JPH01208357A - Production of oxide superconducting form - Google Patents

Production of oxide superconducting form

Info

Publication number
JPH01208357A
JPH01208357A JP63030638A JP3063888A JPH01208357A JP H01208357 A JPH01208357 A JP H01208357A JP 63030638 A JP63030638 A JP 63030638A JP 3063888 A JP3063888 A JP 3063888A JP H01208357 A JPH01208357 A JP H01208357A
Authority
JP
Japan
Prior art keywords
binder
atmosphere
powder
oxide superconducting
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63030638A
Other languages
Japanese (ja)
Inventor
Naoki Uno
直樹 宇野
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63030638A priority Critical patent/JPH01208357A/en
Publication of JPH01208357A publication Critical patent/JPH01208357A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title form improved in formed shape and superconducting characteristics without contamination by the binder, by pressure forming of a mixture of raw powder and a specified amount of a binder followed by binder-elimination treatment and then by heating and sintering under an O2-contg. atmosphere. CONSTITUTION:Firstly, a mixed powder is prepared by blending compounds each containing a constituent element of the objective oxide superconductor. Secondly, this mixed powder is incorporated with 0.1-10wt.% of, as the binder, a polyalkylenecarbonate(PAC), and the resultant mixture is subjected to pressure forming to produce a form. Thirdly, this form is heated to >=250 deg.C in a nonoxidative atmosphere to carry out binder-elimination treatment to volatilize the PAC in the form of a nontoxic gas. Finally, the resultant form is sintered at ca.940 deg.C for ca.6hrs. in an O2-contg. atmosphere, thus obtaining the objective oxide superconducting form.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電カケープル、マグネット、電力貯蔵リンク又
は磁気シールド等に板材あるいは線材として用いられる
酸化物超電導成形体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an oxide superconducting molded body used as a plate or wire for electric cables, magnets, power storage links, magnetic shields, etc.

(従来の技術及びその課題〕 近年、(Ln+−*Sr、)CuOa、(Ln+−+t
Ba 11) * Cu O4、LnBaxCuzOt
、LnBaz−++5rxCu30を等(但し、Lnは
Y、Sc又は希±頻元素)の層状ペロプスカイト型構造
の酸化物超電導体が見出されている。
(Prior art and its problems) In recent years, (Ln+-*Sr,)CuOa, (Ln+-+t
Ba 11) *Cu O4, LnBaxCuzOt
, LnBaz-++5rxCu30 (wherein Ln is Y, Sc, or a rare element), oxide superconductors with a layered perovskite structure have been found.

これらの酸化物超電導体は、液体N2温度以上で超電導
となるため従来の液体He温度で超電導を示す金属超電
導体に較べて格段に経済的であり、各分野での利用が検
討されている。
These oxide superconductors are much more economical than conventional metal superconductors which exhibit superconductivity at liquid He temperatures because they become superconducting above the liquid N2 temperature, and their use in various fields is being considered.

ところで上記の酸化物超電導体は脆いため金属材料のよ
うに塑性加工ができず、これらを板材や線材等に加工す
るには、主に粉末冶金法が用いられる。
By the way, the above-mentioned oxide superconductors are brittle and cannot be plastically worked like metal materials, and powder metallurgy is mainly used to process them into plates, wires, etc.

この粉末冶金法による酸化物超電導体の製造方法を具体
的に示すと、例えばY r B a z Cu 30 
M組成の仮焼粉を原料として用い、これを所望の形状に
圧粉成形し、次いでこの圧粉成形体を酸素含有雰囲気中
で850〜1,000℃の温度で加熱焼結してY 1 
B a z Cu 30 t−δ(δζ0.1〜0.3
)の組成からなる酸化物超電導成形体となすものである
A concrete example of the method for producing an oxide superconductor using this powder metallurgy method is, for example, Y r B az Cu 30
Using calcined powder of composition M as a raw material, it is compacted into a desired shape, and then this compacted compact is heated and sintered at a temperature of 850 to 1,000°C in an oxygen-containing atmosphere to obtain Y1.
B az Cu 30 t-δ(δζ0.1~0.3
) is an oxide superconducting molded body having the composition.

ところで上記方法において目的とする圧粉成形体が大型
又は複雑形状のものは、その形状を維持するのが困難な
為、予め仮焼粉にPVA(ポリビニルアルコール)、P
VB (ポリビニルブチラール)又はパラフィン等のバ
インダーを混合して粉末間の結合力を強めて成形性を高
める対策がとられているが、このバインダーを混合した
圧粉成形体をいきなり加熱焼結するとバインダーの構成
元素である炭素が超電導体内に拡散して結晶粒界に析出
し超電導特性を劣化させるので、加熱焼結前に圧粉成形
体を500℃程度に加熱してバインダーを事前に揮散さ
せる脱バインダー処理が施される。
By the way, in the above method, if the target powder compact is large or has a complicated shape, it is difficult to maintain the shape, so PVA (polyvinyl alcohol), PVA is added to the calcined powder in advance.
Measures have been taken to improve moldability by mixing binders such as VB (polyvinyl butyral) or paraffin to strengthen the bonding force between powders, but if a powder compact mixed with this binder is suddenly heated and sintered, the binder will be removed. Since carbon, which is a constituent element of the superconductor, diffuses into the superconductor and precipitates at the grain boundaries, deteriorating the superconducting properties, it is necessary to heat the compact to about 500°C before sintering to volatilize the binder. Binder treatment is applied.

しかしながらこの脱バインダー処理の加熱雰囲気が非酸
化性雰囲気の場合は、バインダーは完全には分解されず
に一部の元素が化合物を形成して残存し、これが後の焼
結工程で超電導体と反応して特性を劣化させ、又脱バイ
ンダー処理を酸素含有雰囲気中で施すとバインダーの構
成元素であるCやHがCOoやH,Oガスとなって原料
の仮焼粉と反応し仮焼粉表面層にBaCO5やBa(O
H)を等の化合物を生成して特性を劣化させるばかりで
なく成形体に割れを生じたりする問題があった。
However, if the heating atmosphere for this binder removal process is a non-oxidizing atmosphere, the binder will not be completely decomposed and some elements will remain to form compounds, which will react with the superconductor in the subsequent sintering process. In addition, when the binder removal treatment is performed in an oxygen-containing atmosphere, the constituent elements of the binder, such as C and H, become COo, H, and O gases and react with the raw material calcined powder, causing the surface of the calcined powder to deteriorate. The layer contains BaCO5 and Ba(O
There is a problem in that compounds such as H) are produced, which not only deteriorates the properties but also causes cracks in the molded product.

〔課題を解決するための手段] 本発明はかかる状況に鑑みなされものでその目的とする
ところは、成形形状及び超電導特性に優れた酸化物超電
導成形体の製造方法を提供することにある。
[Means for Solving the Problems] The present invention was developed in view of the above circumstances, and its purpose is to provide a method for producing an oxide superconducting molded body having excellent molded shape and superconducting properties.

即ち本発明は、酸化物超電導体の前駆物質の粉末にバイ
ンダーとしてポリアルキレンカーボネートを0.1〜1
0重量%配合し両者を均一に混合したのち、この混合物
を所望の形状に加圧成形し、次いでこの加圧成形体を非
酸化性雰囲気中で250℃以上の温度に加熱して脱バイ
ンダー処理を施し、しかるのちこれを酸素含有雰囲気中
で加熱焼結することを特徴とするものである。
That is, in the present invention, 0.1 to 1% of polyalkylene carbonate is added as a binder to a powder of an oxide superconductor precursor.
After blending 0% by weight and uniformly mixing both, this mixture is pressure-molded into a desired shape, and then this press-molded body is heated to a temperature of 250°C or higher in a non-oxidizing atmosphere to remove the binder. The method is characterized in that it is heated and sintered in an oxygen-containing atmosphere.

本発明において原料として用いられる酸化物超電導体の
前駆物質とは、目的とする酸化物超電導体の構成元素を
それぞれ含有する化合物を所定量配合し混合したもの、
又は上記混合体を酸素含有雰囲気中で850〜1 、0
00℃に加熱して仮焼成し、これを粉砕分級して得られ
る仮焼粉等である。
The precursor of the oxide superconductor used as a raw material in the present invention is a mixture of predetermined amounts of compounds containing each of the constituent elements of the desired oxide superconductor;
Or the above mixture in an oxygen-containing atmosphere at 850-1,0
This is calcined powder etc. obtained by heating to 00°C and calcining, and then crushing and classifying the calcined powder.

本発明においてバインダーに用いられるポリアルキレン
カーボネートは第1図に示した化学構造式からなり、上
記ポリアルキレンカーボネートに属する化合物にはポリ
エチレンカーボネート、ポリプロピレンカーボネート、
ブチレンカーボネート等があり、いずれも本発明方法に
適用できるものである。
The polyalkylene carbonate used as the binder in the present invention has the chemical structural formula shown in FIG. 1, and the compounds belonging to the polyalkylene carbonate include polyethylene carbonate, polypropylene carbonate,
There are butylene carbonate and the like, all of which can be applied to the method of the present invention.

上記のポリアルキレンカーボネートを非酸化性雰囲気中
で加熱したときの反応式をポリプロピレンカーボネート
(以下PPCと略記)について例示すると第2図に示し
たようにPPCは、超電導体原料粉末に無害なプロピレ
ンカーボネートに熱分解する。この反応式の様子を熱分
析曲線で示すと第2図に示したように240℃程度から
熱分解しはじめ360℃以上で完全にガス化して揮散す
ることが判る。これに対し従来のバインダー例えばPV
Bは380℃前後から熱分解しはじめ500℃以上の高
温に加熱しても尚完全に揮散することなく一部が固相と
して残存することが判る。
The reaction formula when the above polyalkylene carbonate is heated in a non-oxidizing atmosphere is illustrated for polypropylene carbonate (hereinafter abbreviated as PPC). As shown in Figure 2, PPC is propylene carbonate that is harmless to the superconductor raw material powder. thermally decomposes into When this reaction equation is shown in a thermal analysis curve, it can be seen that thermal decomposition begins at about 240°C and complete gasification and volatilization occur at 360°C or higher, as shown in Figure 2. In contrast, conventional binders such as PV
It can be seen that B begins to thermally decompose at around 380°C and even when heated to a high temperature of 500°C or higher, it is not completely volatilized and a portion remains as a solid phase.

本発明においてバインダーとして配合するポリアルキレ
ンカーボネートの配合量は、0.1wt%未満では粉末
同士の結合力が十分に得られず、又10wt%を超える
と脱バインダーに長時間を要するので0.1〜10−t
%の範囲が好ましい。
In the present invention, the amount of polyalkylene carbonate blended as a binder is less than 0.1 wt% because sufficient bonding strength between powders cannot be obtained, and when it exceeds 10 wt%, it takes a long time to remove the binder. ~10-t
A range of % is preferred.

〔作用〕[Effect]

本発明において圧粉成形体を得るためのバインダーにポ
リアルキレンカーボネートを用い、上記圧粉体の脱バイ
ンダー処理を非酸化性雰囲気中で250℃以上の温度に
加熱して行うので、脱バインダー処理によりポリアルキ
レンカーボネートは無害なガスとして完全に揮散してし
まい、脱バインダー処理又は加熱焼結時に原料又は超電
導体がバインダーにより汚染されることがない。
In the present invention, polyalkylene carbonate is used as a binder for obtaining a powder compact, and the binder removal treatment of the powder compact is performed by heating it to a temperature of 250°C or higher in a non-oxidizing atmosphere. The polyalkylene carbonate completely volatilizes as a harmless gas, and the raw material or superconductor is not contaminated by the binder during binder removal treatment or heat sintering.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例l Y2O3、BaC0,、CuOをY:Ba:Cuがモル
比でillになるように配合したのち、これを酸素気流
中で850℃24H仮焼成し、次いでこの仮焼成体をボ
ールミルで粉砕しこれを分級してY、Ba2Cu、O,
組成の直径2−以下の仮焼粉を作製した。
Example 1 After blending Y2O3, BaC0, and CuO so that the molar ratio of Y:Ba:Cu is ill, this was calcined at 850°C for 24 hours in an oxygen stream, and then this calcined body was pulverized in a ball mill. This was classified into Y, Ba2Cu, O,
A calcined powder having a composition of 2 mm or less in diameter was produced.

しかるのち上記仮焼粉100grと、バインダーとして
PPCを2.9gr含有させたエチルアセテート溶液5
0ccと混練し、この混合体をスプレードライヤーによ
り噴霧し乾燥させたのち、これを粉砕してプレス成形し
易い30〜50μ径の顆粒となし、次いでこの顆粒を金
型プレス機を用いて1,000kg/cdの加圧力をか
けて50ffIIlφX7mm’のベレットに成形した
After that, an ethyl acetate solution 5 containing 100g of the above calcined powder and 2.9g of PPC as a binder was prepared.
After the mixture is sprayed and dried using a spray dryer, it is crushed into granules with a diameter of 30 to 50 μm that are easy to press-form. A pressurizing force of 000 kg/cd was applied to form a pellet of 50ffIIlφX7mm'.

このようにして得たベレットを窒素気流中で400″C
2H加熱して脱バインダー処理を施し、次いで酸素気流
中で940’C6H加熱焼結したのち、940℃から3
00℃まで1℃/winの速度で徐冷して酸化物超電導
成形体を製造した。
The pellet thus obtained was heated to 40"C in a nitrogen stream.
The binder was removed by heating for 2 hours, followed by 940'C6H heating and sintering in an oxygen stream, followed by 3 hours of heating from 940°C.
The mixture was slowly cooled to 00°C at a rate of 1°C/win to produce an oxide superconducting molded body.

実施例2 PPCを7.4gr含有させたエチルアセテート液を用
いた他は実施例1と同じ方法により酸化物超電導成形体
を製造した。
Example 2 An oxide superconducting molded body was produced in the same manner as in Example 1, except that an ethyl acetate solution containing 7.4 gr of PPC was used.

実施例3 PPCを0.5gr含有させたエチルアセテート液を用
いた他は実施例1と同じ方法により酸化物超電導成形体
を製造した。
Example 3 An oxide superconducting molded body was produced in the same manner as in Example 1, except that an ethyl acetate solution containing 0.5 gr of PPC was used.

比較例1 圧粉成形体の脱バインダー処理を大気中で行った他は実
施例1と同じ方法により酸化物超電導成形体を製造した
Comparative Example 1 An oxide superconducting molded body was produced in the same manner as in Example 1, except that the binder removal treatment of the powder compact was performed in the atmosphere.

比較例2 バインダーにPVBを用い、圧粉成形体の脱バインダー
処理を大気中で500”C2H加熱して行った他は実施
例1と同じ方法により酸化物超電導成形体を製造した。
Comparative Example 2 An oxide superconducting molded body was produced in the same manner as in Example 1, except that PVB was used as the binder and the binder removal treatment of the powder molded body was performed by heating at 500" C2H in the air.

比較例3 圧粉成形体の脱バインダー処理を窒素気流中で行った他
は比較例2と同じ方法により酸化物超電導成形体を製造
した。
Comparative Example 3 An oxide superconducting molded body was produced in the same manner as in Comparative Example 2, except that the binder removal treatment of the powder compact was carried out in a nitrogen stream.

斯くの如くして得た各々の酸化物超電導成形体について
相対密度(S、1)、臨界温度(Tc )、臨界電流密
度(J、)を測定した。得られた結果は製造条件を併記
して第1表に示した。
The relative density (S, 1), critical temperature (Tc), and critical current density (J) of each of the oxide superconducting molded bodies thus obtained were measured. The obtained results are shown in Table 1 together with the manufacturing conditions.

第1表より明らかなように本発明方法品(実施例1〜3
)は比較方法品(比較例1〜3)に較べてSl、1.、
T6、Jcのいずれにおいても優れた特性を示している
As is clear from Table 1, the method of the present invention (Examples 1 to 3)
) compared to the comparative method products (Comparative Examples 1 to 3). ,
It shows excellent characteristics at both T6 and Jc.

比較方法品のうち、比較例1は、バインダーにPPCを
用いたが、脱バインダー処理を大気中で行ったためCO
tやH,Oが発生し、これが仮焼粉と反応して局部的に
Ba(○H)2やBaC0,が生成し、特性が低下した
Among the comparative method products, Comparative Example 1 used PPC as a binder, but the binder removal treatment was performed in the atmosphere, so CO
t, H, and O were generated, which reacted with the calcined powder to locally generate Ba(○H)2 and BaC0, and the properties deteriorated.

又比較例2.3は、バインダーにPVBを用いた為、脱
バインダー処理を大気中で施した場合(比較例2)は、
脱バインダー時にCO2やH2Oが発生し、又窒素気流
中で施した場合(比較例3)はバインダーの構成元素が
残存して、それぞれ脱バインダー時又は焼結時に原料又
は超電導体が汚染して超電導特性が低下したものである
Also, in Comparative Example 2.3, PVB was used as the binder, so when the binder removal treatment was performed in the air (Comparative Example 2),
CO2 and H2O are generated during binder removal, and when it is performed in a nitrogen stream (Comparative Example 3), the constituent elements of the binder remain, and the raw material or superconductor is contaminated during binder removal or sintering, resulting in superconductivity. The characteristics have deteriorated.

本発明方法はSUS等の基体上に酸化物超電導体を膜状
に形成する超電導成形体の製造方法にも適用できること
は言うまでもない。
It goes without saying that the method of the present invention can also be applied to a method for manufacturing a superconducting molded body in which an oxide superconductor is formed in the form of a film on a substrate such as SUS.

父上記実施例ではY−Ba−Cu−0系の超電導体″に
ついて説明したが、本発明方法はY−3r−Cu−0系
やY−3r−Ba−Cu−0系等他のアルカリ土類金属
、希土類元素、銅及び酸素を主成分とする酸化物超電導
成形体の製造にも適用できるものである。
In the above example, the Y-Ba-Cu-0 system superconductor was explained, but the method of the present invention can be applied to other alkaline earths such as Y-3r-Cu-0 system and Y-3r-Ba-Cu-0 system. It can also be applied to the production of oxide superconducting molded bodies whose main components are metals, rare earth elements, copper, and oxygen.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、バインダーを無
害なガスとして完全に揮散させることができるので、脱
バインダー処理又は加熱焼結時に原料又は超電導体がバ
インダーにより汚染されることがなく、J6等の特性に
優れた酸化物超電導体が製造し得るもので、工業上顕著
な効果を奏する。
As described above, according to the method of the present invention, the binder can be completely volatilized as a harmless gas, so that the raw material or superconductor is not contaminated by the binder during binder removal treatment or heat sintering, and J6 It is possible to produce oxide superconductors with excellent properties such as the following, and it has a remarkable effect industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリアルキレンカーボネートの化学構造式、第
2図はポリプロピレンカーボネートの熱分解反応式、第
3図はPPC及びPVBの熱分解曲線図である。 特許出願人   古河電気工業株式会社第2図 第3図
FIG. 1 is a chemical structural formula of polyalkylene carbonate, FIG. 2 is a thermal decomposition reaction formula of polypropylene carbonate, and FIG. 3 is a thermal decomposition curve diagram of PPC and PVB. Patent applicant Furukawa Electric Co., Ltd. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体の前駆物質の粉末にバインダーとしてポ
リアルキレンカーボネートを0.1〜10重量%配合し
両者を均一に混合したのち、この混合物を所望の形状に
加圧成形し、次いでこの加圧成形体を非酸化性雰囲気中
で250℃以上の温度に加熱して脱バインダー処理を施
し、しかるのちこれを酸素含有雰囲気中で加熱焼結する
ことを特徴とする酸化物超電導成形体の製造方法。
After blending 0.1 to 10% by weight of polyalkylene carbonate as a binder to the powder of the precursor of the oxide superconductor and mixing the two uniformly, this mixture is pressure-molded into a desired shape, and then this pressure-molding is performed. 1. A method for manufacturing an oxide superconducting molded body, which comprises heating the body to a temperature of 250° C. or higher in a non-oxidizing atmosphere to remove the binder, and then heating and sintering the body in an oxygen-containing atmosphere.
JP63030638A 1988-02-12 1988-02-12 Production of oxide superconducting form Pending JPH01208357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030638A JPH01208357A (en) 1988-02-12 1988-02-12 Production of oxide superconducting form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030638A JPH01208357A (en) 1988-02-12 1988-02-12 Production of oxide superconducting form

Publications (1)

Publication Number Publication Date
JPH01208357A true JPH01208357A (en) 1989-08-22

Family

ID=12309379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030638A Pending JPH01208357A (en) 1988-02-12 1988-02-12 Production of oxide superconducting form

Country Status (1)

Country Link
JP (1) JPH01208357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020916A (en) * 2009-06-18 2011-02-03 Toudai Tlo Ltd Composition for molding sintered ceramic, method for producing sintered ceramic, and ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020916A (en) * 2009-06-18 2011-02-03 Toudai Tlo Ltd Composition for molding sintered ceramic, method for producing sintered ceramic, and ceramic

Similar Documents

Publication Publication Date Title
US4778778A (en) Process for the production of sintered aluminum nitrides
US5306700A (en) Dense melt-based ceramic superconductors
JPH0764627B2 (en) Method for manufacturing melt-generated superconductor
EP0308892A2 (en) Flaky oxide superconductor and method of manufacturing the same
EP0351844B1 (en) Method of manufacturing bismuth type oxide superconductor
EP0628537A1 (en) Process for making superconductors and their precursors
JPH01208357A (en) Production of oxide superconducting form
NZ228820A (en) Superconducting metal oxide and its preparation
WO1989008077A1 (en) PROCESS FOR PRODUCING SUPERCONDUCTING (Bi, Tl)-Ca-(Sr, Ba)-Cu-O CERAMIC
JP2677882B2 (en) Method for producing bismuth oxide superconductor
JP2677830B2 (en) Method for producing bismuth oxide superconductor
JPH0687611A (en) Oxide superconductor and production thereof and wire rod thereof
JPH01242419A (en) Bi-pb-ca-sr-cu-o based superconducting material
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2969221B2 (en) Manufacturing method of oxide superconductor
Rukang et al. Characterization of a new Fe-1222 layered cuprate, FeSr2 (LnCe) 2Cu2Oy
JPH0214871A (en) Production of copper oxide superconductor
JPH04139026A (en) Oxide superconducting material and its production
JP3165162B2 (en) Method for producing oxide superconductor thick film
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
MATSUDA et al. Densification of superconducting Ba2YCu4O8 ceramics by two-stage sintering
JPH0477345A (en) Production of sintered superconducting material
Mckittrick et al. Rapid Solidification of YBa2Cu3O7− x, EuBa2Cu3O7− x, and GdBa2Cu3O7− x
JPH03183653A (en) Method for sintering bi-pb-sr-ca-cu-o superconductor