JPH01207657A - 微量試料中における化学物質濃度の測定方法 - Google Patents

微量試料中における化学物質濃度の測定方法

Info

Publication number
JPH01207657A
JPH01207657A JP63031816A JP3181688A JPH01207657A JP H01207657 A JPH01207657 A JP H01207657A JP 63031816 A JP63031816 A JP 63031816A JP 3181688 A JP3181688 A JP 3181688A JP H01207657 A JPH01207657 A JP H01207657A
Authority
JP
Japan
Prior art keywords
concns
concentration
sample
diluting liquid
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031816A
Other languages
English (en)
Inventor
Yoshie Kawana
川名 美江
Jun Kimura
純 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63031816A priority Critical patent/JPH01207657A/ja
Publication of JPH01207657A publication Critical patent/JPH01207657A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は微量な試料溶液中の化学物質濃度の測定方法に
関する。
[従来の技術] 近年、半導体製造技術を用いて微小なイオンセンサやこ
れを用いた半導体バイオセンサの開発が行われている(
鈴木周−編、「バイオセンサー」、講談社サイエンティ
フィック、p、28.1984)。半導体センサの大き
さは、例えば、0.6111mX O,3mmX 4m
m程度であり(1984年電気化学合同秋季大会、第3
回化学センサー研究発表会要旨集、p、3)、センサの
感応部位は、その先端1mm以内に設けられているため
溶液の全量が例えば30μ!以下であっても測定が可能
である。
ところで、これらのセンサで溶液中の化学物質を測定す
る場合、一定の希釈を行った方が、測定精度や測定濃度
範囲に有利な場合のあることが知られている。たとえば
酵素センサを用いて基質濃度を測定する場合には、適当
な緩衝液を選び、この中にセンサを浸漬しておき、これ
に試料溶液を添加することによって酵素の活性を最大に
引き出すことが可能になる。また、センサの種類によっ
ては基質濃度が一定値よりも高くなると出力が飽和し、
それより高い濃度での測定が不可能になる場合が多い。
これを解決する手段として溶液の希釈を行い、センサの
測定濃度範囲を広げることが行われている。
[発明が解決しようとする課題] しかし、希釈を行う場合には希釈の精度自体が測定精度
を決める要因となる。特に試料が微量になればなるほど
正確な秤量は困難になる。微量試料の秤量を目的とした
各種のピペットが市販されているが、いずれもかなり高
価であり、正確な秤量にはある程度熟練を要する。とり
わけ試料が全血のような粘度の高いものの場合にはピペ
ットでの秤量は精度が低くなる。
本発明は以上述べたような従来の問題点を解決するため
になされたもので、試料溶液を正確に秤量することを必
要とせずに、希釈溶液を用いた化学物質濃度の測定を行
う方法を提供することを目的とする。
[課題を解決するための手段] 本発明は、微量試料中の化学物質濃度を測定する方法に
おいて、粗秤量された試料溶液を一定量の希釈液で希釈
した第1の希釈溶液を用いて第1の化学物質濃度測定を
行う工程と、前記第1の希釈溶液をさらに一定量の希釈
液で希釈した第2の希釈溶液を用いて第2の化学物質濃
度測定を行う工程と、前記第1および第2の濃度測定値
を用いて試料溶液中の化学物質濃度を求める工程とを有
してなることを特徴とする微量試料中における化学物質
濃度の測定方法である。
[作用] 測定溶液中の化学物質の濃度と装置からの出力の間に第
1図に示したような相関関係が成立する場合において、
粗秤量された試料溶液の正確な量をV、はじめに添加し
た希釈液のmをvl、このときの測定値を81.2回目
に添加した希釈液の母を■2.2回目の測定値を82と
すると、Sl、S2はそれぞれ濃度C1、C2に対応す
る。試料の濃度がCで表されるとすれば次式の関係が成
り立つ。
C−V=C+ ・(V+1) C−V=C2・(v十V1+V2) よって すなわち、試料溶液を正確に秤量することなく試料中の
化学物質の濃度を算出することが可能である。
ただし実際の測定では溶液の希釈倍率を変えた場合には
、測定溶液中の伯の成分の濃度(例えば緩衝物質の濃度
など)が異なってくるため、希釈倍率によって検量線が
変化する場合がある。この場合には第一の希釈倍率、第
二の希釈倍率の両方について検量線を作成しておき、そ
れぞれの検量線から求めた濃度(C+ 、C2)を用い
れば同様の算出が可能である。
[実施例〕 次に本発明の実施例について図面を参照して詳細に説明
する。
第2図は電界効果型イオンセンサの感応部にグルコース
オキシダーゼを固定化したグルコースセンサチップ1を
用いて測定溶液2中の物質濃度測定を行う方法を示す説
明図である。まず、グルコースセンサチップ1を20μ
!の希釈液(0,15)INaClを含む20mHHE
PES−NaOtt緩衝液)に浸漬し、ここに正確に1
0μlの種々の濃度の標準溶液を注入口3より添加した
。このときの標準溶液の濃度と、l5FETアンプ4お
よび信号処理装置5によって得られた出力S1について
の検量線を第3図(a)に示す。また、希釈液の量を4
0μβにしたときの同様の検量線を第3図(b)に示す
以上のようにして得られた検量線を用い、次のようにし
て試料溶液中のグルコース濃度を求めた。
まず、センサチップ1を20μlの希釈液に浸漬し、こ
のとぎの電位をOとした。これにグルコース濃度150
+ng/dJ!の試料溶液の適当量(Vpp)を注入口
3より添加しく第1の希釈溶液)、出力電圧の変化を求
めた(31mV)。これにざらに20μβの希釈液を添
加しく第2の希釈溶液)、出力電圧を測定した(32m
V、)。試料溶液の量を変化させて測定を行ったところ
、表−1に示すような結果が得られた。
表−1 表−1で明らかなように試料溶液の量が20%程度異な
る場合にもかなり正確な濃度が得られる。
なお、本実施例では希釈液の添加量を2回とも同量(2
0LIN >としたが、異なった量を用いてもよい。同
量にした場合には同一の操作の繰り返しですみ、機構的
にはより単純化されたものとなり、これまでの−段の希
釈系をそのまま用いることも可能である。
[発明の効果] 以上説明したように、本発明の測定方法を用いれば、試
料溶液の量を正確に秤量することなく、試料中の化学物
質の濃度を測定することが可能である。
従って試料溶液が微量であっても試料中の化学物質濃度
を正確に定量することができ、測定精度の向上が達成さ
れる。
【図面の簡単な説明】
第1図は測定溶液濃度に対する装置からの出力の検量線
の一例を示す図、第2図は本発明の一実施例の説明図、
第3図は本発明の一実施例における2通りの希釈倍率で
の検量線を示す図である。 1・・・グルコースセンサチップ

Claims (1)

    【特許請求の範囲】
  1. (1)微量試料中の化学物質濃度を測定する方法におい
    て、粗秤量された試料溶液を一定量の希釈液で希釈した
    第1の希釈溶液を用いて第1の化学物質濃度測定を行う
    工程と、前記第1の希釈溶液をさらに一定量の希釈液で
    希釈した第2の希釈溶液を用いて第2の化学物質濃度測
    定を行う工程と、前記第1および第2の濃度測定値を用
    いて試料溶液中の化学物質濃度を求める工程とを有して
    なることを特徴とする微量試料中における化学物質濃度
    の測定方法。
JP63031816A 1988-02-16 1988-02-16 微量試料中における化学物質濃度の測定方法 Pending JPH01207657A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031816A JPH01207657A (ja) 1988-02-16 1988-02-16 微量試料中における化学物質濃度の測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031816A JPH01207657A (ja) 1988-02-16 1988-02-16 微量試料中における化学物質濃度の測定方法

Publications (1)

Publication Number Publication Date
JPH01207657A true JPH01207657A (ja) 1989-08-21

Family

ID=12341617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031816A Pending JPH01207657A (ja) 1988-02-16 1988-02-16 微量試料中における化学物質濃度の測定方法

Country Status (1)

Country Link
JP (1) JPH01207657A (ja)

Similar Documents

Publication Publication Date Title
Oesch et al. Field effect transistors sensitive to sodium and ammonium ions
US3707455A (en) Measuring system
Poghossian et al. Detecting both physical and (bio‐) chemical parameters by means of ISFET devices
Bergveld Future applications of ISFETs
JPH0774793B2 (ja) 感イオン電界効果トランジスタを利用するバイオセンサー用測定回路
JPH0737991B2 (ja) グルコース濃度の測定方法
Bousse et al. Combined measurement of surface potential and zeta potential at insulator/electrolyte interfaces
Ciosek et al. Potentiometric electronic tongue based on integrated array of microelectrodes
Tang et al. based electrochemical immunoassay for rapid, inexpensive cancer biomarker protein detection
Soldatkin et al. Development of potentiometric creatinine-sensitive biosensor based on ISFET and creatinine deiminase immobilised in PVA/SbQ photopolymeric membrane
Trebbe et al. A new calcium-sensor based on ion-selective conductometric microsensors–membranes and features
Jiménez et al. Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors
US9304096B2 (en) Method of measuring a capacitance
US10520460B2 (en) Method for determining diffusion
Cifrić et al. Review of electrochemical biosensors for hormone detection
Pelleg et al. Determination of Na+ and K+ in urine with ion-selective electrodes in an automated analyzer
Ipatov et al. Integrated multisensor chip with sequential injection technique as a base for “electronic tongue” devices
Miyahara et al. Urea sensor based on an ammonium-ion-sensitive field-effect transistor
Horvai The matched potential method, a generic approach to characterize the differential selectivity of chemical sensors
Moschou et al. Potassium selective CHEMFET based on an ion-partitioning membrane
JPH01207657A (ja) 微量試料中における化学物質濃度の測定方法
Poghossian et al. Application of a (bio-) chemical sensor (ISFET) for the detection of physical parameters in liquids
EP0352717A2 (en) Method, analyzer and sensor for measuring urea concentration
JPS62184345A (ja) イオン濃度の測定方法
Chandler et al. Enzyme-mediated pH-sensitive fet devices; problems of the non-linear response