 5 of the liquid crystal molecules 7 of 1B are equal, as shown in FIG. 3, the liquid crystal molecules 7 at the center of the liquid crystal layer have no inclination,
The major axis is arranged parallel to the substrate surface. In this case, when a voltage is applied between the substrates, the liquid crystal molecules 7 in the central part of the liquid crystal layer form an angle 10 with respect to the substrate normal in the vertical direction of the screen as shown in FIG.
The energy at the time of elastic deformation is the same regardless of whether A (+ θm) or 10B (-θm) is tilted and rises. Therefore, the viewing angle characteristics of the liquid crystal display panel in this case are such that black rises slightly above the direction perpendicular to the substrate when it rises at an angle of 10A, and black appears slightly below when it rises at an angle of 10B. It has a characteristic of sinking. Therefore, in such an orientation, it is possible to
Two orientations will occur irregularly.
【0023】これに対して第1の実施例の液晶表示パネ
ルでは図1に示すように、各基板の界面の液晶分子7の
プレチルト角4、5が異なるため、液晶層中心部の液晶
分子7は必ず一定の方向に変形して2つの配向領域が出
現することがなく、均一な配向を保つことができる。On the other hand, in the liquid crystal display panel of the first embodiment, as shown in FIG. 1, since the pretilt angles 4 and 5 of the liquid crystal molecules 7 at the interfaces of the respective substrates are different, the liquid crystal molecules 7 at the center of the liquid crystal layer are formed. Does not always deform in a certain direction and two orientation regions do not appear, and a uniform orientation can be maintained.
【0024】次に本発明の第2の実施例について図面を
参照しながら説明する。図5は本発明の第2の実施例に
おける液晶表示パネルの液晶分子の配向を示す構成断面
図である。このような液晶表示パネルは次のようにして
製作される。まず透明電極2Aが形成されたガラス基板
1A上に配向膜(例えばJALS−199配向膜)3C
をオフセット印刷により形成する。次にマトリクス状に
絵素電極が配列され、各絵素電極に薄膜トランジスタ素
子が接続されているアクティブマトリクスアレイ基板1
Bにガラス基板1A上と同じ配向膜(JALS−199
配向膜)3Cをオフセット印刷により形成する。これら
両基板を190℃で1時間加熱し、配向膜を硬化する。
この両基板の配向膜が形成された表面に垂直配向剤(例
えばチッソ社製のODS−E)をエタノールで0.8%
に希釈した溶液を2500rpmでスピンコートし、1
30℃で30分加熱乾燥する。Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a sectional view showing the arrangement of liquid crystal molecules in the liquid crystal display panel according to the second embodiment of the present invention. Such a liquid crystal display panel is manufactured as follows. First, an alignment film (for example, JALS-199 alignment film) 3C is formed on a glass substrate 1A on which a transparent electrode 2A is formed.
Are formed by offset printing. Next, an active matrix array substrate 1 in which pixel electrodes are arranged in a matrix and thin film transistor elements are connected to each pixel electrode.
The same alignment film as that on the glass substrate 1A (JALS-199)
Alignment film) 3C is formed by offset printing. Both substrates are heated at 190 ° C. for 1 hour to cure the alignment film.
A vertical aligning agent (for example, ODS-E manufactured by Chisso Co.) was added to the surface of the both substrates, on which the alignment films were formed, with 0.8% ethanol.
Spin-coat the diluted solution to 2500 rpm and
Heat-dry at 30 ° C. for 30 minutes.
【0025】次にガラス基板1Aとアクティブマトリク
スアレイ基板1Bにレーヨン布を用いて方向8A、8B
で両基板のプレチルトが等しくなるように同じ強さでラ
ビング処理を施した。この両基板を電極側が向かい合う
ように対向して貼合わせ、メルク社製の液晶材料ZLI
−4792を注入した。Next, rayon cloth is used for the glass substrate 1A and the active matrix array substrate 1B in the directions 8A and 8B.
Then, the rubbing treatment was performed with the same strength so that the pretilts of both substrates became equal. The two substrates are laminated so that the electrodes are opposed to each other, and the liquid crystal material ZLI manufactured by Merck is used.
-4792 was injected.
【0026】以上の配向処理、液晶材料を用いた場合の
ラビングにより生じるプレチルト角11はホモジニアス
セルを用いたクリスタルローテーション法による測定に
より50°であることが分かった。The pretilt angle 11 caused by the above-mentioned alignment treatment and rubbing in the case of using the liquid crystal material was found to be 50 ° by measurement by the crystal rotation method using a homogeneous cell.
【0027】以上のようにして作成された液晶表示パネ
ルの外側の一方の面にラビング方向と45゜の角度をな
すように偏光軸を設定した第1の偏光板を設け、もう一
方の面には偏光軸が第1の偏光板の偏光軸と直交するよ
うに第2の偏光板を設け、液晶表示パネルを得た。この
液晶表示パネルに電圧を印加して液晶表示パネルの上下
方向での透過率に対する視角依存性を測定したところ図
6に示すような特性を示し、液晶表示パネルの基板法線
に対して全く対称な特性を得ることができた。また第1
の実施例に比較して基板法線方向の光に対する透過率も
低く、コントラスト比も約100と比較的高かった。The first polarizing plate whose polarization axis is set so as to form an angle of 45 ° with the rubbing direction is provided on one surface on the outside of the liquid crystal display panel prepared as described above, and the other surface is provided on the other surface. A second polarizing plate was provided so that the polarization axis was orthogonal to the polarization axis of the first polarizing plate, and a liquid crystal display panel was obtained. When a voltage was applied to this liquid crystal display panel and the viewing angle dependency on the transmittance in the vertical direction of the liquid crystal display panel was measured, it showed the characteristics shown in FIG. 6 and was completely symmetrical with respect to the substrate normal line of the liquid crystal display panel. It was possible to obtain various characteristics. Also the first
Compared with the example, the transmittance for light in the normal direction to the substrate was low and the contrast ratio was about 100, which was relatively high.
【0028】本実施例において、両基板のプレチルト角
11が等しいにも関わらず図3に示す比較例で述べた液
晶表示パネルのように配向不良が起きなかったのは、以
下の理由による。In the present embodiment, the reason why the alignment failure did not occur unlike the liquid crystal display panel described in the comparative example shown in FIG. 3 was that the pretilt angles 11 of both substrates were the same, for the following reason.
【0029】本実施例では基板界面のプレチルト角11
が大きいために、図5に示すように液晶層中心部の液晶
分子7は電圧印加前から基板面に対し垂直に立ち上がっ
ている方が水平となるより配向エネルギーは安定であ
る。このような分子配列は基板界面のプレチルト角11
が45°程度よりも高い場合に起こっていることがプレ
チルト角の異なる液晶表示パネルを用いた事前検討によ
りわかった。このように、液晶層中心部の液晶分子7が
すでに垂直に立ち上がっていると、電圧を印加したとき
の分子変形は図7に示す場合しか有り得ず、したがって
均一な配向が得られたものである。In this embodiment, the pretilt angle of the substrate interface is 11
Therefore, as shown in FIG. 5, the alignment energy of the liquid crystal molecules 7 in the central portion of the liquid crystal layer is more stable when the liquid crystal molecules 7 rise vertically from the surface of the substrate than before the voltage is applied. Such a molecular arrangement has a pretilt angle of 11 at the substrate interface.
It has been found from a preliminary study using liquid crystal display panels with different pretilt angles that the occurrence of the angle is higher than about 45 °. As described above, when the liquid crystal molecules 7 in the central portion of the liquid crystal layer have already risen vertically, the molecular deformation when a voltage is applied can occur only in the case shown in FIG. 7, and therefore uniform alignment is obtained. ..
【0030】次に本発明の第3の実施例における液晶表
示パネルについて説明する。パネルとしては図1に示す
第1の実施例と同じパネルを使用している。図1に示す
液晶表示パネルに電圧6Vを印加し、そのときの基板法
線方向の光に対するコントラスト比を測定したところ約
50であった。これは、電圧6Vではこの液晶表示パネ
ルの基板界面付近の液晶分子はあまり立ち上がらず、し
たがってこの付近の液晶の複屈折による影響を受けて偏
光が変化し黒が完全に沈まないためである。このとき、
液晶表示パネルに残留している光学位相差をエリプソメ
ーターにより測定したところ約24nmであった。Next, a liquid crystal display panel according to the third embodiment of the present invention will be described. As the panel, the same panel as in the first embodiment shown in FIG. 1 is used. When a voltage of 6 V was applied to the liquid crystal display panel shown in FIG. 1 and the contrast ratio to light in the normal direction to the substrate at that time was measured, it was about 50. This is because at a voltage of 6 V, the liquid crystal molecules near the substrate interface of the liquid crystal display panel do not rise much, and therefore, the polarization is changed due to the influence of the birefringence of the liquid crystal in the vicinity, and black does not sink completely. At this time,
The optical phase difference remaining on the liquid crystal display panel was measured by an ellipsometer to be about 24 nm.
【0031】本実施例では、このコントラスト比を向上
させるために液晶表示パネルに残留する光学位相差を打
ち消す光学位相差板を設置している。光学位相差板とし
ては、ポリビニルアルコールを基板材料とし、一軸延伸
により位相差が約25nm生じるものを用いた。図8に
示すように、液晶表示パネル14のラビング方向15と
光学位相差板16の遅相軸17とが互いに直交するよう
にして重ねた。この液晶表示パネルの外側の一方の面
に、ラビング方向と45°の角度をなすように偏光軸1
3Aを設定した第1の偏光板12を設け、もう一方の面
に偏光軸13Bが第1の偏光板の偏光軸13Aと直交す
るように第2の偏光板18を設けた。In this embodiment, in order to improve the contrast ratio, an optical retardation plate for canceling the optical retardation remaining in the liquid crystal display panel is installed. As the optical retardation plate, one having a substrate material of polyvinyl alcohol and having a retardation of about 25 nm by uniaxial stretching was used. As shown in FIG. 8, the rubbing direction 15 of the liquid crystal display panel 14 and the slow axis 17 of the optical retardation plate 16 were stacked so as to be orthogonal to each other. On one outer surface of the liquid crystal display panel, the polarization axis 1 is formed so as to form an angle of 45 ° with the rubbing direction.
The first polarizing plate 12 with 3A set was provided, and the second polarizing plate 18 was provided on the other surface so that the polarization axis 13B was orthogonal to the polarization axis 13A of the first polarizing plate.
【0032】この液晶表示パネル14に電圧を印加して
パネルの上下方向での透過率に対する視角依存性を測定
したところ、液晶表示パネルの基板法線に対してほぼ対
称な特性を得ることができた。また図1に示す第1の実
施例に比較してコントラスト比も約300と高かった。A voltage was applied to the liquid crystal display panel 14 to measure the viewing angle dependence of the transmittance in the vertical direction of the panel. As a result, it was possible to obtain characteristics that were substantially symmetric with respect to the substrate normal line of the liquid crystal display panel. It was Further, the contrast ratio was as high as about 300 as compared with the first embodiment shown in FIG.
【0033】次に本発明の第4の実施例について、図9
を参照しながら説明する。パネルとしては図5に示す第
2の実施例と同じパネルを使用している。この液晶表示
パネル19の印加電圧6Vにおけるコントラスト比は、
第2の実施例で述べたように、約100である。第1の
実施例の液晶表示パネルよりもコントラスト比が高いの
は、基板界面付近の液晶分子がプレチルトの高い第2の
実施例の液晶表示パネルの方が立ちやすいので残留して
いる光学位相差が比較的小さいからである。この光学位
相差をエリプソメーターにより測定したところ約17n
mであった。Next, a fourth embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. As the panel, the same panel as in the second embodiment shown in FIG. 5 is used. The contrast ratio of the liquid crystal display panel 19 at an applied voltage of 6 V is
As described in the second embodiment, it is about 100. The contrast ratio is higher than that of the liquid crystal display panel of the first embodiment because the liquid crystal molecules near the substrate interface have a higher pretilt, so that the liquid crystal display panel of the second embodiment is more likely to stand up, and thus the remaining optical phase difference. Is relatively small. When this optical phase difference was measured by an ellipsometer, it was about 17n.
It was m.
【0034】本実施例では、さらにこのコントラスト比
を向上させるために液晶表示パネルに残留する光学位相
差を打ち消す光学位相差板20を設置している。光学位
相差板20はポリビニルアルコールを基板材料として一
軸延伸により位相差が約17nm生じるものを用いた。
そして図9のような構成となるように、偏光板12,1
8、液晶表示パネル19、光学位相差板20を貼合わせ
た。In this embodiment, in order to further improve the contrast ratio, the optical retardation plate 20 for canceling the optical retardation remaining in the liquid crystal display panel is installed. As the optical retardation plate 20, a material having a retardation of about 17 nm by uniaxial stretching using polyvinyl alcohol as a substrate material was used.
Then, the polarizing plates 12 and 1 are arranged so as to have a configuration as shown in FIG.
8. The liquid crystal display panel 19 and the optical retardation plate 20 were bonded together.
【0035】この液晶表示パネルに電圧を印加してパネ
ルの上下方向での透過率に対する視角依存性を測定した
ところ、液晶表示パネルの基板法線に対して全く対称な
特性を得ることができた。また第2の実施例に比較し
て、コントラスト比も400と非常に高かった。さらに
この液晶表示パネルを投写機に組み込んでスクリーン上
に画像を写したところ、コントラストが高くかつ均一で
良好な表示を得ることができた。When a voltage was applied to this liquid crystal display panel and the viewing angle dependency on the transmittance in the vertical direction of the panel was measured, it was possible to obtain characteristics which were completely symmetrical with respect to the substrate normal line of the liquid crystal display panel. .. In addition, the contrast ratio was 400, which was extremely high as compared with the second embodiment. Furthermore, when this liquid crystal display panel was incorporated into a projector and an image was projected on the screen, a high contrast and uniform and excellent display could be obtained.
【0036】[0036]
【発明の効果】以上のように本発明によれば、液晶層の
厚み方向の液晶分子が液晶表示パネルの上下方向に対し
てほぼ対称な配列をとり、液晶表示パネルの上下方向に
対する視角特性をほぼ対称にすることができるので、画
面内で不均一な輝度むらが生じない、高画質の画像表示
を得ることができる。As described above, according to the present invention, the liquid crystal molecules in the thickness direction of the liquid crystal layer are arranged substantially symmetrical with respect to the vertical direction of the liquid crystal display panel, and the viewing angle characteristics of the liquid crystal display panel in the vertical direction are improved. Since they can be made almost symmetrical, it is possible to obtain a high-quality image display in which uneven brightness unevenness does not occur in the screen.
【図1】本発明の第1の実施例における液晶表示パネル
の液晶分子の配向を示す構成断面図FIG. 1 is a structural cross-sectional view showing the alignment of liquid crystal molecules of a liquid crystal display panel according to a first embodiment of the present invention.
【図2】同液晶表示パネルの上下方向での透過率に対す
る視角依存性を示す図FIG. 2 is a diagram showing the viewing angle dependence of the transmittance in the vertical direction of the liquid crystal display panel.
【図3】比較例として作製した液晶表示パネルの液晶分
子の配向を示す構成断面図FIG. 3 is a structural cross-sectional view showing the alignment of liquid crystal molecules of a liquid crystal display panel manufactured as a comparative example.
【図4】同液晶表示パネルに電圧を印加した時の液晶分
子の配向を示す構成断面図FIG. 4 is a structural cross-sectional view showing the alignment of liquid crystal molecules when a voltage is applied to the liquid crystal display panel.
【図5】本発明の第2の実施例における液晶表示パネル
の液晶分子の配向を示す構成断面図FIG. 5 is a structural cross-sectional view showing the orientation of liquid crystal molecules of a liquid crystal display panel according to a second embodiment of the present invention.
【図6】同液晶表示パネルの上下方向での透過率に対す
る視角依存性を示す図FIG. 6 is a diagram showing viewing angle dependence of transmittance in the vertical direction of the liquid crystal display panel.
【図7】同液晶表示パネルに電圧を印加した時の液晶分
子の配向を示す構成断面図FIG. 7 is a structural cross-sectional view showing the alignment of liquid crystal molecules when a voltage is applied to the liquid crystal display panel.
【図8】本発明の第3の実施例における液晶表示パネル
の構成図FIG. 8 is a configuration diagram of a liquid crystal display panel in a third embodiment of the present invention.
【図9】本発明の第4の実施例における液晶表示パネル
の構成図FIG. 9 is a configuration diagram of a liquid crystal display panel in a fourth embodiment of the present invention.
【図10】従来の液晶表示パネルにおけるラビング処理
方向を示す図FIG. 10 is a diagram showing a rubbing processing direction in a conventional liquid crystal display panel.
【図11】従来の液晶表示パネルの視角特性図FIG. 11 is a view angle characteristic diagram of a conventional liquid crystal display panel.
1A ガラス基板(基板) 1B ガラス基板(基板) 3A 配向膜 3B 配向膜 4 プレチルト角 5 プレチルト角 7 液晶分子 1A glass substrate (substrate) 1B glass substrate (substrate) 3A alignment film 3B alignment film 4 pretilt angle 5 pretilt angle 7 liquid crystal molecules
Claims (6)
た2枚の基板がその配向処理方向が同一方向でかつ配向
が施された面が向かい合うようにして所望の間隙を保ち
ながら貼り合わせられ、その間隙にネマティック液晶が
封入されている液晶表示パネル。1. Two substrates, which have been subjected to orientation treatments with different pretilt angles, are laminated with the orientation treatment directions being the same direction and the orientation faces facing each other while maintaining a desired gap, A liquid crystal display panel in which nematic liquid crystal is sealed in the gap.
角の配向処理が施されている2枚の基板がその配向処理
方向が同一方向でかつ配向が施された面が向かい合うよ
うにして所望の間隙を保ちながら貼り合わせられ、その
間隙にネマティック液晶が封入されている液晶表示パネ
ル。2. Two substrates, which have been subjected to an alignment treatment with the same pretilt angle of 45 ° or more from the substrate surface, have the same alignment treatment direction and the oriented faces face each other. A liquid crystal display panel in which a nematic liquid crystal is sealed in the gap and bonded together.
が形成されており、かつ前記絵素電極の各々に1つ以上
の薄膜トランジスタ素子が接続されている請求項1また
は2記載の液晶表示パネル。3. A liquid crystal display according to claim 1, wherein the pixel electrodes are formed in a matrix on one of the substrates, and one or more thin film transistor elements are connected to each of the pixel electrodes. panel.
液晶表示パネルの光学的異方性を制御する電圧印加手段
と、所定の電圧における光学的異方性を相殺する光学位
相板とを備えた液晶表示装置。4. The liquid crystal display panel according to claim 1, a voltage applying means for controlling the optical anisotropy of the liquid crystal display panel, and an optical phase plate for canceling the optical anisotropy at a predetermined voltage. Liquid crystal display device equipped.
液晶表示パネルの光学的異方性を制御する電圧印加手段
と、所定の電圧における光学的異方性を相殺する光学位
相板とを備えた液晶表示装置。5. The liquid crystal display panel according to claim 2, a voltage applying means for controlling the optical anisotropy of the liquid crystal display panel, and an optical phase plate for canceling the optical anisotropy at a predetermined voltage. Liquid crystal display device equipped.
クス状に絵素電極が形成されており、かつ前記絵素電極
の各々に1つ以上の薄膜トランジスタ素子が接続されて
いることを特徴とする請求項4または5記載の液晶表示
装置。6. The pixel electrodes are formed in a matrix on one substrate of the liquid crystal display panel, and one or more thin film transistor elements are connected to each of the pixel electrodes. The liquid crystal display device according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10948592A JPH05303099A (en) | 1992-04-28 | 1992-04-28 | Liquid crystal display panel and liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10948592A JPH05303099A (en) | 1992-04-28 | 1992-04-28 | Liquid crystal display panel and liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05303099A true JPH05303099A (en) | 1993-11-16 |
Family
ID=14511443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10948592A Pending JPH05303099A (en) | 1992-04-28 | 1992-04-28 | Liquid crystal display panel and liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05303099A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5594570A (en) * | 1993-07-30 | 1997-01-14 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for producing the same |
US5627667A (en) * | 1993-01-29 | 1997-05-06 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus, a method for producing the same, and a substrate |
US5629786A (en) * | 1995-01-26 | 1997-05-13 | Sharp Kabushiki Kaisha | Liquid crystal display device |
US5666178A (en) * | 1993-07-30 | 1997-09-09 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus having plural regions of different aligning conditions and method for producing the same |
WO1999053366A1 (en) * | 1998-04-08 | 1999-10-21 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and splay-bent transition time evaluating method |
WO2001059514A1 (en) * | 2000-02-10 | 2001-08-16 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display element and method for fabricating the same |
-
1992
- 1992-04-28 JP JP10948592A patent/JPH05303099A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5657102A (en) * | 1993-01-29 | 1997-08-12 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus, a method for producing the same, and a substrate having an alignment layer with different degrees of roughness |
US5627667A (en) * | 1993-01-29 | 1997-05-06 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus, a method for producing the same, and a substrate |
US5691792A (en) * | 1993-01-29 | 1997-11-25 | Sharp Kabushiki Kaisha | Method for producing a liquid crystal display apparatus by irradiating an aligning film with light to reduce pretilt angles of liquid crystal molecules thereof |
US5689322A (en) * | 1993-07-30 | 1997-11-18 | Sharp Kabushiki Kaisha | Liquid crystal display device having regions with different twist angles |
US5652634A (en) * | 1993-07-30 | 1997-07-29 | Sharp Kabushiki Kaisha | Multiple domain liquid crystal display device with particular reference orientation directions and method for producing the same |
US5666178A (en) * | 1993-07-30 | 1997-09-09 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus having plural regions of different aligning conditions and method for producing the same |
US5594570A (en) * | 1993-07-30 | 1997-01-14 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for producing the same |
US5855968A (en) * | 1993-07-30 | 1999-01-05 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for producing the same |
US6013335A (en) * | 1993-07-30 | 2000-01-11 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus and method for processing the same |
US5629786A (en) * | 1995-01-26 | 1997-05-13 | Sharp Kabushiki Kaisha | Liquid crystal display device |
WO1999053366A1 (en) * | 1998-04-08 | 1999-10-21 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and splay-bent transition time evaluating method |
WO2001059514A1 (en) * | 2000-02-10 | 2001-08-16 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display element and method for fabricating the same |
EP1172685A1 (en) * | 2000-02-10 | 2002-01-16 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display element and method for fabricating the same |
EP1172685A4 (en) * | 2000-02-10 | 2005-10-26 | Matsushita Electric Ind Co Ltd | Liquid crystal display element and method for fabricating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3850002B2 (en) | Liquid crystal electro-optical device | |
JP2921813B2 (en) | Electrode structure of liquid crystal display | |
GB2325751A (en) | In-plane switched liquid crystal device | |
KR100319467B1 (en) | Liquid Crystal Display device | |
JP3156467B2 (en) | Liquid crystal display | |
JPH0235416A (en) | Liquid crystal display device | |
JP2002214613A (en) | Liquid crystal display | |
JPH05303099A (en) | Liquid crystal display panel and liquid crystal display device | |
JP2002023178A (en) | Liquid crystal display device | |
JPH11174481A (en) | Display device | |
US7106406B2 (en) | Liquid crystal displays with multi-domain effect formed by surface undulations | |
JPH01209424A (en) | Liquid crystal electrooptic device | |
JP3207374B2 (en) | Liquid crystal display device | |
JP2002214646A (en) | Liquid crystal display element | |
JPH11305236A (en) | Liquid crystal display element | |
KR101108387B1 (en) | Twisted nematic mode liquid crystal display device and method for manufacturing lcd | |
JP4656526B2 (en) | Liquid crystal electro-optical device | |
KR20030037821A (en) | Vertical alignment mode liquid crystal display device | |
JPH06342154A (en) | Liquid crystal display device | |
JP3522845B2 (en) | LCD panel | |
JP2000098410A (en) | Liquid crystal display device | |
KR100293807B1 (en) | Liquid crystal display | |
JPH1062623A (en) | Liquid crystal display panel | |
JPH06294961A (en) | Liquid crystal display element and its production | |
KR100488935B1 (en) | LCD display device of HSN mode |