JP2000098410A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2000098410A
JP2000098410A JP10270860A JP27086098A JP2000098410A JP 2000098410 A JP2000098410 A JP 2000098410A JP 10270860 A JP10270860 A JP 10270860A JP 27086098 A JP27086098 A JP 27086098A JP 2000098410 A JP2000098410 A JP 2000098410A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display device
crystal display
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10270860A
Other languages
Japanese (ja)
Inventor
Katsuji Hattori
勝治 服部
Shoichi Ishihara
將市 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10270860A priority Critical patent/JP2000098410A/en
Publication of JP2000098410A publication Critical patent/JP2000098410A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display device which uses vertical orientation liquid crystal of negative permittivity anisotropy by a horizontal electric field system, and which uses a rubbing-less system of super wide visual field, high contrast, and high speed response in which a visual field angle is more improved than an orientation bi-sected type. SOLUTION: In a liquid crystal display device provided with a first substrate 1 in which one or more common electrodes 23 being formed in parallel with a pixel electrode keeping a fixed distance are arranged in pixels having a switching element 20 coupled with at least one or more pixel electrodes 24, a second substrate 2 opposed to the substrate 1 holding a gap, vertical orientation films 25, 26 provided on an electrode surface of the substrate 2, and a nematic liquid crystal layer 27 which is almost vertically oriented between substrates and in which permittivity anisotrophy is negative, the pixel electrodes 24 and the common electrode 24 are formed by being bent into almost right angle at least one time or more while holding parallel in pixels and arranged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、量産性に富み、広
視野で応答が速い表示性能を持つ横電界駆動によるアク
ティブマトリクス型液晶表示装置に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type liquid crystal display device driven by a lateral electric field, which has high productivity and has a wide field of view and fast response.

【0002】[0002]

【従来の技術】従来のアクティブマトリクス型液晶表示
装置では、液晶層を駆動する電極としては2枚の基板面
上に形成し対向させた少なくとも一方が透明な電極を使
用していた。これは、液晶に印加する電界の方向を基板
面にほぼ垂直な方向とすることで動作させ、従来ラビン
グ処理で配向させた正の誘電率異方性のネマティック液
晶を用いたツイストネマティック(TN)型の表示方式
に採用され、ノートパソコンなどの多くの液晶表示装置
として実用化されてきた。
2. Description of the Related Art In a conventional active matrix type liquid crystal display device, a transparent electrode is used as an electrode for driving a liquid crystal layer, at least one of which is formed on two substrate surfaces and opposed to each other. This is operated by making the direction of the electric field applied to the liquid crystal substantially perpendicular to the substrate surface, and twisted nematic (TN) using a nematic liquid crystal having a positive dielectric anisotropy that has been conventionally aligned by rubbing. It has been used in many liquid crystal display devices such as notebook personal computers.

【0003】しかし、その視野角特性は狭く、かつ応答
が遅い、またラビングプロセスによる歩留まり悪化の欠
点があった。
[0003] However, its viewing angle characteristics are narrow, its response is slow, and the rubbing process has the drawbacks of reduced yield.

【0004】一方、液晶に印加する電界の方向を基板界
面にほぼ平行な方向とする方式として、横電界駆動方式
による液晶分子の面内水平動作によるスイッチング(I
PS方式)を用いた特開平7−36058号などが提案
され一部実用化されている。
On the other hand, as a method in which the direction of the electric field applied to the liquid crystal is made substantially parallel to the interface between the substrates, switching (I) by in-plane horizontal operation of liquid crystal molecules by a lateral electric field driving method is employed.
Japanese Patent Application Laid-Open No. 7-36058, which uses the PS method, has been proposed and partially put into practical use.

【0005】[0005]

【発明が解決しようとする課題】その視野角特性は上下
左右160度に近い特性を持つが応答速度はTNモード
より遅く、かつ一般にラビング処理により配向処理がな
されるため表示ムラなどの欠陥が出やすい。また、間隙
保持のためのスペーサの周囲の異配向により、光ヌケが
発生し、コントラスト低下の原因となっている。
The viewing angle characteristic has a characteristic close to 160 degrees vertically, horizontally and horizontally, but the response speed is slower than that of the TN mode, and defects such as display unevenness appear because alignment processing is generally performed by rubbing. Cheap. Further, due to the different orientation around the spacer for maintaining the gap, light leakage occurs, causing a decrease in contrast.

【0006】また、横電界駆動で負の誘電率異方性の垂
直配向液晶を用いて配向2分割領域を形成する文献SI
D’98、P−91によるDDVA方式が提案されてい
る。従来構成概念図の図1平面図の如く、配向2分割を
形成でき視野は上記TNモードより広く応答も速く、か
つラビングレスプロセスで製造される。しかし、配向2
分割のため視野角は上下左右120度であり、視野角特
性としては依然不十分である。
[0006] In addition, a literature SI in which an alignment bisected region is formed by using a vertical alignment liquid crystal having a negative dielectric anisotropy by driving a lateral electric field.
The DDVA system based on D'98 and P-91 has been proposed. As shown in the plan view of the conventional configuration in FIG. 1, the orientation can be divided into two, the field of view is wider, the response is faster, and the rubbing-less process is used. However, orientation 2
Because of the division, the viewing angle is 120 degrees vertically and horizontally, and the viewing angle characteristics are still insufficient.

【0007】本発明は、上記横電界方式による負の誘電
率異方性の垂直配向液晶を用いた液晶表示装置で、上記
配向2分割型より更に視野角を改善した超広視野高コン
トラストで高速応答のラビングレス方式の液晶表示装置
を提供するものである。
The present invention is directed to a liquid crystal display device using a vertically aligned liquid crystal having a negative dielectric anisotropy by the above-mentioned lateral electric field method, and has a super wide field of view, a high contrast, and a high speed which has a further improved viewing angle than the above-mentioned two-divided type. An object of the present invention is to provide a rubbingless liquid crystal display device having a response.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、少なくとも1本以上の画素電極と連結し
たスイッチング素子を有する画素内に、該画素電極に対
して一定の距離をあけて平行に形成された1本以上の共
通電極が配置された第1の基板と、それに間隙を保持し
て対向された第2の基板と、該基板、電極表面上にそれ
ぞれ設けられた垂直配向膜と、該基板間で略垂直配向し
た誘電率異方性が負のネマティックの液晶層とを備えた
液晶表示装置において、該画素電極と該共通電極が画素
内で平行を保持しながら少なくとも1回以上、ほぼ直角
に曲げて形成され配置されることからなる手段とするも
のである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention is to provide a pixel having a switching element connected to at least one or more pixel electrodes at a predetermined distance from the pixel electrodes. A first substrate on which at least one common electrode formed in parallel is disposed, a second substrate opposed to the first substrate with a gap therebetween, and a vertical alignment film provided on the substrate and the electrode surface, respectively And a liquid crystal display device having a nematic liquid crystal layer having a negative dielectric anisotropy that is substantially vertically aligned between the substrates, wherein the pixel electrode and the common electrode are held at least once while maintaining parallelism in the pixel. As described above, the means is formed by being bent at substantially a right angle and arranged.

【0009】また、更に具体的には、前記画素電極と該
共通電極の間に絶縁層が介されることからなる手段とす
るものである。また、前記対向する基板外側に、偏光軸
方向が前記画素電極、共通電極方向とほぼ45度をなす
偏光板と少なくとも負の2軸性位相差フィルムを配置さ
れることからなる手段とするものである。
[0009] More specifically, the present invention is a means comprising an insulating layer interposed between the pixel electrode and the common electrode. Further, a polarizing plate having a polarization axis direction substantially 45 degrees with respect to the pixel electrode and the common electrode direction and at least a negative biaxial retardation film are disposed outside the opposed substrate. is there.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面にもとづいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】(実施の形態1)図2は本発明の第1の実
施の形態に関わる液晶表示装置による構成概念断面図、
平面図を示す。
(Embodiment 1) FIG. 2 is a conceptual cross-sectional view of a liquid crystal display device according to a first embodiment of the present invention.
FIG.

【0012】ここで図2は電圧印加時の動作状態の液晶
表示装置の構成概念図を示しており、非動作状態は図示
していない。図2において、対向する一対の透明なガラ
スの基板1、2を、偏光板21、22と負の屈折率位相
差を持つ2軸性のフィルム位相差板211、212を所
定の軸方向に合わせてその外側に配置する。前記基板1
内面上に、図では代表して1つの画素200内に示して
説明するが、画素内でほぼ直角に一回曲がった10μm
幅の1本のAl金属などからなる共通電極23を形成す
る。
FIG. 2 is a conceptual diagram of the configuration of the liquid crystal display device in an operating state when a voltage is applied, and does not show a non-operating state. In FIG. 2, a pair of transparent glass substrates 1 and 2 facing each other are aligned with polarizing plates 21 and 22 and biaxial film retarders 211 and 212 having a negative refractive index phase difference in a predetermined axial direction. And place it outside. The substrate 1
On the inner surface, in the drawing, a representative example is shown in one pixel 200, which is described as being 10 μm bent once at a substantially right angle in the pixel.
A common electrode 23 made of a single piece of Al metal or the like is formed.

【0013】次に、薄膜プロセスにおいてマスク枚数を
低減するため、スイッチング素子の上のSiNxからな
る絶縁層をそのまま利用して絶縁層241を共通電極2
3をカバーして形成する。次に、絶縁層241の上に、
同じ画素200内で、ほぼ直角に一回曲がった10μm
幅のAl金属などからなる画素電極24を共通電極23
に対して約30μmのスペーシングを保持して2本形成
配置し、これと連結してTFTからなるスイッチング素
子20を形成配置する。
Next, in order to reduce the number of masks in the thin film process, the insulating layer 241 on the switching element is used as it is to form the insulating layer 241 into the common electrode 2.
3 is formed. Next, on the insulating layer 241,
10 μm bent once at a right angle within the same pixel 200
A pixel electrode 24 made of Al metal or the like having a width
Are formed and arranged while maintaining a spacing of about 30 μm, and a switching element 20 composed of a TFT is formed and arranged in connection therewith.

【0014】上記の様に形成した基板1とはスペーサに
より約3.5μmの間隙を保持して透明なガラス基板2
を対向配置する。基板1、2内面上および上記電極表面
上にポリイミド系の垂直配向膜25、26をそれぞれ塗
布焼成する。基板1、2間に誘電率異方性が負のネマテ
ィック液晶、例えばメルク社製MJ−951152を注
入して、基板面にほぼ垂直に配向した液晶層27を挿入
配置する。上記偏光板21、22の偏光軸は上記並んで
形成された画素電極線、共通電極線に対してほぼ45度
を為すように互いに直交させて、即ち、図ではX、Y軸
方向に配置する。図のX,Y軸方向は表示装置の左右視
角方向、上下視角方向を示す事になる。こうして形成し
た液晶パネルに駆動回路(図示せず)を、スイッチング
素子20と、共通電極23などに連結し駆動電圧を印加
する。駆動電圧2.5Vでは液晶分子29は殆どまだ垂
直配向の状態のままであり、非光透過状態でオフ状態を
示す。垂直配向のためスペーサ付近の光ヌケが皆無に近
いので極めて黒が沈んだ光特性を示した。次に駆動電圧
約2.5Vより高く電圧印加していくと、同一基板に設
けられた画素電極24、共通電極23間に生じる強い横
電界により、その電界の強さに応じて図2において、基
板間で垂直配向した液晶分子29は基板界面付近の液晶
分子28、28’を除いて、画素電極24、共通電極2
3の中間線を境界にして互いに反対方向に傾斜配向して
いき、異なった配向領域A,Bを形成し、中間状態の光
透過状態を示した。同様に、画素電極24、共通電極2
3の直角反対方向ではやはり異なった配向領域C,Dを
形成した。一つの画素200内で配向領域A、B,C,
Dは視野角特性が丁度互いに90度異なった配向4分割
領域をラビング処理や光配向などの配向プロセス処理を
為すことなく、電極の形状を変更するだけという簡便な
方法で自動的に形成できた。駆動電圧約8.5Vを印加
すると、光透過は殆ど飽和し完全なオン状態を示す。こ
うして作製した液晶表示装置の特性を測定したら、図2
でY方向に上下170度、X方向に左右170度の極め
て広い視野角特性でかつどの方向から見ても白黒の反転
領域は殆ど無く、かつ斜め方向での色相の変化は少なく
良い画質が得られた。また基板法線方向の正面コントラ
ストは約300を得て非常に高いコントラストを得た。
また、応答速度は約25msを示し、高速応答であっ
た。ラビング処理などのプロセス処理が無いため配向欠
陥が殆ど無く従来より製造歩留まりが向上した。
The transparent glass substrate 2 is spaced apart from the substrate 1 formed as described above by a spacer of about 3.5 μm.
Are arranged facing each other. Polyimide-based vertical alignment films 25 and 26 are applied and baked on the inner surfaces of the substrates 1 and 2 and on the electrode surfaces, respectively. A nematic liquid crystal having a negative dielectric anisotropy, for example, MJ-951152 manufactured by Merck, is injected between the substrates 1 and 2, and a liquid crystal layer 27 oriented substantially perpendicular to the substrate surface is inserted and arranged. The polarization axes of the polarizing plates 21 and 22 are orthogonal to each other so as to make an angle of approximately 45 degrees with the pixel electrode line and the common electrode line formed side by side, that is, arranged in the X and Y axis directions in the figure. . The X and Y axis directions in the drawing indicate the left and right viewing angle directions and the up and down viewing angle directions of the display device. A driving circuit (not shown) is connected to the switching element 20, the common electrode 23, and the like, and a driving voltage is applied to the liquid crystal panel thus formed. At a driving voltage of 2.5 V, the liquid crystal molecules 29 are almost still in a vertically aligned state, indicating an off state in a non-light transmitting state. Due to the vertical alignment, there was almost no light leakage near the spacer, so that the light characteristics were extremely black. Next, when a drive voltage higher than about 2.5 V is applied, a strong horizontal electric field generated between the pixel electrode 24 and the common electrode 23 provided on the same substrate causes a strong horizontal electric field in FIG. The liquid crystal molecules 29 vertically aligned between the substrates except for the liquid crystal molecules 28 and 28 ′ near the substrate interface have the pixel electrode 24 and the common electrode 2.
With the intermediate line of No. 3 as a boundary, the liquid crystal molecules were obliquely oriented in directions opposite to each other to form different alignment regions A and B, indicating a light transmitting state of an intermediate state. Similarly, the pixel electrode 24 and the common electrode 2
In the opposite direction at right angles to No. 3, different orientation regions C and D were also formed. In one pixel 200, alignment regions A, B, C,
D can be formed automatically by a simple method of merely changing the shape of the electrode without performing an alignment process such as rubbing or optical alignment on the alignment quadrants having different viewing angle characteristics from each other by exactly 90 degrees. . When a driving voltage of about 8.5 V is applied, the light transmission is almost saturated, indicating a complete ON state. After measuring the characteristics of the liquid crystal display device thus manufactured, FIG.
With a very wide viewing angle characteristic of 170 degrees up and down in the Y direction and 170 degrees left and right in the X direction, there is almost no black and white inversion area when viewed from any direction, and there is little change in hue in the oblique direction and good image quality is obtained. Was done. The front contrast in the normal direction of the substrate was about 300, and a very high contrast was obtained.
The response speed was about 25 ms, which was a high-speed response. Since there was no process such as rubbing, there was almost no alignment defect, and the production yield was improved compared to the conventional case.

【0015】従来のDDVA方式では配向2分割領域の
形成のみで視野角特性が低かったが、本発明による極め
て簡略な方法で配向4分割領域の自動形成ができ、極め
て広い視野角特性の液晶表示装置を得た。更に応答も速
く、斜め方向の色変化も少なく、ラビングプロセスもな
く、通常のIPS方式より良好な結果を得た。
In the conventional DDVA method, the viewing angle characteristics were low only by forming the two-divided alignment regions. However, a liquid crystal display having an extremely wide viewing angle characteristic can be automatically formed by the extremely simple method according to the present invention. The device was obtained. Further, the response was fast, the color change in the oblique direction was small, and there was no rubbing process.

【0016】上記では、画素電極、共通電極を画素内で
平行に並べてそれぞれ一回直角に曲げて形成配置した
が、図3平面図の如く複数回交互に直角に曲げて形成し
てもよい。
In the above description, the pixel electrode and the common electrode are arranged in parallel in the pixel and bent and formed once at a right angle. However, as shown in a plan view of FIG.

【0017】また、上記では、1画素内に画素電極を1
本、共通電極を2本形成し横電界を発生させたが、更に
複数本互いに増加形成配置しても良い。しかし、あまり
増加させると、画素開口率は低下するため、上記特性と
開口率のバランスを考慮して決められる。
In the above description, one pixel electrode is provided in one pixel.
Although two common electrodes and two common electrodes are formed to generate a horizontal electric field, a plurality of common electrodes may be further increased and arranged. However, if the value is excessively increased, the pixel aperture ratio decreases. Therefore, the pixel aperture ratio is determined in consideration of the balance between the above characteristics and the aperture ratio.

【0018】また図2で画素形状は電極線の曲げにそっ
て形成したが、電極形状の工夫により通常の長方形の画
素形状などでも形成できる。スイッチング素子の位置も
最適位置に配置できる。
Although the pixel shape is formed along the bending of the electrode line in FIG. 2, it can also be formed in an ordinary rectangular pixel shape by devising the electrode shape. The position of the switching element can also be arranged at the optimum position.

【0019】また、上記で、一方の基板に電極の無い基
板を用いたが、静電気対策のために、透明電極が設けら
れていても良い。
In the above description, one of the substrates has no electrode, but a transparent electrode may be provided for preventing static electricity.

【0020】また、上記で用いた電極幅、そのスペーシ
ング間隔、基板間隙の値、液晶材料、配向膜材料の品種
はその最適化のために適宜変えて良い。
Further, the electrode width, the spacing interval, the value of the substrate gap, the type of the liquid crystal material and the type of the alignment film material used above may be appropriately changed for optimization.

【0021】また、上記では、垂直配向モ−ドの視角特
性改善のために、光学補償用に負の2軸性フィルム位相
差板を挿入したが、これが無い時は、視角特性は上下非
対称で上記視角特性より低く、他の1軸性フィルム位相
差板などの挿入で視角特性、コントラストを更に改善す
ることができる。
In the above description, a negative biaxial film retardation plate is inserted for optical compensation in order to improve the viewing angle characteristics in the vertical alignment mode. However, without this, the viewing angle characteristics are vertically asymmetric. The viewing angle characteristics are lower than the above viewing angle characteristics, and the viewing angle characteristics and contrast can be further improved by inserting another uniaxial film phase difference plate or the like.

【0022】電極間の絶縁層により、電極間の短絡や、
配向ムラなどの欠陥が減り、更に歩留まりの高いプロセ
スコストの安価な液晶表示装置にすることができた。
Due to the insulating layer between the electrodes, a short circuit between the electrodes,
Defects such as alignment unevenness were reduced, and a liquid crystal display device having a higher yield and a lower process cost was obtained.

【0023】本発明では、一方の基板に反射型の基板を
使用することにより反射型の液晶表示装置とする事が出
来る。さらに本発明はスイッチング素子を持つTFT、
MIMなどのアクティブマトリクス方式の液晶表示装置
のいずれにも同様に実施可能となるものである。
In the present invention, a reflective liquid crystal display device can be obtained by using a reflective substrate as one of the substrates. Further, the present invention provides a TFT having a switching element,
The present invention can be similarly applied to any active matrix type liquid crystal display device such as MIM.

【0024】[0024]

【発明の効果】以上のように本発明によれば、従来のI
PS方式やDDVA方式によるそれぞれの液晶表示装置
の欠点を改善し、極めて簡便な方法で配向4分割領域の
自動形成ができ、上下左右対称で極めて広い視野角特性
や斜め方向の色変化の少ない、応答が速い液晶表示装置
を得ることができ、更にラビング処理や光配向処理など
のプロセスを全く不要とするため歩留まりの高い液晶表
示装置を得ることができる。
As described above, according to the present invention, the conventional I
The disadvantages of the liquid crystal display devices of the PS system and the DDVA system are improved, and the alignment quadrant can be automatically formed by an extremely simple method. A liquid crystal display device having a fast response can be obtained, and a liquid crystal display device with a high yield can be obtained because processes such as rubbing treatment and optical alignment treatment are not required at all.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の液晶表示装置の構成概念図FIG. 1 is a conceptual diagram of a configuration of a conventional liquid crystal display device.

【図2】本発明の第1の実施の形態に関わる液晶表示装
置の構成概念図
FIG. 2 is a configuration conceptual diagram of a liquid crystal display device according to a first embodiment of the present invention.

【図3】本発明の第1の実施の形態に関わる液晶表示装
置のさらに具体的な構成概念図
FIG. 3 is a more specific configuration conceptual diagram of the liquid crystal display device according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 基板 A,B,C,D 配向領域 28,28’,29 液晶分子 21,22 偏光板 23 共通電極 24 画素電極 25,26 配向膜 27 液晶層 20 スイッチング素子 211,212 位相差板 P1,P2 偏光板偏光軸 1, 2 Substrate A, B, C, D Alignment region 28, 28 ', 29 Liquid crystal molecule 21, 22 Polarizer 23 Common electrode 24 Pixel electrode 25, 26 Alignment film 27 Liquid crystal layer 20 Switching element 211, 212 Phase difference plate P1 , P2 Polarizing plate polarization axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1本以上の画素電極と連結した
スイッチング素子を有する画素内に、該画素電極に対し
て一定の距離をあけて平行に形成された1本以上の共通
電極が配置された第1の基板と、それに間隙を保持して
対向された第2の基板と、該基板、電極表面上にそれぞ
れ設けられた垂直配向膜と、該基板間で略垂直配向した
誘電率異方性が負のネマティックの液晶層とを備えた液
晶表示装置において、該画素電極と該共通電極が画素内
で平行を保持しながら少なくとも1回以上、ほぼ直角に
曲げて形成され配置される液晶表示装置。
A pixel having a switching element connected to at least one pixel electrode, at least one common electrode formed parallel to the pixel electrode at a fixed distance from the pixel electrode. A first substrate, a second substrate facing the first substrate with a gap therebetween, a vertical alignment film provided on the substrate and the electrode surface, and a dielectric anisotropy substantially vertically aligned between the substrates. A liquid crystal display device comprising a negative nematic liquid crystal layer, wherein the pixel electrode and the common electrode are formed and arranged at least once at substantially right angles while maintaining parallelism within the pixel. .
【請求項2】前記画素電極と該共通電極の間に絶縁層が
介された請求項1記載の液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein an insulating layer is interposed between said pixel electrode and said common electrode.
【請求項3】前記対向する基板外側に、偏光軸方向が前
記画素電極、共通電極方向とほぼ45度をなす偏光板と
少なくとも負の2軸性位相差フィルムを配置した請求項
1、2記載の液晶表示装置。
3. A polarizing plate having a polarization axis direction substantially 45 degrees with respect to the pixel electrode and the common electrode direction and at least a negative biaxial retardation film are disposed outside the opposing substrate. Liquid crystal display device.
JP10270860A 1998-09-25 1998-09-25 Liquid crystal display device Pending JP2000098410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270860A JP2000098410A (en) 1998-09-25 1998-09-25 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270860A JP2000098410A (en) 1998-09-25 1998-09-25 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2000098410A true JP2000098410A (en) 2000-04-07

Family

ID=17491991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270860A Pending JP2000098410A (en) 1998-09-25 1998-09-25 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2000098410A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413485B1 (en) * 2001-07-09 2003-12-31 엘지.필립스 엘시디 주식회사 Inplane switching mode liquid crystal display device and method for fabricating the same
WO2011013269A1 (en) * 2009-07-31 2011-02-03 シャープ株式会社 Liquid crystal panel and liquid crystal display device
CN102629061A (en) * 2012-02-27 2012-08-08 京东方科技集团股份有限公司 Array substrate and liquid crystal display device
CN111477111A (en) * 2020-05-20 2020-07-31 武汉天马微电子有限公司 Display panel and display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413485B1 (en) * 2001-07-09 2003-12-31 엘지.필립스 엘시디 주식회사 Inplane switching mode liquid crystal display device and method for fabricating the same
WO2011013269A1 (en) * 2009-07-31 2011-02-03 シャープ株式会社 Liquid crystal panel and liquid crystal display device
CN102472932A (en) * 2009-07-31 2012-05-23 夏普株式会社 Liquid crystal panel and liquid crystal display device
US8284359B2 (en) 2009-07-31 2012-10-09 Sharp Kabushiki Kaisha Liquid crystal panel and liquid crystal display device
JP5389923B2 (en) * 2009-07-31 2014-01-15 シャープ株式会社 Liquid crystal panel and liquid crystal display device
CN102629061A (en) * 2012-02-27 2012-08-08 京东方科技集团股份有限公司 Array substrate and liquid crystal display device
WO2013127198A1 (en) * 2012-02-27 2013-09-06 京东方科技集团股份有限公司 Array substrate and liquid crystal display device
US9097952B2 (en) 2012-02-27 2015-08-04 Boe Technology Group Co., Ltd. Array substrate and liquid crystal display device
CN111477111A (en) * 2020-05-20 2020-07-31 武汉天马微电子有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
KR100359352B1 (en) Liquid crystal display device and method its production
US6466290B2 (en) Fringe field switching mode LCD
JP3811811B2 (en) Fringe field switching mode liquid crystal display
US6678027B2 (en) Fringe field switching mode LCD
JP3066255B2 (en) Liquid crystal display
JP2000029072A (en) Liquid crystal display device with high aperture rate and high transmissivity
JPH11242233A (en) Horizontal electric field type liquid crystal display device
JP2921813B2 (en) Electrode structure of liquid crystal display
JP4041610B2 (en) Liquid crystal display
JPH11153802A (en) Active matrix liquid crystal display device
KR100319467B1 (en) Liquid Crystal Display device
KR101152548B1 (en) Liquid crystal display device increasing viewing angle
JP3070181B2 (en) Liquid crystal display
JP2000098410A (en) Liquid crystal display device
JP2002062535A (en) Active matrix liquid crystal display device
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
KR20030061584A (en) 2-domain ffs-va mode liquid crystal display device
JPH08271919A (en) Active matrix type liquid crystal display device
JPH0749493A (en) Liquid crystal display panel
KR20030037821A (en) Vertical alignment mode liquid crystal display device
KR100735272B1 (en) Optically compensated bend mode lcd
JPH112816A (en) Liquid crystal display element and its manufacture
KR20180046769A (en) Fast Response Liquid Crystal Display Device
KR20020057671A (en) Liquid crystal display
KR20020044283A (en) Fringe field swiching mode lcd