JPH01207260A - Production of 4,4'-methylenedianiline - Google Patents

Production of 4,4'-methylenedianiline

Info

Publication number
JPH01207260A
JPH01207260A JP63032551A JP3255188A JPH01207260A JP H01207260 A JPH01207260 A JP H01207260A JP 63032551 A JP63032551 A JP 63032551A JP 3255188 A JP3255188 A JP 3255188A JP H01207260 A JPH01207260 A JP H01207260A
Authority
JP
Japan
Prior art keywords
type zeolite
fluorine
catalyst
aniline
dealuminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032551A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kiso
佳久 木曽
Toshihiro Takai
敏浩 高井
Tetsuo Hayashi
林 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP63032551A priority Critical patent/JPH01207260A/en
Priority to EP19890301362 priority patent/EP0329367A3/en
Priority to AU29921/89A priority patent/AU612786B2/en
Priority to KR1019890001718A priority patent/KR890012937A/en
Publication of JPH01207260A publication Critical patent/JPH01207260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To suppress production of highly condensed product and isomer and selectively obtain 4,4'-methylenedianiline in high yield, by reacting aniline with formaldehyde raw material in the presence of a fluorine-treated dealuminum Y type zeolite catalyst. CONSTITUTION:Aniline is reacted with formaldehyde raw material using a fluorine-treated dealuminum Y type zeolite as a catalyst at 20-300 deg.C for 0.1-40hr to provide the aimed product. The fluorine treated dealuminum Y type zeolite is a zeolite obtained by subjecting to Y type zeolite to dealuminum treatment and further subjecting the surface thereof to fluorine treatment and has 5.5-20 SiO2/Al2O3 (molar ratio) and 0.1-30wt.% fluorine content. The formaldehyde raw material is formaldehyde-containing raw material capable of reacting with aniline, e.g., formalin aqueous solution, trioxan or N,N- diphenylmethylenediamine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアニリンとホルムアルデヒド原料から4,4
′−メチレンジアニリンを製造する方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] This invention utilizes aniline and formaldehyde raw materials to produce 4,4
The present invention relates to a method for producing '-methylene dianiline.

〔従来の技術〕[Conventional technology]

アニリンとホルムアルデヒドとを反応させて4.4′−
メチレンジアニリンを製造する方法として、触媒に塩化
水素等の鉱酸を使用する方法がある。
By reacting aniline and formaldehyde, 4.4'-
One method for producing methylene dianiline is to use a mineral acid such as hydrogen chloride as a catalyst.

この方法ではアニリンと等モル以上の鉱酸を必要とし、
また反応後中和のために鉱酸と等モル以上のアルカリを
必要とするとともに、ポリメチレンポリフェニルアミン
等の高縮合体が20〜40%生成し、4,4′−メチレ
ンジアニリンの収率が低下する。
This method requires more than the same molar amount of mineral acid as aniline,
In addition, an alkali of at least the same molar amount as the mineral acid is required for neutralization after the reaction, and 20 to 40% of high condensates such as polymethylene polyphenylamine are produced, resulting in the production of 4,4'-methylene dianiline. rate decreases.

このような欠点を改善するため、触媒として固体酸触媒
を使用する方法が開発され、固体酸触媒としてY型ゼオ
ライトが提案されているが(特公昭55−34138号
、同56−14104号、同58−27261号)、高
縮合体の生成を抑制することができず、  4.4’−
メチレンジアニリンの収率は低いという問題点がある。
In order to improve these drawbacks, a method using a solid acid catalyst has been developed, and Y-type zeolite has been proposed as a solid acid catalyst (Japanese Patent Publications No. 55-34138, No. 56-14104, No. 56-14104). 58-27261), the formation of high condensates cannot be suppressed, and 4.4'-
There is a problem that the yield of methylene dianiline is low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の[1的は、上記従来法の問題点を解決するため
、高縮合体や異性体の生成を抑制し、4.4′−メチレ
ンジアニリンを選択的に高収率で製造できるとともに、
触媒をくり返えし使用可能な4,4′−メチレンジアニ
リンの製造法を提案することである。
[1] In order to solve the problems of the above-mentioned conventional methods, the present invention suppresses the formation of high condensates and isomers, and can selectively produce 4,4'-methylene dianiline in high yield. ,
The object of the present invention is to propose a method for producing 4,4'-methylene dianiline that can be used repeatedly as a catalyst.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、アニリンとホルムアルデヒド原料から4,4
′−メチレンジアニリンを製造する方法において、触媒
としてフッ素処理脱アルミニウムY型ゼオライトを使用
することを特徴とする4、4′−メチレンジアニリンの
製造法である。
The present invention uses aniline and formaldehyde raw materials to produce 4,4
A method for producing 4,4'-methylene dianiline, which is characterized in that a fluorinated dealuminated Y-type zeolite is used as a catalyst.

本発明で触媒として使用されるフッ素処理脱アルミニウ
ムY型ゼオライトは、Y型ゼオライトを脱アルミニウム
処理し、さらにその表面をフッ素処理したゼオライトで
ある。Y型ゼオライトは5i02/Al□0.(モル比
)が2〜5で、互に酸素原子を共有する5in4とAL
U、の四面体からなる三次元骨組構造であり、アルミニ
ウムを含む各四面体の電気的な釣合はアルミノケイ酸塩
骨格のカチオンの存在によって釣合っている。
The fluorine-treated dealuminated Y-type zeolite used as a catalyst in the present invention is a zeolite obtained by dealuminizing Y-type zeolite and further treating its surface with fluorine. Y-type zeolite is 5i02/Al□0. 5in4 and AL whose (molar ratio) is 2 to 5 and share oxygen atoms with each other
It has a three-dimensional framework structure consisting of tetrahedra of U, and the electrical balance of each tetrahedron containing aluminum is balanced by the presence of cations in the aluminosilicate skeleton.

脱アルミニウムY型ゼオライトは、このようなY型ゼオ
ライトを脱アルミニウムしたものであり、5i02/A
1203(モル比)は5.5〜20で、結晶構造はY型
ゼオライトとほぼ同じであるが、単位格子の大きさは一
般に約1〜2%収縮している。交換カチオンはプロトン
、アルカリ土類カチオン、希土類カチオン、遷移金属カ
チオンなどがあるが、プロトンが好ましい。
Dealuminated Y-type zeolite is a dealuminated Y-type zeolite, and is 5i02/A.
1203 (molar ratio) is 5.5 to 20, and the crystal structure is almost the same as Y-type zeolite, but the size of the unit cell is generally contracted by about 1 to 2%. Examples of exchange cations include protons, alkaline earth cations, rare earth cations, and transition metal cations, with protons being preferred.

Y型ゼオライトは一般にSiO□/Al□0.(モル比
)が高いほど酸強度、耐熱性、耐酸・塩基性が高くなる
が、一般的に5i02/Al□0.(モル比)が5を超
える原料組成ではY型ゼオライトが生成しないため、S
iO,/Al□03(モル比)が2〜5の原料組成でY
型ゼオライトを製造した後、脱アルミニウムにより、Y
型ゼオライトの基本的な結晶構造を維持したまま、Si
O□/Al□03(モル比)を高めることが行われてい
る。
Y-type zeolite is generally SiO□/Al□0. The higher the molar ratio, the higher the acid strength, heat resistance, and acid/base resistance, but generally 5i02/Al□0. (molar ratio) exceeds 5, Y-type zeolite will not be produced, so S
Y with a raw material composition of iO,/Al□03 (molar ratio) of 2 to 5
After producing type zeolite, Y
While maintaining the basic crystal structure of type zeolite, Si
Efforts have been made to increase O□/Al□03 (molar ratio).

このような脱アルミニウムY型ゼオライトとしては、市
販品が使用でき、例えば東ソー曲のTSZ−330HU
A、 TSZ−35011UA、 TSZ−360HU
A(いずれも商標)などがあげられる。このほか例えば
次の(D、■の方法でY型ゼオライ1へから調製するこ
とができる。
As such dealuminated Y-type zeolite, commercially available products can be used, such as Tosoh Kaku's TSZ-330HU.
A, TSZ-35011UA, TSZ-360HU
Examples include A (both are trademarks). In addition, for example, it can be prepared from Y-type zeolite 1 by the following method (D, 2).

■第1の方法は液相でEDTAによりアルミニウムをA
lカチオンとして骨格より脱離させる方法で、例えばプ
ロトン交換形Y型ゼオライトを1〜lO倍重量の蒸留水
および0.1〜1倍重量のEDTAを含む溶液へ添加し
て10〜200時間放置した後、ここへ0.5〜3倍重
量の1〜3N HCIを滴下し、攪拌しながら100℃
に加熱して1〜10時間攪拌後、濾過または遠心分離に
より固相を分離し、その接水で洗浄した後空気中または
窒素雰囲気下にて300〜700℃で1〜10時間焼成
する方法である。
■The first method is to remove aluminum by EDTA in the liquid phase.
For example, proton exchange type Y zeolite was added to a solution containing 1 to 10 times the weight of distilled water and 0.1 to 1 times the weight of EDTA and left for 10 to 200 hours. After that, 0.5 to 3 times the weight of 1 to 3N HCI was added dropwise thereto, and the temperature was heated to 100°C while stirring.
After stirring for 1 to 10 hours, the solid phase is separated by filtration or centrifugation, washed with water, and then calcined at 300 to 700°C for 1 to 10 hours in air or under a nitrogen atmosphere. be.

(匂第2の方法は高温下でのスチーム処理法で、例えば
固定床中のプロトン交換形Y型ゼオライトに対し、60
0〜900℃の温度範囲において、窒素で10〜100
% に希釈した蒸気を使用して1〜10時間処理を行っ
た後、約10〜100倍重量の蒸留水で洗浄して空気中
または窒素雰囲気下にて300〜700℃で1〜10時
間焼成する方法、あるいはプロトン交換形Y型ゼオライ
トを流動層中常圧または加圧条件下に600〜900℃
の温度範囲にて、窒素で10〜100%に希釈した蒸気
を用いて1〜10時間処理を行った後、約10〜100
倍重量の蒸留水で洗浄し、空気中または窒素雰囲気下に
て300〜700℃で1〜10時間焼成する方法である
(The second method is a steam treatment method under high temperature. For example, for proton exchange type Y zeolite in a fixed bed, 60%
10-100 with nitrogen in the temperature range of 0-900℃
After processing for 1 to 10 hours using steam diluted to Alternatively, proton exchange type Y zeolite is heated at 600 to 900°C under normal pressure or pressurized conditions in a fluidized bed.
After treatment for 1 to 10 hours using steam diluted to 10 to 100% with nitrogen at a temperature range of approximately 10 to 100%
This method involves washing with twice the weight of distilled water and firing at 300 to 700°C for 1 to 10 hours in air or under a nitrogen atmosphere.

フッ素処理脱アルミニウムY型ゼオライトは、上記のよ
うな脱アルミニウムY型ゼオライトをフッ素処理して結
晶構造内にフッ素を結合させたものであり、5i02/
Al□03(モル比)が5.5〜20、フッ素含有率が
0.1〜30重量%である。交換カチオンはプロトン、
アルカリ土類カチオン、希土類カチオン、遷移金属カチ
オンなどがあるが、プロトンが好ましい。プロトン交換
形フッ素処理脱アルミニウムY型ゼオライトは表1のX
線回折パターンを有し、脱アルミニウムY型ゼオライト
およびフッ素処理Y型ゼオライトとは結晶構造が相違し
ている。
Fluorine-treated dealuminated Y-type zeolite is obtained by fluorine-treating the above-mentioned dealuminated Y-type zeolite to bond fluorine within the crystal structure, and is 5i02/
Al□03 (molar ratio) is 5.5 to 20, and fluorine content is 0.1 to 30% by weight. The exchanged cation is a proton,
Examples include alkaline earth cations, rare earth cations, and transition metal cations, but protons are preferred. Proton exchange type fluorine treated dealuminated Y-type zeolite is X in Table 1.
It has a line diffraction pattern and has a different crystal structure from dealuminated Y-type zeolite and fluorine-treated Y-type zeolite.

表1 回折角(20°)  相対強度 6.4±0.2   90〜100 10.4±0.2 ’    60〜8012.1+0
.2   40〜70 14.8±0.21〜30 16.0±0.2   70〜90 19.1±0.2    to〜40 20.8±0.2   20〜50 23.3±0.21〜20 24.2±0.2   20〜50 25.2±0.21〜30 27.6±0.2   10〜30 注)X線回折分析はCuにα線を用いてIIl’!定す
る。
Table 1 Diffraction angle (20°) Relative intensity 6.4±0.2 90~100 10.4±0.2' 60~80 12.1+0
.. 2 40~70 14.8±0.21~30 16.0±0.2 70~90 19.1±0.2 to~40 20.8±0.2 20~50 23.3±0.21 ~20 24.2±0.2 20~50 25.2±0.21~30 27.6±0.2 10~30 Note) X-ray diffraction analysis was performed using α rays for Cu. Set.

ただし、6.4±0.2の回折線の相対強度を100と
する。
However, the relative intensity of the diffraction line of 6.4±0.2 is assumed to be 100.

フッ素処理脱アルミニウムY型ゼオライトは前述の脱ア
ルミニウムY型ゼオライトとフッ素含有化合物とを接触
処理して得ることができる。フッ素含有化合物としては
フッ化アンモニウム、フッ化テトラメチルアンモニウム
、フッ化テトラエチルアンモニウム、フッ化メチルアン
モニウム、フッ化ジメチルアンモニウム等のフッ化アン
モニウム化合物;フッ化ナトリウム、フッ化水素、3フ
ツ化ホウ素、モノフロロ酢酸、CFCI、、 CF2C
l□、CF、 C1、CF4. CHFC1m、Cll
F2C1、CHF 、、CFCI、−CFCI2、CF
2Cl−CF2Cl、CF2C1−CF、、CF、−C
F、、CH,−CF2C1,CH,−CIIF、、CF
、Br、 CF2Br−CF2Br、 HF、SF4.
3FいBF、などのフッ素化合物があげられる。
The fluorine-treated dealuminated Y-type zeolite can be obtained by contacting the above-described dealuminated Y-type zeolite with a fluorine-containing compound. Examples of fluorine-containing compounds include ammonium fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride, methylammonium fluoride, dimethylammonium fluoride, and other ammonium fluoride compounds; sodium fluoride, hydrogen fluoride, boron trifluoride, and monofluoride. Acetic acid, CFCI, CF2C
l□, CF, C1, CF4. CHFC1m, Cll
F2C1,CHF,,CFCI,-CFCI2,CF
2Cl-CF2Cl, CF2C1-CF, CF, -C
F,,CH,-CF2C1,CH,-CIIF,,CF
, Br, CF2Br-CF2Br, HF, SF4.
Examples include fluorine compounds such as 3FBF.

フッ素処理法としては例えば脱アルミニウムY型ゼオラ
イトを、0.O1〜30重斌%のフッ素含有化合物の水
溶液に0.01〜24時間浸漬した後、固相をろ過また
は遠心分離により分離し、空気中または窒素雰囲気下に
て300〜800℃で焼成する。他の方法としては脱ア
ルミニウムY型ゼオライトをガス状のフッ素含有化合物
と、0〜800℃、好ましくは200〜600℃の温度
で接触させる方法で、具体的には脱アルミニウムY型ゼ
オライトを反応管に充填し、次いで反応管を所定温度に
した後、上記ガス状のフッ素含有化合物を所定時間(例
えば0.1〜10時間、好ましくは0.5〜2時間)に
わたって上記反応管に供給して、脱アルミニウムY型ゼ
オライトを上記のガス状フッ素含有化合物と接触させ、
その後必要に応じて反応管に残存するフッ素含有化合物
を、窒素などの不活性ガスで置換するか、あるいは減圧
脱気処理するなどして除去する方法である。
As a fluorine treatment method, for example, dealuminated Y-type zeolite is treated with 0. After immersion in an aqueous solution of a fluorine-containing compound containing 1 to 30% by weight of O for 0.01 to 24 hours, the solid phase is separated by filtration or centrifugation and calcined at 300 to 800°C in air or under a nitrogen atmosphere. Another method is to bring dealuminated Y-type zeolite into contact with a gaseous fluorine-containing compound at a temperature of 0 to 800°C, preferably 200 to 600°C. and then, after bringing the reaction tube to a predetermined temperature, the gaseous fluorine-containing compound is supplied to the reaction tube for a predetermined period of time (for example, 0.1 to 10 hours, preferably 0.5 to 2 hours). , contacting the dealuminated Y-type zeolite with the gaseous fluorine-containing compound described above;
Thereafter, if necessary, the fluorine-containing compound remaining in the reaction tube is removed by replacing it with an inert gas such as nitrogen, or by degassing it under reduced pressure.

本発明の4.4′−メチレンジアニリンの製造法は。The method for producing 4,4'-methylene dianiline of the present invention is as follows.

このようなフッ素処理脱アルミニウムY型ゼオライトを
触媒として、アニリンおよびホルムアルデヒド原料を反
応させる。
Aniline and formaldehyde raw materials are reacted using such fluorine-treated dealuminated Y-type zeolite as a catalyst.

本発明においてホルムアルデヒ1く原料とは、アニリン
と反応するホルムアルデヒドを含有する原料であり、ホ
ルマリン水溶液、トリオキサン、バラホルムアルデヒド
、ジメトキシメタン等のジアルコキシメタンならびにア
ニリンとホルマリン水溶液を無触媒で混合して得られる
N、N’−ジフェニルメチレンジアミン等が例示できる
。このうち原料としてN、N’−ジフェニルメチレンジ
アミンおよびジアルコキシメタンを使用すると反応で水
が生成しないため、他の原料にくらべて4,4′−メチ
レンジアニリンの選択率、活性が高く好ましい。
In the present invention, the formaldehyde raw material is a raw material containing formaldehyde that reacts with aniline, and is obtained by mixing formalin aqueous solution, trioxane, paraformaldehyde, dialkoxymethane such as dimethoxymethane, and aniline and formalin aqueous solution without a catalyst. Examples include N,N'-diphenylmethylenediamine. Among these, when N,N'-diphenylmethylenediamine and dialkoxymethane are used as raw materials, water is not produced in the reaction, so the selectivity and activity of 4,4'-methylenedianiline are higher than other raw materials, and these are preferred.

反応におけるアニリン/ホルムアルデヒド仕込比は1〜
100、好ましくは2〜50.さらに好ましくは3〜2
0である。
The aniline/formaldehyde charging ratio in the reaction is 1 to
100, preferably 2-50. More preferably 3 to 2
It is 0.

触媒の形態は粉末またはペレット状が好ましく、触媒濃
度は反応混合物に対し、1〜100重景%、好ましくは
5〜40重量%である。
The catalyst is preferably in the form of powder or pellets, and the catalyst concentration is 1 to 100% by weight, preferably 5 to 40% by weight, based on the reaction mixture.

反応は液相で行うのが好ましく、その場合無溶媒でもよ
いが、溶媒を用いて反応を行うことも可能である。溶媒
としては、ベンゼン、トルエン、キシレン等の芳香族炭
化水素;ペンタン、ヘキサン、ヘプタン、オクタン、ノ
ナン、デカン、シクロヘキサン、デカリン等の脂肪族炭
化水素;ジクロルメタン、クロロホルム、四基化炭%H
,AFのハロゲン化炭化水素などを例示することができ
る。
The reaction is preferably carried out in a liquid phase, in which case the reaction may be carried out without a solvent, but it is also possible to carry out the reaction using a solvent. Examples of solvents include aromatic hydrocarbons such as benzene, toluene, and xylene; aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, cyclohexane, and decalin; dichloromethane, chloroform, and tetracarbonated carbon%H.
, AF and halogenated hydrocarbons.

好ましい反応方法は、アニリンと触媒を接触させた後、
ホルマリン水溶液等のホルムアルデヒド原料を加えて反
応させる方法、ならびに無触媒下にアニリンとホルマリ
ン水溶液等のホルムアルデヒド原料を混合して縮合物を
生成させ、水相を分離した後触媒と接触させる方法など
がある。
A preferred reaction method is to contact the aniline with the catalyst, and then
There is a method in which a formaldehyde raw material such as a formalin aqueous solution is added and reacted, and a method in which aniline and a formaldehyde raw material such as a formalin aqueous solution are mixed in the absence of a catalyst to form a condensate, and the aqueous phase is separated and then brought into contact with a catalyst. .

反応温度は20〜300℃、好ましくは30〜180℃
、さらに好ましくは50〜140℃である。圧力は常圧
でよいが、液相を保つために不活性ガス等により加圧し
てもよい。反応時間は0.1〜40時間、好ましくは0
.3〜5時間である。反応方式は液相による回分式、半
回分式、あるいは固定床による連続式のいずれを採用し
てもよい。
Reaction temperature is 20-300℃, preferably 30-180℃
, more preferably 50 to 140°C. The pressure may be normal pressure, but it may be pressurized with an inert gas or the like to maintain the liquid phase. Reaction time is 0.1 to 40 hours, preferably 0
.. It takes 3 to 5 hours. The reaction method may be a batch method using a liquid phase, a semi-batch method using a liquid phase, or a continuous method using a fixed bed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、触媒としてフッ素処理脱アルミニウム
Y型ゼオライトを使用したので、高縮合体や異性体の生
成を抑制し、4,4′−メチレンジアニリンを選択的に
高収率で製造することができるとともに、触媒の失活が
少なく、触媒をくり返えし使用することができる。
According to the present invention, since fluorinated dealuminated Y-type zeolite is used as a catalyst, the formation of high condensates and isomers is suppressed, and 4,4'-methylene dianiline can be selectively produced in high yield. In addition, there is little deactivation of the catalyst, and the catalyst can be used repeatedly.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

参考例1〔触媒調製〕 プロトン交換形脱アルミニウムY型ゼオライトTSZ−
33011tlA (東ソー(株)製、商標、5in2
/ At□0゜(モル比)=5.5〜6.5) 5.0
gを2.5重量%フッ化アンモニウム水溶液100+n
Qに加え、50℃で1時間攪拌したのち固形物を濾過し
、これを100℃で12時間乾燥させ、さらに600℃
で3時間焼成してフッ素処理脱アルミニウムY型ゼオラ
イトを1!)だ。この物性は表2に示す通りである。
Reference Example 1 [Catalyst Preparation] Proton exchange dealuminated Y-type zeolite TSZ-
33011tlA (manufactured by Tosoh Corporation, trademark, 5in2
/ At□0゜ (molar ratio) = 5.5 to 6.5) 5.0
g to 2.5% by weight ammonium fluoride aqueous solution 100+n
After stirring at 50°C for 1 hour, solid matter was filtered, dried at 100°C for 12 hours, and further stirred at 600°C.
Calcinate for 3 hours to make fluorine-treated dealuminated Y-type zeolite 1! )is. The physical properties are shown in Table 2.

参考例2〔触媒調製〕 参考例1でフッ化アンモニウム水溶液の濃度を1.25
重量%に変えた以外は同様の操作を行い、フッ素処理脱
アルミニウムY型ゼオライトを得た。
Reference Example 2 [Catalyst Preparation] In Reference Example 1, the concentration of ammonium fluoride aqueous solution was 1.25.
A fluorine-treated dealuminated Y-type zeolite was obtained by carrying out the same operation except that the weight percent was changed.

この物性は表2に示す通りである。The physical properties are shown in Table 2.

表2 結晶構造     表3           表4申
)アンモニア昇温脱M ?A (100℃でアンモニア
を吸着させた後、700℃まで昇温しでアンモニアを脱
離させ定量する)で決定 回折角(20°)  相対強度 6.4    100 10.4    70 12、L55 14.8    15 16.0    80 19.1    25 20.8    35 23.3     5 24.2    35 25.2    10 26.4     5 27.6    20 回折角(2θ°)  相対強度 6.3    100 10.3    70 12.160 15.9    90 19.0    30 20.7    40 23.2    10 24.0    55 26.2    5 27.5    30 実施例1 アニリン400.4gと37重量%ホルマリン水69.
8gを常温にて混合し、5時間攪拌する。その後−夜放
置後水層を分液し、ロータリエバポレーターで50℃、
300mm11g減圧下に4時間脱水することによりN
、N’−メチレンジアニリン/アニリン混合物を得た。
Table 2 Crystal structure Table 3 Table 4) Ammonia temperature-programmed deM? A (After adsorbing ammonia at 100°C, the temperature is raised to 700°C to desorb and quantify the ammonia) Diffraction angle (20°) Relative intensity 6.4 100 10.4 70 12, L55 14. 8 15 16.0 80 19.1 25 20.8 35 23.3 5 24.2 35 25.2 10 26.4 5 27.6 20 Diffraction angle (2θ°) Relative intensity 6.3 100 10.3 70 12.160 15.9 90 19.0 30 20.7 40 23.2 10 24.0 55 26.2 5 27.5 30 Example 1 400.4 g of aniline and 37% by weight formalin water 69.
Mix 8 g at room temperature and stir for 5 hours. After that, after leaving it overnight, separate the aqueous layer and heat it at 50℃ using a rotary evaporator.
300mm 11g N by dehydrating for 4 hours under reduced pressure
, N'-methylene dianiline/aniline mixture was obtained.

構造は1jCNMHにより確認し、ホルムアルデヒドが
100%反応し、N、N’−ジフェニルメチレンジアミ
ンとなっていることが判った。
The structure was confirmed by 1jCNMH, and it was found that 100% of formaldehyde had reacted to form N,N'-diphenylmethylenediamine.

次に還流冷却器を備えた25mQ4つ目フラスコに、N
2下室温にてN、N’−ジフェニルメチレンジアミン/
アニリン混合物2.5gおよび参考例2のフッ素処理脱
アルミニウムY型ゼオライト0.5gを加え、120℃
で30分間反応を行った。室温まで冷却した後、上澄み
を抜き出して触媒と分離し、上澄みの一部をGCおよび
GPCで分析した。
Next, add N to a fourth 25 mQ flask equipped with a reflux condenser.
2 at room temperature under N,N'-diphenylmethylenediamine/
Add 2.5 g of aniline mixture and 0.5 g of fluorine-treated dealuminated Y-type zeolite of Reference Example 2, and heat to 120°C.
The reaction was carried out for 30 minutes. After cooling to room temperature, the supernatant was taken out and separated from the catalyst, and a portion of the supernatant was analyzed by GC and GPC.

分離された触媒にN、N’−ジフェニルメチレンジアミ
ン/アニリン混合物2.5gを加え、上記と同様の操作
を3回くり返えした。
2.5 g of N,N'-diphenylmethylenediamine/aniline mixture was added to the separated catalyst, and the same operation as above was repeated three times.

比較例1 触媒として参考例で使用したフッ素処理前のプロトン交
換形脱アルミニウムY型ゼオライトを用いた以外は実施
例1と同様に行った。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the proton-exchange dealuminated Y-type zeolite used in the reference example before fluorine treatment was used as a catalyst.

以上の結果を表5に示す。The above results are shown in Table 5.

以上の結果より、実施例のものは比較例のものと比べて
アニリン転化率および4,4′−メチレンジアニリン選
択率が高いとともに、触媒の失活が少なく、くり返えし
使用することが可能であることがわかる。
From the above results, the example has a higher aniline conversion rate and 4,4'-methylene dianiline selectivity than the comparative example, has less catalyst deactivation, and can be used repeatedly. It turns out that it is possible.

実施例2 実施例1と同じ方法で調製したN、N’−ジフェニルメ
チレンジアミン/アニリン混合物2.5gおよび参考例
2のフッ素処理脱アルミニウムY型ゼオライト0.5g
を実施例1の第1回目と同様に120°Cで3時間反応
した。反応の結果を表6に示す。
Example 2 2.5 g of N,N'-diphenylmethylenediamine/aniline mixture prepared in the same manner as Example 1 and 0.5 g of the fluorinated dealuminated Y-type zeolite of Reference Example 2
was reacted at 120°C for 3 hours in the same manner as the first time in Example 1. The results of the reaction are shown in Table 6.

実施例3 触媒として参考例1のゼオライトを用いた他は実施例2
と同様にして行った。反応の結果を表6に示す。
Example 3 Example 2 except that the zeolite of Reference Example 1 was used as the catalyst
I did it in the same way. The results of the reaction are shown in Table 6.

平叙lネ甫正4F 昭和63年3月22日 1、事件の表示 昭和63年特許願第32551号 2、発明の名称 4.4′−メチレンジアニリンの製造法3、補正をする
者 事件との関係  特許出願人 代表者 竹林省吾
Heijo I Nehosho 4F March 22, 1988 1, Display of the case 1988 Patent Application No. 32551 2, Title of the invention 4. Process for producing 4'-methylene dianiline 3, Person making the amendment Case and Relationship Patent applicant representative Shogo Takebayashi

Claims (3)

【特許請求の範囲】[Claims] (1)アニリンとホルムアルデヒド原料から4,4′−
メチレンジアニリンを製造する方法において、触媒とし
てフッ素処理脱アルミニウムY型ゼオライトを使用する
ことを特徴とする4,4′−メチレンジアニリンの製造
法。
(1) 4,4'- from aniline and formaldehyde raw materials
1. A method for producing 4,4'-methylene dianiline, characterized in that a fluorinated dealuminated Y-type zeolite is used as a catalyst.
(2)ホルムアルデヒド原料はホルマリン水溶液、トリ
オキサン、またはN,N′−ジフェニルメチレンジアミ
ンである請求項1の方法。
(2) The method according to claim 1, wherein the formaldehyde raw material is an aqueous formalin solution, trioxane, or N,N'-diphenylmethylenediamine.
(3)フッ素処理脱アルミニウムY型ゼオライトはSi
O_2/Al_2O_3(モル比)が5.5〜20、フ
ッ素含有率が0.1〜30重量%である請求項1または
2の方法。
(3) Fluorine-treated dealuminated Y-type zeolite is Si
The method according to claim 1 or 2, wherein the O_2/Al_2O_3 (molar ratio) is 5.5 to 20 and the fluorine content is 0.1 to 30% by weight.
JP63032551A 1988-02-15 1988-02-15 Production of 4,4'-methylenedianiline Pending JPH01207260A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63032551A JPH01207260A (en) 1988-02-15 1988-02-15 Production of 4,4'-methylenedianiline
EP19890301362 EP0329367A3 (en) 1988-02-15 1989-02-14 Method of preparing 4,4'-methylenedianiline
AU29921/89A AU612786B2 (en) 1988-02-15 1989-02-14 Method of preparing 4,4'-methylenedianiline
KR1019890001718A KR890012937A (en) 1988-02-15 1989-02-15 Method for preparing 4,4'-methylenedianiline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032551A JPH01207260A (en) 1988-02-15 1988-02-15 Production of 4,4'-methylenedianiline

Publications (1)

Publication Number Publication Date
JPH01207260A true JPH01207260A (en) 1989-08-21

Family

ID=12362067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032551A Pending JPH01207260A (en) 1988-02-15 1988-02-15 Production of 4,4'-methylenedianiline

Country Status (1)

Country Link
JP (1) JPH01207260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529577A (en) * 2000-03-31 2003-10-07 エニケム ソチエタ ペル アツィオニ Process for producing a mixture of methylene dianiline and its higher analog products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529577A (en) * 2000-03-31 2003-10-07 エニケム ソチエタ ペル アツィオニ Process for producing a mixture of methylene dianiline and its higher analog products

Similar Documents

Publication Publication Date Title
CN109879727B (en) Method for synthesizing anisole from phenol and methanol
JP2004501117A5 (en)
JPH01313448A (en) Production of dihydroxybennzene
JPH03500052A (en) Manufacturing method of dimethyltetralin
Huang et al. Reactions of methylbutynol on alkali-exchanged zeolites. A Lewis acid-base selectivity study
RU2127726C1 (en) Process for preparing 3-methylpiperidine and 3- methylpyridine and 3-methylpyridine
JPH0416458B2 (en)
JPH01207260A (en) Production of 4,4'-methylenedianiline
JPH01157933A (en) Production of perfluorinated carbonyl fluoride
JPH01207259A (en) Production of 4,4'-methylenedianiline
AU612786B2 (en) Method of preparing 4,4'-methylenedianiline
JPH0219358A (en) Production of 4,4'-methylenedianiline
JPH02184658A (en) Production of 4,4'-methylenedianiline
JPS6344538A (en) Catalytic halogen transition for polyiodobenzene
Chmielewski et al. [2+ 2] Cycloaddition of sulfonyl and acyl isocyanates to glycals
MXPA98000124A (en) Process for the manufacturing of methylamine
JPH01502825A (en) Liquid phase isomerization of iodinated aromatic compounds
JPH03264551A (en) Recovery of methyl methacrylate
JPH049376A (en) Production of methylnorbornene dicarboxylic acid anhydride
US3395984A (en) Boron phosphate having high surface area and method for production therefor
US4864062A (en) Process for producing dioctamethylene triamine
JPS627892B2 (en)
SU1409320A1 (en) Catalyst for conversion of methanol to hydrocarbons and method of production thereof
JPH03170442A (en) Preparation of benzylbiphenyl
RU1839669C (en) Method of perfluoro-2-bromeothylvinyl ester synthesis