JPH0120817B2 - - Google Patents

Info

Publication number
JPH0120817B2
JPH0120817B2 JP58018102A JP1810283A JPH0120817B2 JP H0120817 B2 JPH0120817 B2 JP H0120817B2 JP 58018102 A JP58018102 A JP 58018102A JP 1810283 A JP1810283 A JP 1810283A JP H0120817 B2 JPH0120817 B2 JP H0120817B2
Authority
JP
Japan
Prior art keywords
frequency component
wave
interference
high frequency
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58018102A
Other languages
Japanese (ja)
Other versions
JPS59144232A (en
Inventor
Shigeru Kozono
Keiichi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58018102A priority Critical patent/JPS59144232A/en
Priority to US06/541,842 priority patent/US4561114A/en
Priority to DE8383307195T priority patent/DE3379252D1/en
Priority to EP83307195A priority patent/EP0117946B1/en
Publication of JPS59144232A publication Critical patent/JPS59144232A/en
Publication of JPH0120817B2 publication Critical patent/JPH0120817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]

Description

【発明の詳細な説明】 (技術分野) 本発明は、無線通信方式の同一周波干渉量検出
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to detection of the amount of co-frequency interference in a wireless communication system.

(背景技術) 従来の干渉検出は、例えば900MHz帯自動車電
話方式では、制御チヤネルで使用チヤネルを基地
局に知らせ、通話開始前に使用予定の周波数につ
いて受信機で受信レベルの測定を行い、あるレベ
ル値以下ならば干渉波なしと判定し通信を開始す
る。受信レベルがある値以上であれば干渉波あり
と判断し、他のチヤネルを使用する方式であつ
た。また、他方式では送信側で干渉検出のため
に、各局毎に異なつた周波数の信号を通信帯域外
に入れて電波を送出する。受信側では通信帯域外
で複数の干渉検出用周波数を受信できる受信機を
用意し、通信の相手局以外の干渉検出用周波数が
受信された時、干渉波ありと判断する方法であつ
た。
(Background technology) Conventional interference detection, for example, in the 900 MHz band car phone system, involves informing the base station of the channel to be used through the control channel, and measuring the reception level at the receiver for the frequency to be used before starting a call. If it is less than the value, it is determined that there is no interference wave and communication is started. If the reception level exceeded a certain value, it was determined that there was an interference wave, and another channel was used. In other systems, in order to detect interference on the transmitting side, signals of different frequencies are sent out of the communication band for each station and the radio waves are sent out. On the receiving side, a receiver capable of receiving multiple interference detection frequencies outside the communication band was prepared, and when an interference detection frequency other than that of the other station was received, it was determined that there was an interference wave.

これらの方式で、前者は通話中に干渉が生じた
場合に問題がある。後者は情報信号の他に通信帯
域外に干渉用信号を送受信しなければならないた
め、送受信機に付加装置をつけなければならない
欠点があつた。
Of these methods, the former has a problem when interference occurs during a call. The latter method had the disadvantage of requiring additional equipment to be attached to the transmitter/receiver, as it required interfering signals to be transmitted and received outside the communication band in addition to information signals.

また、従来の干渉検出は干渉の有無程度しか判
断できなかつたため、干渉量を定量的に検出して
ある通話品質以下となる干渉量が生じた場合、高
品質な通信を維持するために、他チヤネルに切替
えるような高度な制御ができない欠点があつた。
In addition, since conventional interference detection could only determine the presence or absence of interference, if the amount of interference that falls below the call quality determined by quantitatively detecting the amount of interference occurs, in order to maintain high quality communication, The drawback was that advanced control such as switching channels was not possible.

(発明の課題) 本発明はこれらの欠点を除くため、通信中に干
渉量を定量的に検出できるようにしたもので、そ
の特徴は、角度変調による無線通信方式におい
て、希望波と妨害波を同時受信したとき包絡線検
波出力に生じるフエージングのスペクトル帯域と
ほぼ同じ帯域をもち希望波と妨害波の和に対応す
る低周波成分を検出する手段と、フエージングの
スペクトル帯域より高い帯域をもつたビートであ
つて希望波と妨害波の積に対応する高周波成分を
検出する手段とを有し、前記低周波成分と高周波
成分とから希望波と妨害波の比を提供するごとき
同一周波干渉量検出方式にある。
(Problems to be solved by the invention) In order to eliminate these drawbacks, the present invention makes it possible to quantitatively detect the amount of interference during communication.The present invention is characterized by the ability to detect desired waves and interference waves in a wireless communication system using angle modulation. means for detecting a low frequency component corresponding to the sum of the desired wave and the interfering wave, which has a band approximately the same as the spectral band of fading that occurs in the envelope detection output when simultaneously received, and has a band higher than the spectral band of fading. means for detecting a high frequency component corresponding to the product of the desired wave and the interference wave, which is a beat corresponding to the desired wave and the interference wave, and provides a ratio of the desired wave and the interference wave from the low frequency component and the high frequency component. It's in the detection method.

(発明の構成および作用) 干渉量検出原理と実施例を以下に示す。希望波
(以下D波)、妨害波(以下U波)がFM変調され
式(1)、(2)で表わされるものとすると、その合成波
eは式(3)となる。
(Structure and operation of the invention) The interference amount detection principle and embodiments are shown below. Assuming that the desired wave (hereinafter referred to as D wave) and the interfering wave (hereinafter referred to as U wave) are FM modulated and are expressed by equations (1) and (2), their combined wave e is expressed by equation (3).

D波 e1=E1sin(ω1t+Δω1/P1sinP1t) (1) U波 e2=E2sin(ω2t+Δω2/P2sinP2t+ψ) (2) 合成波e=e1+e2=(E2 1+E2 2+2E1E2cosφ)1/2 ×sin(ω1t+Δω1/P1sinP1t +tan-1Λsinψ(t)/1+Λcosψ(t))(
3) 但し、E1、E2はD波、U波の振幅で伝搬路条
件により変化し、一般にD波及びU波の伝搬路が
異なるためその変動は互いに独立である。ω1
ω2はD波、U波の搬送周波数、φは位相差であ
る。P1、P2はD波、U波の被変調波の周波数で
ある。Δω1、Δω2はD波、U波の周波数偏移であ
る。
D wave e 1 = E 1 sin (ω 1 t + Δω 1 /P 1 sinP 1 t) (1) U wave e 2 = E 2 sin (ω 2 t + Δω 2 /P 2 sinP 2 t + ψ) (2) Combined wave e = e 1 + e 2 = (E 2 1 + E 2 2 + 2E 1 E 2 cosφ) 1/2 × sin (ω 1 t + Δω 1 /P 1 sinP 1 t +tan -1 Λsinψ(t)/1+Λcosψ(t))(
3) However, E 1 and E 2 are the amplitudes of the D wave and U wave and change depending on the propagation path conditions, and since the propagation paths of the D wave and U wave are generally different, their fluctuations are independent of each other. ω 1 ,
ω 2 is the carrier frequency of the D wave and U wave, and φ is the phase difference. P 1 and P 2 are frequencies of modulated waves of D wave and U wave. Δω 1 and Δω 2 are frequency shifts of the D wave and U wave.

ψ(t)=(ω2−ω1)t+φ+Δω2/P2sin(P2t+
θ) −Δω1/P1sinP1t (4) Λ=E1/E2 合成波eを2乗検波するとその包絡線R(t)
は、 R(t)=E2 1+E2 2+2E1E2cosψ(t) (5) となる。E1、E2はD波及びU波の振幅であるが、
これは一般にフエージングを受けており、その平
均値のまわりに変動している。本発明では、ψ
(t)の変動の速さをフエージングの変動速さよ
り大きくとる。この場合のR(t)の波形例を第
1図(検波器出力(包絡線))に示す。R(t)の
曲線1(E2 1+E2 2)は、伝搬路条件によつて変動す
る低周波分(フエージング)であり、曲線2
(2E1E2cosψ(t))は式(4)からわかるように、(ω1
−ω2)/2π、変調度、トツプラ等により定まる
ビート周波数を持つ高周波成分で、低周波成分よ
り桁ちがいに高い周波数で変化する。しかも、低
周波成分にはD波とU波の振幅の2乗和が、高周
波成分の振幅にはD波とU波の積の情報が含まれ
ている。本干渉量検出方式は、受信機IFの包絡
線に生じるD波、U波の振幅和、及び振幅積を周
波数特性を利用して分離し、干渉量を検出するの
である。
ψ(t)=(ω 2 −ω 1 )t+φ+Δω 2 /P 2 sin(P 2 t+
θ) −Δω 1 /P 1 sinP 1 t (4) Λ=E 1 /E 2When the composite wave e is square-law detected, its envelope R(t)
is R(t)=E 2 1 +E 2 2 +2E 1 E 2 cosψ(t) (5). E 1 and E 2 are the amplitudes of D wave and U wave,
It is generally subject to fading and fluctuates around its average value. In the present invention, ψ
The speed of fluctuation of (t) is set to be greater than the speed of fluctuation of fading. An example of the waveform of R(t) in this case is shown in FIG. 1 (detector output (envelope)). Curve 1 (E 2 1 + E 2 2 ) of R(t) is a low frequency component (fading) that varies depending on the propagation path conditions, and curve 2
(2E 1 E 2 cosψ(t)) is (ω 1
2 )/2π, a high frequency component with a beat frequency determined by the modulation factor, topple, etc., and changes at a frequency that is orders of magnitude higher than the low frequency component. Moreover, the low frequency component contains information about the sum of squares of the amplitudes of the D wave and the U wave, and the amplitude of the high frequency component contains information about the product of the D wave and the U wave. This interference amount detection method uses frequency characteristics to separate the amplitude sum and amplitude product of the D wave and U wave occurring in the envelope of the receiver IF, and detects the amount of interference.

第2図Aは本発明の実施例で、3はアンテ
ナ、4は受信機、5は検波器(2乗)、6,7は
アナログ−デイジタル変換器(A/D変換器)、
8は演算機、9は遅延回路である。
FIG. 2A shows an embodiment of the present invention, in which 3 is an antenna, 4 is a receiver, 5 is a wave detector (square), 6 and 7 are analog-digital converters (A/D converters),
8 is an arithmetic unit, and 9 is a delay circuit.

D波とU波の合成波eは3のアンテナを通し、
4の受信機で受信され、5の検波器に入力され
る。検波器出力R(t)は第1図に示す波形を有
している。例えば900MHz帯自動車電話方式では、
移動局が40Km/hで走行すると低周波成分E2 1
E2 2は40Hz程度の変化である。高周波成分
2E1E2cosψ(t)は、例えばD波とU波の周波数
差を1KHzとすると、1KHzの速さで変化する。こ
のような周波数特性を有するR(t)を、以下の
ように6,7のA/D変換器でサンプリングし、
T時間内の平均<E2 1+E2 2>、<4E2 1+E2 2>を8の
演算機で求める。
The composite wave e of D wave and U wave passes through antenna 3,
The signal is received by receiver No. 4 and input to detector No. 5. The detector output R(t) has the waveform shown in FIG. For example, in the 900MHz band car phone system,
When the mobile station travels at 40 km/h, the low frequency component E 2 1 +
E 2 2 is a change of about 40Hz. high frequency component
2E 1 E 2 cosψ(t) changes at a rate of 1 KHz, for example, assuming that the frequency difference between the D wave and the U wave is 1 KHz. R(t) having such frequency characteristics is sampled by 6 and 7 A/D converters as follows,
The averages <E 2 1 +E 2 2 > and <4E 2 1 +E 2 2 > within T time are calculated using 8 calculators.

6のA/D変換器でT秒間にN回サンプリング
し、その平均をとると、Tがψ(t)の変動周期
より十分大きく、かつNが十分大きいとき低周波
成分は次のようになる。
If T is sufficiently larger than the fluctuation period of ψ(t) and N is sufficiently large, the low frequency component will be as follows: .

X=1/N〓(E2 1i+E2 2i+2E1iE2icosψi)=<E2 1
E2 2>=<E2 1>+<E2 2>(11) 7のA/D変換器のサンプリング時間を、9の
遅延回路により6のA/D変換器よりΔtだけ遅
延してサンプリングする。但し、遅延時間Δtは
E1、E2のフエージングの周期より小さく、かつ
ψ(t)の変動周期より大きい値に選ぶ。例えば
上述した自動車電話方式では、1/10msecオーダ
の遅延時間である。また、時間TはXを求めると
き、Xが統計量として意味をなし得る時間以上の
値で、上述した自動車電話方式の場合約1秒以上
である。
X=1/N〓(E 2 1i +E 2 2i +2E 1i E 2i cosψ i )=<E 2 1 +
E 2 2 >=<E 2 1 >+<E 2 2 >(11) The sampling time of the A/D converter No. 7 is delayed by Δt from the A/D converter No. 6 by the delay circuit No. 9. do. However, the delay time Δt is
The value is selected to be smaller than the fading period of E 1 and E 2 and larger than the fluctuation period of ψ(t). For example, in the above-mentioned car telephone system, the delay time is on the order of 1/10 msec. Further, the time T is a value longer than the time at which X can be meaningful as a statistical quantity when determining X, and in the case of the above-mentioned car telephone system, it is about 1 second or more.

6,7のサンプリング値R(t)、R(t+Δt)
の差を2乗してその平均をとると、高周波成分の
振幅の2乗平均Yが求まる。
6, 7 sampling values R(t), R(t+Δt)
By squaring the difference and taking the average, the square mean Y of the amplitude of the high frequency component can be found.

Y=〈〔R(t)−R(t+Δt)〕2〉 Y=〈〔R(t)−R(t+Δt)〕2〉 =〈〔(E2 1+E2 2+2E1E2cosψ(t)−(E2 1t+E2 2
t+2E1tE2tcosψ(t+Δt)〕2〉 Y=〈〔R(t)−R(t+Δt)〕2〉 =〈〔(E2 1+E2 2+2E1E2cosψ(t)−(E2 1t+E2 2
t+2E1tE2tcosψ(t+Δt)〕2〉 =〈4〔E1E2cosψ(t)−E1tE2tcosψ(t+Δ
t)〕2〉 =4〈E2 1E2 2(cosψ−cosψ(t+Δt))2〉 (12) (13) ψ(t)が周期信号でなく、T秒間のN個サンプ
ルに対してランダムとみなせる場合には、式(13)
は次のようになる。
Y=〈[R(t)-R(t+Δt)] 2 〉 Y=〈[R(t)-R(t+Δt)] 2 〉=〈〔(E 2 1 +E 2 2 +2E 1 E 2 cosψ(t) −(E 2 1t +E 2 2
t +2E 1t E 2t cosψ(t+Δt)〕 2 〉 Y=〈[R(t)−R(t+Δt)] 2 〉 =〈〔(E 2 1 +E 2 2 +2E 1 E 2 cosψ( t)−(E 2 1t +E 2 2
t +2E 1t E 2t cosψ(t+Δt)〕 2 〉 =〈4〔E 1 E 2 cosψ(t)−E 1t E 2t cosψ(t+Δ
t)〕 2 〉 = 4〈E 2 1 E 2 2 (cosψ−cosψ(t+Δt)) 2 〉 (12) (13) ψ(t) is not a periodic signal but random for N samples of T seconds If it can be considered as, Equation (13)
becomes as follows.

Y=4〈E2 1〉〈E2 2〉 (14) ψ(t)が周期信号であるときには、Δtを上述し
た条件下でランダムにとることにより、式(14)を
得ることができる。ここで、電力平均のD/U比
Γを Γ=〈E2 1〉/〈E2 2〉 (15) とすると、式(11)、(14)より Γ=−k+√2−1 (16) となる。
Y=4〈E 2 1 〉〈E 2 2 〉 (14) When ψ(t) is a periodic signal, equation (14) can be obtained by randomly taking Δt under the above-mentioned conditions. Here, if the power average D/U ratio Γ is Γ=〈E 2 1 〉/〈E 2 2 〉 (15), then from equations (11) and (14), Γ=−k+√ 2 −1 (16 ) becomes.

但し k=1−2X2/Y (17) ここで式(16)のΓは、6,7のA/D変換器、8
の演算機により求めることができ、干渉量を定量
的に検出することができる。
However, k=1−2X 2 /Y (17) Here, Γ in equation (16) is 6, 7 A/D converters, 8
The amount of interference can be quantitatively detected.

第2図Bに演算機8の動作フローチヤートを示
す。サンプル数N、遅延時間Δtを設定し、サン
プリングをカウントするiをi=1にする。A/
D変換器6,7でサンプリングし、和〓Aiと差の
2乗和〓(Ai−Bi2をとる。i=Nでなければ、
さらにA/D変換器でサンプリングする。i=N
になつたらX、Yを算出し、kを計算する。k2
1>0なら干渉量Γを算出する。もしk2−1<0
なら、Γは算出せずi=1にもどり、新たなΓの
計算を開始する。
FIG. 2B shows an operation flowchart of the computer 8. The number of samples N and the delay time Δt are set, and i for counting sampling is set to i=1. A/
It is sampled by D converters 6 and 7, and the sum 〓A i and the square sum of the differences 〓 (A i −B i ) 2 are obtained. If i=N,
Furthermore, sampling is performed using an A/D converter. i=N
When , calculate X and Y, and then calculate k. k 2
If 1>0, the amount of interference Γ is calculated. If k 2 −1<0
If so, Γ is not calculated, the value returns to i=1, and a new calculation of Γ is started.

第3図にフエージング周波数Fdをパラメータ
としたときのD/U設定値と実測値の関係を示
す。図3に示すように実施例はΔtが0.2と小さ
いため、フエージング周波数にD/U比は影響さ
れない。
FIG. 3 shows the relationship between the D/U setting value and the actual measurement value when the fading frequency F d is used as a parameter. As shown in FIG. 3, in the embodiment, Δt is as small as 0.2, so the D/U ratio is not affected by the fading frequency.

第4図は実施例で、実施例の演算機の機能
を回路により行うものである。第4図で10はア
ンテナ、11は受信機、12は検波器、13は平
滑回路、14は2乗回路、15は除算回路、
16はレベル計、17は遅延回路、18は差動増
幅器、19は2乗回路、20は平滑回路であ
る。
FIG. 4 shows an embodiment in which the functions of the arithmetic machine of the embodiment are performed by a circuit. In Fig. 4, 10 is an antenna, 11 is a receiver, 12 is a detector, 13 is a smoothing circuit, 14 is a square circuit, 15 is a division circuit,
16 is a level meter, 17 is a delay circuit, 18 is a differential amplifier, 19 is a square circuit, and 20 is a smoothing circuit.

D波、U波の合成波eは10のアンテナを通
し、11の受信機に入る。11のIF出力を分岐
し、一方を13の平滑回路に入力し平滑する
と、その出力は実施例で示した式(11)の低周波
成分Xに相当する。この出力をさらに14の2乗
回路を通し2乗すると、式(18)Xを得る。
A composite wave e of D waves and U waves passes through 10 antennas and enters 11 receivers. When the IF output No. 11 is branched and one is input to the smoothing circuit No. 13 and smoothed, the output corresponds to the low frequency component X of equation (11) shown in the embodiment. When this output is further passed through a 14 square circuit and squared, equation (18)X is obtained.

X=(〈E2 1〉+〈E2 2〉)2 =<E2 12+2〈E2 1〉〈E2 2〉+〈E2 22 (18) 12の検波器出力の他は、18の差動増幅器と
17の遅延回路に入力される。17は実施例の
Δtに相当する遅延を生じさせ、18に入力され
る。18では遅延されない信号と、12からの遅
延された信号の差動増幅を行ない、19,20の
2乗回路、平滑回路を通すと、実施例の式
(14)に相当する高周波成分Yを得る。さらに、1
4及び20の出力を15の除算回路に入力する
と、その出力Zは、式(13)、(18)より電力平均の
D/U比Γを含む式(19)で表わされる。
X=(〈E 2 1 〉+〈E 2 2 〉) 2 =〈E 2 12 +2〈E 2 1 〉〈E 2 2 〉+〈E 2 22 (18) The others are input to 18 differential amplifiers and 17 delay circuits. 17 causes a delay corresponding to Δt in the embodiment, and is input to 18. 18 performs differential amplification of the undelayed signal and the delayed signal from 12, and passes it through a square circuit of 19 and 20 and a smoothing circuit to obtain a high frequency component Y corresponding to equation (14) of the embodiment. . Furthermore, 1
When the outputs of 4 and 20 are input to the division circuit 15, the output Z is expressed by equation (19) including the power average D/U ratio Γ from equations (13) and (18).

Ζ=〈E212+2〈E21〉〈E22〉+〈E2
22/4〈E21〉〈E22〉=1/4(Γ+2+1/Γ
)(19) Ζを16のレベル計で測定すると、干渉量を定
量的に知ることができる。
Ζ=〈E 2 / 12 + 2〈E 2 / 1 〉〈E 2 / 2 〉 +〈E 2 /
22 / 4〈E 2 / 1 〉〈E 2 / 2 〉=1/4 (Γ+2+1/Γ
)(19) By measuring Ζ with 16 level meters, the amount of interference can be known quantitatively.

第5図は本発明の実施例で、21はアンテ
ナ、22は受信機、23はAGC、24は検波器
(2乗)、25は増幅器、26はフイルター
(HPF)、27は検波器、28はフイルター
(LPF)、29は平滑回路、30は平滑回路、
31はレベル計である。図6は干渉検出装置の各
部観測波形で、32は24の検出器の出力、3
3は26のフイルターの出力、34は27の検
波器の出力、35は30の平滑回路出力を示
す。
FIG. 5 shows an embodiment of the present invention, 21 is an antenna, 22 is a receiver, 23 is an AGC, 24 is a detector (square), 25 is an amplifier, 26 is a filter (HPF), 27 is a detector, 28 is a filter (LPF), 29 is a smoothing circuit, 30 is a smoothing circuit,
31 is a level meter. Figure 6 shows the observed waveforms of each part of the interference detection device, where 32 is the output of 24 detectors, 3
3 indicates the output of the filter 26, 34 the output of the detector 27, and 35 the output of the smoothing circuit 30.

D波とU波の合成波eは、21のアンテナを通
し22の受信機で受信され中間周波に落され、
IF‐OUTより出力される。この出力を23の
AGCを通し、24の検波器で包絡線検波する
と、第6図の32の波形が得られる。これは、干
渉検出原理で述べた式(5)に相当する波形である。
32を25で増幅し、低周波成分をカツトするた
め26のフイルター(HPF)を通すと、高周
波成分33を得ることができる。33は
2E1E2cosψ(t)で表わされ、これを27,28
を通し包絡線検波すると、D波とU波の積Y′式(2
0)を得る。
The composite wave e of D wave and U wave is received by 22 receivers through 21 antennas and dropped to an intermediate frequency.
Output from IF-OUT. This output is 23
When the envelope is detected by 24 detectors through AGC, 32 waveforms shown in FIG. 6 are obtained. This is a waveform corresponding to equation (5) described in the interference detection principle.
By amplifying signal 32 with signal 25 and passing it through a filter (HPF) 26 to cut out low frequency components, high frequency component 33 can be obtained. 33 is
2E 1 E 2 cosψ(t), which is expressed as 27, 28
When envelope detection is performed through
0) is obtained.

Y′=2E1・E2 (20) Y′は瞬時値であり、フエージングオーダの周
波数で変化するため30の平滑回路を通し、そ
の2乗平均値の平方根Yを測定する31のレベル
計で指示させる。
Y'=2E 1・E 2 (20) Since Y' is an instantaneous value and changes at a frequency of fading order, it is passed through 30 smoothing circuits, and 31 level meters are used to measure the square root Y of the root mean square value. give instructions.

Y=2(〈E2 1〉・〈E2 2〉)1/2 (21) 一方、第5図に示すように24の検波器の出
力を分岐して、フエージングによる変動が十分平
均化される時定数で29の平滑回路により受信
レベルの平均値を検出する。この平均値でAGC
をかけ、検波器の出力(短区間中央値)が一定
になるようにする。つまり、D波とU波の2乗和
が一定になるようにする。
Y=2 (〈E 2 1 〉・〈E 2 2 〉) 1/2 (21) On the other hand, as shown in Fig. 5, the outputs of the 24 detectors are divided to sufficiently average out the fluctuations due to fading. The average value of the received level is detected by 29 smoothing circuits with the time constant set. AGC with this average value
so that the output of the detector (short interval median value) becomes constant. In other words, the sum of the squares of the D wave and the U wave is made constant.

X=〈E2 1+E2 2〉=〈E2 1〉+〈E2 2〉=C(一定)(22) 式(21)、(22)より となり、YはD/U比Γ(電力比)と一定の関係
にあるため、YからΓを推定することができる。
X=〈E 2 1 +E 2 2 〉=〈E 2 1 〉+〈E 2 2 〉=C (constant) (22) From equations (21) and (22) Since Y has a certain relationship with the D/U ratio Γ (power ratio), Γ can be estimated from Y.

第7図はΓとYの出力関係を示し、実線は理論
値(式(23))を、×印は実測値Yを示す。
FIG. 7 shows the output relationship between Γ and Y, where the solid line shows the theoretical value (formula (23)) and the cross mark shows the measured value Y.

なお、27の検波器を2乗検波器にし、31
を平均値指示型のレベル計にしても、YはΓと一
定の関係にあり、Γを推定することができる。
In addition, 27 detectors are replaced with square law detectors, and 31
Even if Y is used as an average value indicating type level meter, Y has a constant relationship with Γ, and Γ can be estimated.

(発明の効果) 以上説明したように本干渉量検出方式は、通信
中に干渉量を定量的に検出できるため、干渉量が
ある設定値以上になつた場合、他チヤネルに切替
えて通話品質の劣化をまねくことなく通話を継続
することができる利点がある。
(Effects of the Invention) As explained above, this interference amount detection method can quantitatively detect the amount of interference during communication, so if the amount of interference exceeds a certain set value, it switches to another channel and improves the call quality. This has the advantage that calls can be continued without deterioration.

また、本方式は、自動車電話のように無線ゾー
ンが3〜5Kmの小ゾーン方式により周波数の利用
率向上を図つているシステムにおいては、さらに
周波数のくり返し距離を小さくできるため、周波
数利用率が向上し、加入者容量の増大に貢献する
ことができる。
In addition, in systems that aim to improve frequency utilization using a small radio zone system of 3 to 5 km, such as car telephones, this method can further reduce the frequency repetition distance, improving frequency utilization. This can contribute to increasing subscriber capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は検波器出力R(t)の例、第2図Aは
本発明の第1の実施例のブロツク図、第2図Bは
第2図Aにおける演算機8の動作フロー、第3図
は第2図の回路による実験結果を示す図、第4図
は本発明の第2の実施例のブロツク図、第5図は
本発明の第3の実施例のブロツク図、第6図は本
発明による装置の各部観測波形の例、第7図は第
5図の回路における実験結果を示す図である。 (符号の説明(第2図))3;アンテナ、4;
受信機、5;検波器、6,7;A/D変換器、
8;演算機、9;遅延回路。
FIG. 1 is an example of the detector output R(t), FIG. 2A is a block diagram of the first embodiment of the present invention, FIG. 2B is the operation flow of the computer 8 in FIG. 2A, and FIG. The figures are diagrams showing experimental results using the circuit of Fig. 2, Fig. 4 is a block diagram of the second embodiment of the present invention, Fig. 5 is a block diagram of the third embodiment of the present invention, and Fig. 6 is a diagram showing the results of an experiment using the circuit of Fig. 2. An example of waveforms observed at various parts of the apparatus according to the present invention, FIG. 7 is a diagram showing experimental results for the circuit of FIG. 5. (Explanation of symbols (Figure 2)) 3; antenna; 4;
Receiver, 5; Detector, 6, 7; A/D converter,
8; arithmetic machine, 9; delay circuit.

Claims (1)

【特許請求の範囲】 1 角度変調による無線通信方式において、希望
波と妨害波を同時受信したとき包絡線検波出力に
生じるフエージングのスペクトル帯域とほぼ同じ
帯域をもち希望波と、妨害波の出力の和(=<
E1 2>+<E2 2>)=より成る情報をもつ低周波成
分を平滑操作によつて検出する手段と、フエージ
ングのスペクトル帯域より高い帯域をもつたビー
トであつて希望波と妨害波の出力の積(=<E1 2
><E2 2>)=よりなる情報をもつ高周波成分をフ
イルタリングすることによつて検出する手段とを
有し、前記低周波成分(=X=<E1 2>+<E2 2
>)=と高周波成分(=Y=4<E1 2><E2 2>)=
とから干渉量Γ(==<E1 2>/<E2 2>)=を求め
ることを特徴とする同一周波干渉量測定方式。 2 前記ビートによる高周波成分を送信側で希望
波と妨害波の搬送周波をわずかに離調させること
による生じさせるごとき特許請求の範囲第1項記
載の同一周波干渉量検出方式。 3 前記ビートによる高周波成分を希望波と妨害
波の変調信号の振幅又は周波数を異にすること、
変調波の信号情報を異にすること、又は変調波の
変調度を異にすることにより生じさせるごとき特
許請求の範囲第1項記載の同一周波干渉量検出方
式。 4 前記低周波成分をアナログ−デイジタル変換
器と演算器により低周波成分はサンプリングの平
均をとることにより求め、高周波成分は低周波成
分には同値とみなせるわずかな遅延時間内でサン
プリングした2つの値の差の2乗又は絶対値の平
均を取ることにより求めるごとき特許請求の範囲
第1項記載の同一周波干渉量検出方式。 5 前記低周波成分は高周波成分を十分平滑でき
る平滑回路により求め、高周波成分は遅延回路、
差動増幅器、平滑回路より求めるごとき特許請求
の範囲第1項記載の同一周波干渉量検出方式。 6 前記低周波成分を平滑して低周波成分の平均
値が一定になるようAGCをかけ、高周波成分は
フイルター、検波器により求め、それを平滑する
ことによつて求めるごとき特許請求の範囲第1項
記載の同一周波干渉量検出方式。
[Claims] 1. In a wireless communication system using angle modulation, outputs of a desired wave and an interfering wave that have almost the same spectral band as the spectral band of fading that occurs in the envelope detection output when a desired wave and an interfering wave are simultaneously received. The sum of (=<
E 1 2 >+<E 2 2 >) Product of wave outputs (=<E 1 2
><E 2 2 > )= means for detecting the high frequency component by filtering the information consisting of :
>)= and high frequency component (=Y=4<E 1 2 ><E 2 2 >)=
A method for measuring the amount of co-frequency interference characterized by determining the amount of interference Γ (==<E 1 2 >/<E 2 2 >)= from . 2. The co-frequency interference amount detection method according to claim 1, wherein the high frequency component due to the beat is generated by slightly detuning the carrier frequencies of the desired wave and the interfering wave on the transmitting side. 3. Making the high frequency components caused by the beat different in amplitude or frequency of the modulation signals of the desired wave and the interference wave,
2. A method for detecting the amount of co-frequency interference according to claim 1, which is caused by varying the signal information of the modulated waves or by varying the degree of modulation of the modulated waves. 4 The low frequency component is obtained by averaging the sampling using an analog-to-digital converter and an arithmetic unit, and the high frequency component is determined by two values sampled within a small delay time that can be regarded as the same value for the low frequency component. A co-frequency interference detection method according to claim 1, wherein the co-frequency interference amount is determined by taking the square of the difference or the average of the absolute values. 5 The low frequency component is obtained by a smoothing circuit that can sufficiently smooth the high frequency component, and the high frequency component is obtained by a delay circuit,
A method for detecting the amount of co-frequency interference according to claim 1, which is obtained from a differential amplifier and a smoothing circuit. 6. Claim 1, in which the low frequency component is smoothed, AGC is applied so that the average value of the low frequency component becomes constant, the high frequency component is determined by a filter and a detector, and the high frequency component is determined by smoothing it. Co-frequency interference detection method described in .
JP58018102A 1983-02-08 1983-02-08 Detection system for identifical frequency interference amount Granted JPS59144232A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58018102A JPS59144232A (en) 1983-02-08 1983-02-08 Detection system for identifical frequency interference amount
US06/541,842 US4561114A (en) 1983-02-08 1983-10-14 Cochannel interference measurement system
DE8383307195T DE3379252D1 (en) 1983-02-08 1983-11-24 Co-channel interference measurement system
EP83307195A EP0117946B1 (en) 1983-02-08 1983-11-24 Co-channel interference measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018102A JPS59144232A (en) 1983-02-08 1983-02-08 Detection system for identifical frequency interference amount

Publications (2)

Publication Number Publication Date
JPS59144232A JPS59144232A (en) 1984-08-18
JPH0120817B2 true JPH0120817B2 (en) 1989-04-18

Family

ID=11962260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018102A Granted JPS59144232A (en) 1983-02-08 1983-02-08 Detection system for identifical frequency interference amount

Country Status (1)

Country Link
JP (1) JPS59144232A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260584B2 (en) * 2010-03-11 2013-08-14 アルプス電気株式会社 Signal strength measuring device

Also Published As

Publication number Publication date
JPS59144232A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
JPS61240725A (en) Method and apparatus for measuring quality of wireless transmission channel
JP2509785B2 (en) Signal processing apparatus and method
US8190162B2 (en) Radar detection circuit for a WLAN transceiver
JPH10513616A (en) Digitally compensated direct conversion receiver
JP2000514965A (en) Variable of sampled signal C. Method and apparatus for compensating offset
JPH04229734A (en) Receiver composed of apparatus evaluating frequency transition
US6295324B1 (en) Signal quality measurement using full-complex FM detector
US5918184A (en) Method and apparatus for detecting a supervisory audio tone
EP0117946B1 (en) Co-channel interference measurement system
US6181739B1 (en) Signal-to-noise ratio determination using digital signal processing
JPH0120817B2 (en)
US6567646B1 (en) Method and apparatus in a radio communication system
JPS63177630A (en) Interference detecting circuit
JP2008501294A (en) Receiver used for wireless communication, and method and terminal using the receiver
JP3798596B2 (en) Signal detection device
JPH0347021B2 (en)
JPH02222233A (en) Same channel interference quantity measuring instrument
JPH0119779B2 (en)
JPS6026331B2 (en) Multipath detection circuit
JPH0347022B2 (en)
JP2885711B2 (en) SN ratio detector
Narasimhan et al. Estimation of the nonstationary mean signal in wireless systems using wavelets
JPH0537490A (en) Spread spectrum radio communication system
JPH0328101B2 (en)
JPH088540B2 (en) Multi-carrier control device