JPH01207666A - Probe for polarization resistance measurement of heat exchanger or the like and automatic control method for iron ion concentration using this probe - Google Patents

Probe for polarization resistance measurement of heat exchanger or the like and automatic control method for iron ion concentration using this probe

Info

Publication number
JPH01207666A
JPH01207666A JP3358988A JP3358988A JPH01207666A JP H01207666 A JPH01207666 A JP H01207666A JP 3358988 A JP3358988 A JP 3358988A JP 3358988 A JP3358988 A JP 3358988A JP H01207666 A JPH01207666 A JP H01207666A
Authority
JP
Japan
Prior art keywords
probe
tube
electrode
small diameter
diameter metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3358988A
Other languages
Japanese (ja)
Other versions
JP2502113B2 (en
Inventor
Shoichi Tamatoshi
玉利 昭一
Kenji Onishi
健次 大西
Mitsuo Akutsu
光男 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP3358988A priority Critical patent/JP2502113B2/en
Publication of JPH01207666A publication Critical patent/JPH01207666A/en
Application granted granted Critical
Publication of JP2502113B2 publication Critical patent/JP2502113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure polarization resistance by an iron electrode even during plant operation by fixing a reference electrode material which is covered with an insulating tube and securely insulated from small-diameter metal and an electrode material by an in-tube insulating filler so that the material is exposed from a small hole. CONSTITUTION:An electric feeding electrode 2 is inserted fixedly into a pipe 1 made of the same material with an actual machine thin pipe through a rubber plug 6. Then the electrode 2 in the pipe 1 is coated with a thin insulating tube 2a. Then the reference electrode 3 is fixed in the hole bored previously in the pipe 1. The part of this electrode 3 in the pipe 1 is covered with the thin insulating tube 3a. Then a resin 4 is filled in the pipe 1 and then the external surface of the pipe 1 is insulated by a heat-shrinkable tube 5 except constant area. This probe is used to measure the polarization resistance by an iron electrode even during the plant operation.

Description

【発明の詳細な説明】 「産業上の利用分野コ この発明は、実復水器において鉄電極の溶解によって生
成させた鉄イオンによる保護皮膜の良否゛の判定をする
ための分極抵抗測定用プローブ並びにこれを用いた鉄イ
オンの濃度の自動制御化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a polarization resistance measuring probe for determining the quality of a protective film formed by iron ions generated by melting an iron electrode in a real condenser. The present invention also relates to a method for automatically controlling the concentration of iron ions using this method.

r従来の技術」 従来、海水や河川水を冷却水として使用する復水器の防
食は電気防食法と鉄イオン注入法が併用されてきた。鉄
イオン注入法の主目的は復水器の細管が主として銅合金
を使用しているためその潰食防止であり、銅合金上に鉄
イオンによって保護皮膜を形成させ、硫化物などによる
腐食を防止することである。その手段としては硫酸第一
鉄の間欠注入法や鉄電解槽を用いた連続注入法などがあ
るが、最近では環境汚染等の関係で採用されにくくなっ
ている。そこで、電気防食用電極として用いられている
鉄電極の防食電流によって溶出する鉄イオンを利用する
方法が採用されつつある。ところで、これらの防食法を
実施する場合、常時適正な維持管理のために防食状況を
十分に把握することが重要である。
Conventional technology Conventionally, cathodic protection and iron ion implantation have been used in combination to prevent corrosion of condensers that use seawater or river water as cooling water. The main purpose of the iron ion implantation method is to prevent corrosion of the thin tubes of the condenser, which are mainly made of copper alloy, and to form a protective film with iron ions on the copper alloy to prevent corrosion caused by sulfides, etc. It is to be. Methods for this include an intermittent injection method of ferrous sulfate and a continuous injection method using an iron electrolytic cell, but these methods have recently become difficult to adopt due to environmental pollution and other concerns. Therefore, a method is being adopted that utilizes iron ions eluted by the corrosion protection current of an iron electrode used as a cathodic protection electrode. By the way, when implementing these corrosion prevention methods, it is important to fully understand the corrosion prevention status for proper maintenance and management at all times.

従来、鉄イオン注入法による防食状況の評価は一定期間
鉄イオンを注入した後、プラントの運転停止時に水室内
に入って観察したり、一部の細管を抜管してその内面あ
るいは前もって水室内に設置したテストピースを取り出
して表面に形成された防食保護皮膜の状態を観察したり
、その成分を分析するなどの方法で行なっている。その
評価はどちらかといえば定性的である。
Conventionally, the corrosion protection status using iron ion implantation method has been evaluated by injecting iron ions for a certain period of time and then entering the water chamber for observation when the plant is shut down. This is done by taking out the installed test piece, observing the state of the anti-corrosion protective film formed on the surface, and analyzing its components. The evaluation is rather qualitative.

一方、防食保護皮膜の定量的な評価としてはプラント運
転時に既設の電気防食装置を利用した分極抵抗法が用い
られつつある。
On the other hand, as a quantitative evaluation of anti-corrosion protective coatings, the polarization resistance method, which utilizes existing cathodic protection equipment during plant operation, is being used.

一般的に、分極抵抗は電気防食用直流電源装置からの通
電を0FFL、管板面の電位がほぼ安定した後、再び通
電を行ない、通電電流密度と分極量から計算で求める。
In general, the polarization resistance is calculated from the current density and the amount of polarization by turning on the current from the DC power source for cathodic protection at 0FFL, and after the potential on the tube plate surface has become almost stable, turning on the current again.

あるいは通電OFF後、管板面の電位がほぼ安定した後
、200m V陰分極させ、10分後の通電電流密度を
求めて算出している。
Alternatively, after energization is turned off and the potential on the tube plate surface becomes almost stable, the tube is cathodically polarized at 200 mV, and the current density after 10 minutes is calculated.

「発明が解決しようとする課題」 しかし、叙上の定性的評価の手段では (+)抜管したりテストピースを取り出すには、プラン
ト運転停止時に限定されるため時間的制約を受ける。
``Problems to be Solved by the Invention'' However, with the above-mentioned qualitative evaluation means, extubation (+) or removal of test pieces is limited to the time when plant operation is stopped, so there is a time constraint.

(2)表面状態を観察したり、その成分を分析するなど
で多くの時間と手間がかかるとともに経験や熟練を必要
とする。
(2) It takes a lot of time and effort to observe the surface condition and analyze its components, and requires experience and skill.

等の難点がある。There are other difficulties.

一方、叙上の定量的評価の手段では、かなりの時間と手
間がかかり、現場によっては不可能な場合もある。
On the other hand, the quantitative evaluation methods described above require a considerable amount of time and effort, and may not be possible depending on the site.

また、最近では鉄イオン注入量の自動制御化の必要性が
叫ばれているが、現状では適当な指標を見い出すことが
出来ず理想的な制御はなされていないのが実情である。
Furthermore, although there has recently been a call for the need to automatically control the amount of iron ion implanted, the reality is that no suitable index has been found and ideal control has not been achieved.

本発明は従来の技術の有するこのような問題点に鑑みて
なされたものであり、その目的とするところは、プラン
ト運転中でも鉄電極による分極抵抗の測定ができるとと
もに復水器の既設・新設の水密なるプローブ支持金具を
利用して外部から水室内に容易に着脱できるため表面に
形成される防食皮膜状態をも観察でき、従来より簡単か
つ迅速に防食皮膜の総合的な評価の判定ができ、更に鉄
イオンの注入量の自動制御化に利用できるプローブを提
供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to make it possible to measure polarization resistance using iron electrodes even during plant operation, and to make it possible to measure the polarization resistance of existing and new condensers. Since it can be easily installed and removed from the outside into the water chamber using a watertight probe support, the state of the anticorrosion coating formed on the surface can be observed, making it possible to determine the comprehensive evaluation of the anticorrosion coating more easily and quickly than before. Furthermore, the present invention aims to provide a probe that can be used to automatically control the amount of iron ions implanted.

「課題を解決するための手段」 上記目的を達成するために、本発明におけるプローブは
、復水器管板および細管と同等の素材による小径金属管
の一方の管端より細径通電用電極を挿入し、他方管端よ
り通電に必要な長さを露出し、該電極材を該小径金属管
内に該小径金属管と接触しないように絶縁性チューブを
かぶせ絶縁性充填物で固定保持し、該小径金属管の外表
面が該通電用電極の対極として作用する如く通電可能な
らしめると共に、該小径金属管の外表面に小孔を穿ち、
絶縁性チューブをかぶせかつ管内絶縁性充填物によって
該小径金属および該電極材と確実に絶縁された照合電極
材を該小孔より、該外表面の電位計測を可能ならしめる
よう管内より露出固定してなるものである。
"Means for Solving the Problems" In order to achieve the above object, the probe of the present invention has a small diameter current-carrying electrode from one end of a small diameter metal tube made of the same material as the condenser tube plate and thin tube. Insert the electrode material into the small-diameter metal tube, exposing the length necessary for energization from the other tube end, cover the electrode material with an insulating tube so that it does not come into contact with the small-diameter metal tube, and fix and hold the electrode material with an insulating filler. The outer surface of the small-diameter metal tube is made to be energized so as to act as a counter electrode to the current-carrying electrode, and a small hole is bored in the outer surface of the small-diameter metal tube,
A reference electrode material covered with an insulating tube and reliably insulated from the small diameter metal and the electrode material by an insulating filling inside the tube is exposed and fixed from inside the tube so as to enable measurement of the potential on the outer surface through the small hole. This is what happens.

そして、上記プローブは外表面の対極として作用する一
定面積あるいは長さを残して絶縁性被覆を施すことによ
り容器外壁に取付けた水密なるプローブ支持金具を通す
ことによって着脱容易な構造とすることが好ましい。
Preferably, the probe is coated with an insulating coating leaving a certain area or length on the outer surface that acts as a counter electrode, so that it can be easily attached and detached by passing it through a watertight probe support fitting attached to the outer wall of the container. .

また、叙上プローブのプローブ用小径金属管を復水器水
室の函体に電気的に接続し、プローブに流入する分岐防
食電流により、プローブ上の鉄イオン皮Sの生成を推定
し、この電流値を制御量の1つとして鉄イオン発生量を
操作することを特徴とする復水器管板・細管の自動電気
防食方法が提供される。
In addition, we electrically connected the small diameter metal tube for the probe of the above-mentioned probe to the box of the condenser water chamber, and estimated the formation of iron ion skin S on the probe by the branched anticorrosive current flowing into the probe. An automatic cathodic protection method for condenser tube sheets and thin tubes is provided, which is characterized in that the amount of iron ions generated is controlled using a current value as one of the control variables.

「作用」 叙上プローブはあたかも復水器水室内に挿着される亜鉛
照合電極の如くであるので、水室壁に設けられた既設、
新設の電極固定用コックに着脱自在に取付される。
``Function'' The probe described above is like a zinc reference electrode inserted into the condenser water chamber, so it can be used with the existing probe installed on the water chamber wall.
It is removably attached to the newly installed electrode fixing cock.

そして、実復水器において、鉄電極による鉄イオン注入
量と水室内に取付けた該10−プの分極抵抗Rpは若干
の相違はあるもののほぼ対応して変化しており、プラン
ト運転中でも測定できる分極抵抗から防食保護皮膜の付
着状態を推定出来、又、分極抵抗とプローブへの流入電
流は一定の相関々係にあり、流入電流によって鉄イオン
による防食保護皮膜の付着状態を推定できるので、プロ
ーブへの流入電流を指標として鉄イオン濃度を自動制御
する。
In the actual condenser, the amount of iron ions injected by the iron electrode and the polarization resistance Rp of the 10-p installed in the water chamber change almost correspondingly, although there are slight differences, and can be measured even during plant operation. The adhesion state of the anti-corrosion protective film can be estimated from the polarization resistance, and since there is a certain correlation between the polarization resistance and the current flowing into the probe, the adhesion state of the anti-corrosion protection film due to iron ions can be estimated from the inflow current. The iron ion concentration is automatically controlled using the inflow current as an index.

「実施例」 実施例について図面を参照して説明する。"Example" Examples will be described with reference to the drawings.

第1図は本発明プローブを縦断して示す。FIG. 1 shows a longitudinal section of the probe of the present invention.

実機細管と同材質のパイプ1の中にゴム栓6を通して通
電用電極2を挿入固定する。このとき、パイプl内にあ
る通電用電極2には細い絶縁性チューブ2aをかぶせで
ある。次にパイプlに予め開けである穴に照合電極3を
固定する。
The energizing electrode 2 is inserted and fixed through a rubber stopper 6 into a pipe 1 made of the same material as the actual thin tube. At this time, the current-carrying electrode 2 in the pipe 1 is covered with a thin insulating tube 2a. Next, the reference electrode 3 is fixed in a pre-drilled hole in the pipe l.

このときもパイプ1内にある照合電極3の部分は細い絶
縁性チューブ3aをかぶせである。パイプ1の内部に樹
脂4を充填した後、パイプ1の外面を一定面積残して熱
収縮チューブ5によって絶縁しである。図中7はパイプ
1について設けた排流点(接続点)である。
At this time as well, the portion of the reference electrode 3 inside the pipe 1 is covered with a thin insulating tube 3a. After filling the inside of the pipe 1 with the resin 4, the outer surface of the pipe 1 is insulated with a heat shrink tube 5, leaving a certain area. In the figure, 7 is a discharge point (connection point) provided for the pipe 1.

第2図、第3図a、bに実機に対する該プローブの取付
状況を示しており、第2図は概略図、第3図a、bは取
付詳細図、取付状況概念図である。
FIGS. 2 and 3 a and 3 b show how the probe is installed on an actual machine, with FIG. 2 being a schematic diagram and FIGS. 3 a and 3 b being a detailed view of the installation and a conceptual diagram of the installation situation.

プローブ8は第3図aの例にあっては、鉄電極による電
気防食(定電位制御)および鉄イオンが注入されている
実機の水室カバー9に取付られた既設の亜鉛照合電極1
5固定用コツク10を利用して水室内に挿入・固定した
。プローブ8は復水器細管12に対して横切る状態にあ
る。そして、排流点7のうち1本のリード線11を水室
本体に接続13することによりプローブ8は実機と同様
に電気防食電流の一部が流入して電気防食されかつ鉄イ
オンの影をを受ける。
In the example shown in FIG. 3a, the probe 8 is an existing zinc reference electrode 1 attached to the water chamber cover 9 of the actual machine, which is equipped with cathodic protection (potential control) using iron electrodes and iron ions injected.
5. It was inserted and fixed into the water chamber using the fixing pot 10. The probe 8 is transverse to the condenser tube 12. Then, by connecting 13 one lead wire 11 of the discharge point 7 to the water chamber body, the probe 8 receives a portion of the cathodic protection current and is protected from cathodic corrosion as in the actual machine. receive.

尚、図中14は鉄イオン発生および電気防食電流を示す
In addition, 14 in the figure indicates iron ion generation and cathodic protection current.

装着後、はぼ1ケ月毎に該プローブ8が実機本体と接続
している状態でプローブの電位(Ec mV)を内蔵し
ている照合電極3で測定するとともにプローブ8への流
入電流(ImA)を測定した後、実機とプローブのリー
ド線11を外して、プローブ8の自然電位(En n+
V)を照合電極3で測定した。
After installation, the potential (Ec mV) of the probe is measured with the built-in reference electrode 3 while the probe 8 is connected to the main body of the actual machine every month or so, and the current flowing into the probe 8 (ImA) is measured. After measuring, remove the lead wire 11 between the actual device and the probe, and check the natural potential of the probe 8 (En n+
V) was measured using the reference electrode 3.

分極抵抗Rpは次式から算出した。Polarization resistance Rp was calculated from the following formula.

Rp(Ω・rrf)=(Ec −En)/ (I / 
S ) ・−”(1)ここで、Sはプローブ8の対極部
分の面積(イ)である。第4図に鉄電極による鉄イオン
注入量と分極抵抗Rpの関係を示す。
Rp(Ω・rrf)=(Ec −En)/(I/
(1) Here, S is the area (a) of the counter electrode portion of the probe 8. FIG. 4 shows the relationship between the amount of iron ions implanted by the iron electrode and the polarization resistance Rp.

この図から、鉄イオン注入量とRpはプローブ8の取付
位置や季節によって若干の相違はあるものの注入量が増
加するとRpも増加し、注入量が減少するとRpも低減
する関係にあり、はぼ対応して変化した。
From this figure, although there are some differences between the iron ion implantation amount and Rp depending on the mounting position of the probe 8 and the season, there is a relationship that as the implantation amount increases, Rp also increases, and as the implantation amount decreases, Rp decreases. It changed accordingly.

従って、Rpは鉄イオンによる防食保護皮膜の付着状況
を推定できる指標になることがわかった。
Therefore, it was found that Rp can be used as an index for estimating the adhesion status of the anti-corrosion protective film due to iron ions.

また、第5図にRpと電流密度i(1/S)の関係を示
す。この図からRpとiは非常に良い相関関係にあり、
プローブ8への流入電流■を測定すればRpを知ること
ができる。
Further, FIG. 5 shows the relationship between Rp and current density i (1/S). From this figure, Rp and i have a very good correlation,
By measuring the current flowing into the probe 8, Rp can be determined.

従って、第4図の結果から夏を測定することによって鉄
イオンによる防食保護皮膜の付着状況が推定でき、■を
利用することによって鉄イオン注入濃度を自動制御化で
きることがわかった。
Therefore, from the results shown in FIG. 4, it was found that the adhesion status of the anti-corrosion protective film due to iron ions could be estimated by measuring summer, and that the concentration of iron ions implanted could be automatically controlled by utilizing .

しかして、第6図に示す如く本発明プローブ8への流入
電流Iを利用して鉄イオン注入量の自動制御n回路を構
成することが出来る。
As shown in FIG. 6, it is possible to construct an automatic control circuit for controlling the amount of iron ions implanted by using the current I flowing into the probe 8 of the present invention.

「発明の効果」 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。
"Effects of the Invention" Since the present invention is configured as described above, it produces the following effects.

i)プラント運転中でも鉄電極による分極抵抗の測定が
可能となる。
i) Polarization resistance can be measured using iron electrodes even during plant operation.

ii)実復水器において、鉄電極による鉄イオン注入量
と水室内に取付けた該プローブの分極抵抗Rpは若干の
相違はあるもののほぼ対応して変化しており、Rpは鉄
イオンによる防食保護皮膜の付着状態を推定できる。
ii) In an actual condenser, the amount of iron ions injected by the iron electrode and the polarization resistance Rp of the probe installed in the water chamber change almost correspondingly, although there are some differences, and Rp is due to the anticorrosion protection by iron ions. The adhesion state of the film can be estimated.

1ii)Rpとプローブへの流入電流■は非常に良い相
関関係にあり、IによってRpを知ることができる。従
って、上記の結果よりIによって鉄イオンによる防食保
護皮膜の付着状態を推定できるので、■の変化を利用す
れば鉄イオン注入濃度を自動制御化できる。
1ii) There is a very good correlation between Rp and the current flowing into the probe (2), and Rp can be determined by I. Therefore, from the above results, it is possible to estimate the adhesion state of the anti-corrosion protective film due to iron ions based on I, and the iron ion implantation concentration can be automatically controlled by utilizing the change in ■.

iv)プローブに異常や損傷が生じた場合、着脱可能な
構造のため点検や取替えが容易である。
iv) If an abnormality or damage occurs to the probe, the removable structure makes inspection and replacement easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図本発明プローブの縦断図、第2図は本発明プロー
ブの実復水器に対する取付概略説明図、第3図a、bは
本発明プローブ詳細取付説明図、取付概念説明図、第4
図、第5図は本発明プローブによる鉄イオン注入量とR
pの変化関係を示す図表、Rpとiの相関図表、第6図
は本発明プローブを利用して構成される鉄イオン濃度の
自動制御化回路図である。 1・・・パイプ、 2・・・通電用電極、 2a・・・
絶縁性チューブ、 3・・・照合電極、 3a・・・絶
縁性チューブ、  4・・・樹脂、  5・・・熱収縮
チューブ、  6・・・ゴム栓、 7・・・排流点(接
続点)、 8・・・プローブ、  9・・・水室カバー
、 10・・・固定用コック、11・・・リード線、 
12・・・復水器細管、 13・・・接続、14・・・
電気防食用電極、 15・・・亜鉛照合電極。 ブ地へり ズプゲZワ Time(day) ヲろ(t
Fig. 1 is a longitudinal sectional view of the probe of the present invention, Fig. 2 is a schematic illustration of the installation of the probe of the invention to an actual condenser, Fig. 3 a and b are detailed illustrations of the installation of the probe of the invention, and illustrations of the installation concept;
Figure 5 shows the iron ion implantation amount and R using the probe of the present invention.
A chart showing the change relationship of p, a correlation chart between Rp and i, and FIG. 6 are a diagram of an automatic control circuit for iron ion concentration constructed using the probe of the present invention. 1... Pipe, 2... Current-carrying electrode, 2a...
Insulating tube, 3... Reference electrode, 3a... Insulating tube, 4... Resin, 5... Heat shrink tube, 6... Rubber stopper, 7... Discharge point (connection point ), 8... Probe, 9... Water chamber cover, 10... Fixing cock, 11... Lead wire,
12... Condenser tube, 13... Connection, 14...
Electrode for cathodic protection, 15... Zinc reference electrode. Time (day) Woro (t)

Claims (3)

【特許請求の範囲】[Claims] (1)例えば復水器などにおいて該容器と同等の素材に
よる小径金属管を用い、一方の管端より細径通電用電極
を挿入し、他方管端より通電に必要な長さを露出し、該
電極材を該小径金属管内に該小径金属管と接触しないよ
うに絶縁性チューブをかぶせ絶縁性充填物で固定保持し
、該小径金属管の外表面が該通電用電極の対極として作
用する如く通電可能ならしめると共に、該小径金属管の
外表面に小孔を穿ち、絶縁性チューブをかぶせかつ管内
絶縁性充填物によって該小径金属および該電極材と確実
に絶縁された照合電極材を該小孔より、該外表面の電位
計測を可能ならしめるよう管内より露出固定したことを
特徴とする熱交換器類における分極抵抗測定用プローブ
(1) For example, in a condenser, etc., use a small diameter metal tube made of the same material as the container, insert a small diameter energizing electrode from one tube end, and expose the length necessary for energization from the other tube end, The electrode material is fixedly held by covering the small diameter metal tube with an insulating tube so as not to come into contact with the small diameter metal tube, and the outer surface of the small diameter metal tube acts as a counter electrode to the current-carrying electrode. In addition to making it conductive, a small hole is made in the outer surface of the small diameter metal tube, and a reference electrode material, which is covered with an insulating tube and reliably insulated from the small diameter metal and the electrode material by an insulating filling inside the tube, is inserted into the small diameter metal tube. 1. A probe for measuring polarization resistance in heat exchangers, characterized in that the probe is exposed and fixed from inside a tube through a hole so that the potential of the outer surface can be measured.
(2)プローブの外表面の対極として作用する一定面積
あるいは長さを残して絶縁性被覆を施すことにより、容
器外壁に取付けた水密なるプローブ支持金具を通すこと
によって着脱容易な構造としたことを特徴とする請求項
1記載の分極抵抗測定用プローブ。
(2) By applying an insulating coating to the outer surface of the probe, leaving a certain area or length that acts as a counter electrode, the structure can be easily attached and detached by passing the watertight probe support fitting attached to the outer wall of the container. The probe for measuring polarization resistance according to claim 1.
(3)請求項1又は2記載のプローブのプローブ用小径
金属管を復水器水室の函体に電気的に接続し、プローブ
に流入する分岐防食電流により、プローブ上の鉄イオン
皮膜の生成を推定し、この電流値を制御量の1つとして
鉄イオン発生量を操作することを特徴とする復水器管板
・細管の自動電気防食方法。
(3) Formation of an iron ion film on the probe by electrically connecting the small diameter metal tube for the probe of the probe according to claim 1 or 2 to the box of the condenser water chamber, and by branching anticorrosion current flowing into the probe. An automatic cathodic protection method for condenser tube sheets and thin tubes, characterized by estimating the current value and controlling the amount of iron ion generation using this current value as one of the control variables.
JP3358988A 1988-02-16 1988-02-16 A probe for measuring polarization resistance in heat exchangers and a method for automatically controlling iron ion concentration using the probe. Expired - Lifetime JP2502113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358988A JP2502113B2 (en) 1988-02-16 1988-02-16 A probe for measuring polarization resistance in heat exchangers and a method for automatically controlling iron ion concentration using the probe.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358988A JP2502113B2 (en) 1988-02-16 1988-02-16 A probe for measuring polarization resistance in heat exchangers and a method for automatically controlling iron ion concentration using the probe.

Publications (2)

Publication Number Publication Date
JPH01207666A true JPH01207666A (en) 1989-08-21
JP2502113B2 JP2502113B2 (en) 1996-05-29

Family

ID=12390695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358988A Expired - Lifetime JP2502113B2 (en) 1988-02-16 1988-02-16 A probe for measuring polarization resistance in heat exchangers and a method for automatically controlling iron ion concentration using the probe.

Country Status (1)

Country Link
JP (1) JP2502113B2 (en)

Also Published As

Publication number Publication date
JP2502113B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
US5469048A (en) Cathodic protection measurement apparatus
EP2675940B1 (en) Cathodic protection monitoring probe
EA005014B1 (en) Corrosion-protected concrete structure, method of constructing and system
CN110296932A (en) A kind of electro-chemical test sample and preparation method thereof
JP4137058B2 (en) Corrosion / corrosion protection evaluation method
CA1229320A (en) Method for cathodic protection of aluminum material
JPH01207666A (en) Probe for polarization resistance measurement of heat exchanger or the like and automatic control method for iron ion concentration using this probe
JP4089360B2 (en) Anticorrosive evaluation method
CN111337805A (en) Hydrolysis resistance test system for cable
JP3606080B2 (en) Anticorrosion monitoring electrode and anticorrosion monitoring method
JP3314645B2 (en) How to monitor pitting
JP4601155B2 (en) Anticorrosion monitoring method
JP3606081B2 (en) Anticorrosion management method
CA2073530A1 (en) Corrosion protection system
Eliassen et al. Mechanism of the internal corrosion of water pipe
JP3084131B2 (en) Over-corrosion protection measuring device
JPH0224915B2 (en)
JP2824804B2 (en) Method and apparatus for measuring corrosion resistance of metal tubes
JPS63123998A (en) Corrosion preventive device of heat exchanger
JP2006083434A (en) Electric protection method and electric protection apparatus
JPS5931705Y2 (en) Iron electrode corrosion protection device for heat exchanger
ONWUBALI PERFORMANCE EVALUATION OF HALF CELL REFERENCE ELECTRODES VARIATION IN CATHODIC PROTECTION SYSTEMS
JP2002030472A (en) Power source device for electric protection of small size water feed pipe
Alhabobi et al. Modeling of Cathodic Protection for pipe lines
JPS6012427B2 (en) Cathodic protection method for aluminum materials