JPH03264551A - Recovery of methyl methacrylate - Google Patents

Recovery of methyl methacrylate

Info

Publication number
JPH03264551A
JPH03264551A JP2065896A JP6589690A JPH03264551A JP H03264551 A JPH03264551 A JP H03264551A JP 2065896 A JP2065896 A JP 2065896A JP 6589690 A JP6589690 A JP 6589690A JP H03264551 A JPH03264551 A JP H03264551A
Authority
JP
Japan
Prior art keywords
methyl
methyl methacrylate
catalyst
bottom residue
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2065896A
Other languages
Japanese (ja)
Inventor
Katsuya Watanabe
勝也 渡辺
Nobuo Hosaka
保坂 延夫
Shinichi Tadokoro
田所 愼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2065896A priority Critical patent/JPH03264551A/en
Publication of JPH03264551A publication Critical patent/JPH03264551A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To efficiently recover the objective compound from the bottom residue mentioned below using simple operations by bringing the bottom residue obtained in purification process of an esterification product into contact with a zeolite catalyst in gas phase in production of the subject compound using acetone cyanhydrin method. CONSTITUTION:In production of methyl methacrylate by reacting acetone cyanhydrin with sulfuric acid and methanol, the bottom residue obtained in purification of crude methyl methacrylate produced in esterification process is brought into contact with a zeolite catalyst preferably having 2-20 SiO2/Al2O3 molar ratio and -5.6-+4.8 pKa acid strength in gas phase after distillation of the bottom residue or without distillation, thus efficiently recovering the objective compound from a high boiling composition mainly composed of methyl 2-hydroxyisobutyrate and methyl 3-methoxyisobutyrate in the above-mentioned bottom residue in a high yield in a short time and stably for long hours without requirement of a large quantity of catalyst or solvent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアセトンシアンヒドリン法によるメタクリル酸
メチルの製法においてエステル化生成物の缶残液からメ
タクリル酸メチルを回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for recovering methyl methacrylate from the bottom liquid of an esterified product in a method for producing methyl methacrylate using the acetone cyanohydrin method.

(従来の技術) メタクリル酸メチルをアセトンシアンヒドリン法で合成
する際、エステル化工程からの粗メタクリル酸メチルを
精製して得られる缶残液中にはメタクリル酸メチル、2
−ヒドロキシイソ酪酸メチル、2−メト−キシイソ酪酸
メチル、3−メトキシイソ酪酸メチル、メタクリル酸等
の高沸物を主成分としてこれに少量の重合物、重合禁止
剤などが含まれている。
(Prior art) When methyl methacrylate is synthesized by the acetone cyanohydrin method, methyl methacrylate, 2
The main components are high-boiling substances such as methyl -hydroxyisobutyrate, methyl 2-methoxyisobutyrate, methyl 3-methoxyisobutyrate, and methacrylic acid, and small amounts of polymers, polymerization inhibitors, etc. are included.

これら高沸物からメタクリル酸メチル、メタクリル酸と
言った有効成分を回収する方法としては、硫酸の存在下
で水蒸気蒸留する方法(特公昭4635726号公報)
、2−ヒドロキシイソ酪酸メチルを硫酸で脱水する方法
(特開昭60−184047号公報)、高沸物を酸性硫
酸アンモニウム含有硫酸水溶液によりメタクリル酸メチ
ルあるいはメタクリル酸とする方法(特開昭52−12
127号公報)、および2ヒドロキシイソ酪酸メチル、
3−メトキシイソ酪酸メチルをアルカリ金属メトキシド
を用いて、脱水あるいは脱メタノールする方法(特開昭
63188648号公報、特開昭66−188650号
公報、特開昭63−188649号公報、特開昭63−
190855号公報)などが知られている。
A method for recovering active ingredients such as methyl methacrylate and methacrylic acid from these high-boiling substances is steam distillation in the presence of sulfuric acid (Japanese Patent Publication No. 4635726).
, a method of dehydrating methyl 2-hydroxyisobutyrate with sulfuric acid (JP-A-60-184047), a method of converting a high-boiling substance into methyl methacrylate or methacrylic acid with an aqueous sulfuric acid solution containing acidic ammonium sulfate (JP-A-52-12)
127), and methyl 2-hydroxyisobutyrate,
A method of dehydrating or demethanolizing methyl 3-methoxyisobutyrate using an alkali metal methoxide (JP-A-63188-648, JP-A-66-188-650, JP-A-63-188-649, JP-A-63-
190855), etc. are known.

(発明が解決しようとする課題) しかしながら、前記硫酸存在下蒸留する方法では共存す
る2−ヒドロキシイソ酪酸メチル及び3メトキシイソ酪
酸メチルも同時に水と共沸するので、精製系に2−ヒド
ロキシイソ酪酸メチル及び3−メトキシイソ酪酸メチル
が蓄積し、これらを抜き出す操作が別に必要となり操業
上の煩雑さを余儀なくされる。また硫酸を用いる場合は
2−ヒドロキシイソ酪酸メチルが一般に分解し易くその
ためメタクリル酸メチル及びメタクリル酸の収率が低く
なり、更に分解生成物の除去が難しい等の欠点があり、
これらを解決して収率を上げるためには反応温度、接触
時間、硫酸モル比等を厳密に調製する煩雑な操作と共に
多量の硫酸が必要になるといった問題点があった。
(Problem to be Solved by the Invention) However, in the method of distillation in the presence of sulfuric acid, the coexisting methyl 2-hydroxyisobutyrate and methyl 3-methoxyisobutyrate also azeotrope with water, so methyl 2-hydroxyisobutyrate is added to the purification system. and methyl 3-methoxyisobutyrate accumulate, and a separate operation is required to extract them, resulting in operational complexity. Furthermore, when sulfuric acid is used, methyl 2-hydroxyisobutyrate is generally easily decomposed, resulting in low yields of methyl methacrylate and methacrylic acid, and furthermore, there are disadvantages such as difficulty in removing decomposition products.
In order to solve these problems and increase the yield, there are problems in that a large amount of sulfuric acid is required as well as complicated operations to strictly control the reaction temperature, contact time, sulfuric acid molar ratio, etc.

酸性硫酸アンモニウム含有硫酸水溶液を用いる場合は3
−メトキシイソ醋酸メチルの転化率が2ヒドロキシイソ
酪酸メチルよりも低いので、系内に蓄積するという問題
点があった。
3 when using a sulfuric acid aqueous solution containing acidic ammonium sulfate
-Since the conversion rate of methyl methoxyisoacetate is lower than that of methyl 2-hydroxyisobutyrate, there is a problem that it accumulates in the system.

また、アルカリ金属メトキシドを用いた場合には系内に
含まれる水または反応により生成する水が触媒の失活を
招き易く触媒の再生も難しいといった問題があったり、
失活した触媒である水酸化アルカリ(金属)が系内に沈
澱し、メタクリル酸の生成を促すという問題点があった
りした。更に、連続的に反応させた場合滞留時間が比較
的長く、液相での反応であるので重合の危険性があり、
重合禁止剤め添加が避は難く、禁止剤が蓄積し易いと言
う不都合があった。
In addition, when alkali metal methoxide is used, there are problems in that the water contained in the system or the water generated by the reaction tends to deactivate the catalyst, making it difficult to regenerate the catalyst.
There was a problem in that alkali hydroxide (metal), which was a deactivated catalyst, precipitated in the system and promoted the production of methacrylic acid. Furthermore, if the reaction is carried out continuously, the residence time is relatively long and the reaction is in the liquid phase, so there is a risk of polymerization.
It is difficult to avoid adding a polymerization inhibitor, which has the disadvantage that the inhibitor tends to accumulate.

したがって本発明は上記問題点を解決して、アセトンシ
アンヒドリン法によるメタクリル酸メチルの製法におい
てエステル化生成物の缶残高沸物中の2−ヒドロキシイ
ソ酪酸メチル及び3−メトキシイソ醋酸メチルから簡単
な操作で効率よくメタクリル酸メチルを回収することを
目的とする。
Therefore, the present invention solves the above-mentioned problems, and in a method for producing methyl methacrylate by the acetone cyanohydrin method, it is possible to easily produce methyl methacrylate from methyl 2-hydroxyisobutyrate and methyl 3-methoxyisoacetate in the still boiling matter of the esterification product. The purpose is to efficiently recover methyl methacrylate through operations.

(課題を解決するための手段) 本発明者らは、2−ヒドロキシイソ酪酸メチルの脱水反
応および3−メトキシイソ酪酸メチルの脱メタノール化
反応を慎重に検討した結果、脱水反応は酸触媒下で進行
する平衡反応で、これに対して脱メタノール化反応は酸
及び塩基触媒下で進み、しかも酸触媒下では不可逆反応
であるが、塩基触媒下では平衡反応である事を突き止め
た。この新事実に基づき種々の触媒及び反応系について
鋭意研究を重ねた結果、ゼオライトを用い気相接触反応
で脱水及び脱メタノール化反応を行わせることによりメ
タクリル酸メチルを高選択率、高収率で回収でき、更に
触媒再生も容易であることを見いだし、本発明を完成す
るに到った。
(Means for Solving the Problems) As a result of careful consideration of the dehydration reaction of methyl 2-hydroxyisobutyrate and the demethanolation reaction of methyl 3-methoxyisobutyrate, the present inventors found that the dehydration reaction proceeds under an acid catalyst. In contrast, the demethanolation reaction proceeds under acid and base catalysts, and was found to be an irreversible reaction under acid catalysts, but an equilibrium reaction under base catalysts. Based on this new fact, we conducted intensive research on various catalysts and reaction systems, and found that methyl methacrylate can be produced with high selectivity and yield by carrying out dehydration and demethanolation reactions using zeolite in a gas phase catalytic reaction. It was discovered that the catalyst can be recovered and that the catalyst can be easily regenerated, leading to the completion of the present invention.

すなわち、本発明の目的は、アセトンシアンヒドリンに
硫酸及びメタノールを作用させてメタクリル酸メチルを
製造する方法においてエステル化工程からの粗メタクリ
ル酸メチルを精製する際得られる缶残液を、そのままも
しくは蒸留操作を施した後気相でゼオライト触媒と接触
反応させメタクリル酸メチルを回収することによって達
成することができる。
That is, the object of the present invention is to produce methyl methacrylate by reacting acetone cyanohydrin with sulfuric acid and methanol. This can be achieved by performing a distillation operation and then performing a contact reaction with a zeolite catalyst in the gas phase to recover methyl methacrylate.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

一般にアセトンシアンヒドリンによるメタクリル酸メチ
ルの製造はアセトンシアンヒドリンを硫酸または発煙硫
酸と混合し高温で反応させメタクリル酸アミド硫酸塩と
し、さらにこの反応生成物を水およびメタノールでエス
テル化反応を行ない、粗製のメタクリル酸メチルを得る
Generally, methyl methacrylate is produced using acetone cyanohydrin by mixing acetone cyanohydrin with sulfuric acid or fuming sulfuric acid, reacting at high temperature to form methacrylic acid amide sulfate, and then esterifying this reaction product with water and methanol. , to obtain crude methyl methacrylate.

粗製メタクリル酸メチルには低沸点不純物としてメチル
エーテル、ギ酸メチル、アセトン、酢酸メチル、メタノ
ール、水等が含まれ、高沸点不純物として2−ヒドロキ
シイソ醋酸メチル、3−メトキシイソ酪酸メチル、メタ
クリル酸等が含まれており、これらを蒸留分離して精製
メタクリル酸メチルを得る。
Crude methyl methacrylate contains methyl ether, methyl formate, acetone, methyl acetate, methanol, water, etc. as low boiling point impurities, and methyl 2-hydroxyisoacetate, methyl 3-methoxyisobutyrate, methacrylic acid, etc. as high boiling point impurities. They are separated by distillation to obtain purified methyl methacrylate.

この精製工程で得られる缶残液にはメタクリル酸メチル
、2−ヒドロキシイソ酪酸メチル、3−メトキシイソ酪
酸メチル、メタクリル酸等の高沸物を主成分としてこれ
に少量の重合物、重合禁止剤などが含有されている。こ
れら高沸物の缶残液中の割合としてはたとえばメタクリ
ル酸メチル10〜40重量%、2−ヒドロキシイソ酪酸
メチル10〜35重量%、2−メトキシイソ酪酸メチル
1〜5重量%、3−メトキシイソ酪酸メチル2〜15重
量%が挙げられる。
The bottom liquid obtained in this purification process contains high-boiling substances such as methyl methacrylate, methyl 2-hydroxyisobutyrate, methyl 3-methoxyisobutyrate, and methacrylic acid as main components, as well as small amounts of polymers and polymerization inhibitors. Contains. The proportions of these high-boiling substances in the bottom liquid are, for example, 10 to 40% by weight of methyl methacrylate, 10 to 35% by weight of methyl 2-hydroxyisobutyrate, 1 to 5% by weight of methyl 2-methoxyisobutyrate, and 3-methoxyisobutyric acid. Mention may be made of 2 to 15% by weight of methyl.

本発明においてこの缶残液はそのまま用いても良いし、
あるいは蒸留その他によってメタクリル酸メチル及びメ
タクリル酸を取り除き、2−ヒドロキシイソ醋酸メチル
及び3−メトキシイソ酪酸メチルを主成分とする液とし
た抜用いてもよいが、後者の方が好ましい。
In the present invention, this can residual liquid may be used as it is,
Alternatively, methyl methacrylate and methacrylic acid may be removed by distillation or other means to obtain a liquid containing methyl 2-hydroxyisoacetate and methyl 3-methoxyisobutyrate as main components, but the latter is preferred.

本発明に用いられるゼオライトとしては結晶性アルミノ
シリケートの中のある特定の結晶構造を持つものをいい
、SiO□/A l 203モル比の小さい方からA型
(Sing/^t;t 2o 3 = 1.8〜1.9
)、X型(Si(h/A 1 go+ = 2〜4.5
)、Y型(SiO□/A l 203=4〜6)、オフ
レタイト型(SiOz/八i 2へ3=5.6〜10)
、モルデナイト型(SiOz/A l zO+ = 1
0〜20)、及びZSM −11(SiO□/八I!、
へ03=20〜90)等が挙げられるが、触媒性能の点
で5iOz/A 1□03モル比が2〜20の範囲であ
ることが望ましく、特に2.2〜6の範囲であることが
望ましい。このようにSiO□/l□03モル圧が2〜
20の範囲であることが望ましい理由は明らかではない
が、交換元素の種類・交換を行う条件等によって本発明
の気相接触反応に有効な酸強度(酸点、塩基点の導入)
の付与が有利に行われるためであると考えられる。
The zeolite used in the present invention refers to one having a specific crystal structure among crystalline aluminosilicates, and the A type (Sing/^t; t 2o 3 = 1.8-1.9
), X type (Si(h/A 1 go+ = 2 to 4.5
), Y type (SiO□/Al 203 = 4 to 6), offretite type (SiOz/8i 2 to 3 = 5.6 to 10)
, mordenite type (SiOz/Al zO+ = 1
0-20), and ZSM-11 (SiO□/8I!,
In terms of catalyst performance, it is desirable that the molar ratio of 5iOz/A 1□03 is in the range of 2 to 20, particularly in the range of 2.2 to 6. desirable. In this way, SiO□/l□03 molar pressure is 2~
Although it is not clear why a range of 20 is desirable, the acid strength effective for the gas phase catalytic reaction of the present invention (introduction of acid sites and basic sites) depends on the type of exchange element, conditions for exchange, etc.
It is thought that this is because the granting of

本発明に用いられるゼオライトの交換元素を構成する元
素としては、触媒の活性、酸強度を調節する目的と、細
孔径を調節する目的で、種々選ぶことができる。
Various elements can be selected as the exchange elements of the zeolite used in the present invention for the purpose of adjusting the activity of the catalyst, the acid strength, and the pore diameter.

本発明に用いられるゼオライト触媒の酸強度はpKa値
で−5,6〜+ 4.8の範囲、望ましくは−5,6を
越えて+3.3までの範囲が好ましく、特に望ましくは
−3,0を越えて+3.3までの範囲である。
The acid strength of the zeolite catalyst used in the present invention is in the pKa range of -5.6 to +4.8, preferably in the range of more than -5.6 to +3.3, particularly preferably in the range of -3, It ranges from over 0 to +3.3.

これらの酸強度の範囲はベンザルアセトフェノン、ベン
ゼンアゾジフェニルアミン、ジシンナマルアセトンなど
の指示薬を用いることにより容易に知ることができる。
The range of these acid strengths can be easily determined by using indicators such as benzalacetophenone, benzeneazodiphenylamine, and dicinnamalacetone.

ゼオライト触媒を上記酸強度範囲にすることは本発明に
おいて好ましい態様であり、その理由については明らか
ではないが、おそらく酸点、塩基点の立体的な分布状態
が関与しているためではないかと考えられる。このよう
なゼオライトを用いる利点としては、いわゆる従来の硫
酸(約100%)を用いた場合のように酸強度が強い(
pKa=11.0)と厳密に接触時間、硫酸モル比を制
御する必要があり、これを怠ると2−ヒドロキシイソ酪
酸メチルが分解、消失してしまうのに比して上記範囲の
酸強度を有するゼオライト触媒を用いると接触時間を適
当な範囲で容易に選ぶことができるので、2−ヒドロキ
シイソ酪酸メチルの分解、消失を少なくすることができ
ると共に、操作を簡単にできることなどが挙げられる。
Setting the zeolite catalyst to the above acid strength range is a preferred embodiment of the present invention, and although the reason for this is not clear, it is thought that it is probably related to the steric distribution of acid sites and base sites. It will be done. The advantage of using this kind of zeolite is that it has a strong acid strength (like when using conventional sulfuric acid (approximately 100%)).
It is necessary to strictly control the contact time and molar ratio of sulfuric acid (pKa = 11.0), otherwise methyl 2-hydroxyisobutyrate will decompose and disappear. By using the zeolite catalyst, the contact time can be easily selected within an appropriate range, so decomposition and disappearance of methyl 2-hydroxyisobutyrate can be reduced, and the operation can be simplified.

このようなゼオライトは通常用いられているイオン交換
法と焼成条件を組み合わせることにより容易に調製でき
る。例えば、一般のゼオライト(ナトリウム型で市販あ
るいは合成されている)をpn3.5〜12に調整した
交換陽イオンを含む水溶液に浸漬した後、この水溶液の
温度を室温から100°Cの間に設定し、30分から2
4時間で、1回以上イオン交換し、付着水を除いた後、
200〜500°Cで焼成することにより得ることがで
きる。また、アンモニウムイオンにより交換したゼオラ
イトを250〜350°Cで焼成することにより水素に
置換したゼオライトを調製することもできる。
Such zeolites can be easily prepared by combining commonly used ion exchange methods and calcination conditions. For example, after immersing general zeolite (commercially available or synthesized in the sodium form) in an aqueous solution containing exchanged cations adjusted to pn 3.5 to 12, the temperature of this aqueous solution is set between room temperature and 100°C. 30 minutes to 2
After ion exchange at least once in 4 hours and removing attached water,
It can be obtained by firing at 200 to 500°C. Moreover, zeolite substituted with hydrogen can also be prepared by calcining zeolite exchanged with ammonium ions at 250 to 350°C.

ゼオライト触媒による反応は、おおむね拡散律速である
ので、拡散抵抗を軽減するために、細孔径を大きくする
事が望ましく、一般にイオン半径の小さい元素の導入、
原子価の高い元素、およびイオン半径が小さく原子価の
高い元素の導入が行われる。しかしながら、細孔径を大
きくする元素の場合には触媒の酸強度を強くする傾向が
あるので、交換元素は適切に選ぶ必要がある。このよう
な交換元素としては、水素、アルカリ金属、アルカリ土
類金属、希土類金属が好ましく、特に水素、0 ナトリウム、カリウム、マグネシウム、カルシウムなど
が望ましく用いられる。これらの交換元素は1種または
2種以上組み合わせて導入することができる。
Since reactions using zeolite catalysts are generally diffusion-controlled, it is desirable to increase the pore diameter in order to reduce diffusion resistance.
High valence elements and high valence elements with small ionic radius are introduced. However, since elements that increase the pore size tend to increase the acid strength of the catalyst, it is necessary to select the exchange element appropriately. Such exchange elements are preferably hydrogen, alkali metals, alkaline earth metals, and rare earth metals, with hydrogen, sodium, potassium, magnesium, calcium, and the like being particularly preferably used. These exchange elements can be introduced singly or in combination of two or more.

本発明は前記缶残液を、そのままもしくは蒸留操作など
を施した後気相で前記ゼオライト触媒と接触反応させる
ことにより、主に該液中の2−ヒドロキシイソ酪酸メチ
ルを脱水し、3−メトキシイソ酪酸メチルを脱メタノー
ル化してメタクリル酸メチルとして回収することにより
行われる。その反応温度は180〜450°Cの範囲、
好ましくは220〜350℃の範囲であり、また反応圧
力としては特に制限はないが通常常圧ないし若干の加圧
下で実施される。反応に際して導入される缶残液などの
高沸物ガスは空気、窒素、アルゴン、ヘリウムなどのガ
スで希釈することが望ましいが、希釈せずにそのまま触
媒へ導入しても構わない。
The present invention mainly dehydrates methyl 2-hydroxyisobutyrate in the bottom liquid by contacting it with the zeolite catalyst in the gas phase either as it is or after performing a distillation operation, thereby dehydrating methyl 2-hydroxyisobutyrate and This is done by demethanolizing methyl butyrate and recovering it as methyl methacrylate. The reaction temperature ranges from 180 to 450°C,
The temperature is preferably in the range of 220 to 350°C, and the reaction pressure is not particularly limited, but is usually carried out under normal pressure to slightly increased pressure. It is desirable that the high-boiling gas such as bottom liquid introduced during the reaction be diluted with a gas such as air, nitrogen, argon, helium, etc., but it may be introduced into the catalyst as it is without dilution.

本発明の脱水、脱メタノール化反応をゼオライト触媒を
用いて気相接触反応で行うことにより得られる利点とし
ては、従来の硫酸または酸性硫酸アンモニウム含有硫酸
水溶液を用いた場合は反応温度を高くすることが難しい
のに比べて、反応温度を反応の進行に合わせて所望の好
適な範囲に調節することができること、操作を簡単にす
ることができることなどがあげられる。
An advantage obtained by carrying out the dehydration and demethanolization reaction of the present invention by gas phase contact reaction using a zeolite catalyst is that when conventional sulfuric acid or an aqueous sulfuric acid solution containing acidic ammonium sulfate is used, the reaction temperature cannot be raised. Compared to the difficulty, it is possible to adjust the reaction temperature to a desired suitable range according to the progress of the reaction, and it is easy to operate.

また本発明の回収方法は2−ヒドロキシイソ醋酸メチル
、3−メトキシイソ酪酸メチルの濃度がかなり変動して
も対応できるのが特徴でもあり、工業的に実施する場合
に大きな利点となる。
Furthermore, the recovery method of the present invention is characterized in that it can cope with considerable fluctuations in the concentrations of methyl 2-hydroxyisoacetate and methyl 3-methoxyisobutyrate, which is a great advantage when carried out industrially.

さらに本発明のゼオライト触媒はゼオライトの結晶構造
が破壊されない温度、好ましくは700゛Cを越えない
範囲の温度で空気を流通させながら焼成をすることによ
りその触媒活性をほぼ完全に回復することができるので
、容易に再生して使用することができる。
Furthermore, the catalytic activity of the zeolite catalyst of the present invention can be almost completely recovered by calcining it while circulating air at a temperature that does not destroy the crystal structure of the zeolite, preferably at a temperature that does not exceed 700°C. So it can be easily played and used.

(発明の効果) 以上述べてきたように、本発明はアセトンシアンヒドリ
ン法においてエステル化工程から粗メタクリル酸メチル
を精製する際缶残高沸物として得られる液をそのままも
しくは蒸留操作を施した後、1 2 該高沸物中の2−ヒドロキシイソ酪酸メチルと3−メト
キシイソ酪酸メチルを同時に気相で脱水、脱メタノール
化してメタクリル酸メチルを回収するに際して、触媒と
してゼオライトを用いる方法であるから、多量の触媒、
溶媒を用いる必要がなく、接触時間の制御が容易で、反
応温度を適当な範囲で任意に選ぶことができるので、短
時間の内に効率よく、長時間安定してメタクリル酸メチ
ルを回収する方法を有利に提供することができる。
(Effects of the Invention) As described above, the present invention uses the liquid obtained as a boiling product in the can when purifying crude methyl methacrylate from the esterification step in the acetone cyanohydrin method, either as it is or after performing a distillation operation. , 1 2 This method uses zeolite as a catalyst when recovering methyl methacrylate by simultaneously dehydrating and demethanolizing methyl 2-hydroxyisobutyrate and methyl 3-methoxyisobutyrate in the high-boiling substances in the gas phase, large amount of catalyst,
A method for recovering methyl methacrylate efficiently in a short time and stably over a long period of time, as there is no need to use a solvent, the contact time is easy to control, and the reaction temperature can be arbitrarily selected within an appropriate range. can be provided advantageously.

また、この方法により収率の向上を図ることもでき有用
である。
This method is also useful because it can improve the yield.

(実施例) 以下実施例を用いて本発明を具体的に説明する。(Example) The present invention will be specifically described below using Examples.

しかしながら、本発明はこれらに何ら限定されるもので
はない。
However, the present invention is not limited thereto.

転化率、選択率、収率は以下の式により算出した。The conversion rate, selectivity, and yield were calculated using the following formula.

2−MH4B転化率転化率−留出2−MH4B/導入2
−MHiB) X 100310O3−転化率−(1−
留出3−MM1B/導入3−MMlB) X100聞八
選択率8(留出MMA/100)/((導入2−MHi
B−留出2M)1iB)/118+(導入3−M旧B−
留出3−M胴B)/132)X100 M静選択率・(留出MAA/86)バ(導入2−MHi
B−留出2MHiB)/118+(導入3−MMlB−
留出3−MMlB)/132) X 100 ■へ収率=((留出MMA−導入聞八)/へ00)バ導
入2−M旧B/118+導入3−M旧B)/132) 
X100M静収率=((留出MAA−導入MAA)/8
6)/(導入2−M旧B/118+導入3−MM1B/
132) X 100ここで、2−M旧B、 3−MM
lB、 MM駁MAAは各々2−ヒドロキシイソ醋酸メ
チル、3−メトキシイソ酪酸メチル、メタクリル酸メチ
ル、メタクリル酸を表す(以下同じ)。
2-MH4B conversion rate Conversion rate - distillation 2-MH4B/introduction 2
-MHiB) X 100310O3-conversion rate-(1-
Distillate 3-MM1B/Introduction 3-MMlB)
B-distillate 2M) 1iB)/118+(introduction 3-M old B-
Distillate 3-M cylinder B)/132)
B-distillate 2MHiB)/118+(introduction 3-MMlB-
Distillate 3-MMlB)/132)
X100M static yield = ((distilled MAA-introduced MAA)/8
6)/(Introduction 2-M old B/118+Introduction 3-MM1B/
132) X 100 where 2-M old B, 3-MM
1B and MMMAA each represent methyl 2-hydroxyisoacetate, methyl 3-methoxyisobutyrate, methyl methacrylate, and methacrylic acid (the same applies hereinafter).

実施例1.2 市販(東ソー■製)の4〜8メツシユのNa−χ型ゼオ
ライト触媒(SiO□/A l zO:+= 2.37
、酸強度−3,0く≦+1.5 ) 80rnlを電気
炉中に固定した内径23mmの石英管に充填し、常圧で
触媒層を第1表に示す反応温度に保持させた。次に2−
ヒドロキシイソ酪酸メチルと3−メトキシイソ酪酸メチ
ル3 4 の混合物ガス(50150重量/重量)0.35g/m
inを窒素1.2j2/minとともに触媒層中を通過
させる。通過開始から1時間はど安定させた後、10分
間サンプリングした。得られた留分をガスクロマトグラ
フ法により定量した。その結果を第1表に示す。
Example 1.2 Commercially available (manufactured by Tosoh ■) 4-8 mesh Na-χ type zeolite catalyst (SiO□/AlzO: += 2.37
, acid strength -3.0≦+1.5) was filled into a 23 mm inner diameter quartz tube fixed in an electric furnace, and the catalyst layer was maintained at the reaction temperature shown in Table 1 under normal pressure. Next 2-
Mixture gas of methyl hydroxyisobutyrate and methyl 3-methoxyisobutyrate 3 4 (50150 wt/wt) 0.35 g/m
in is passed through the catalyst layer together with nitrogen at 1.2j2/min. After stabilizing for 1 hour from the start of passage, sampling was performed for 10 minutes. The obtained fraction was quantified by gas chromatography. The results are shown in Table 1.

また同様の触媒を用い、反応温度270°Cで反応させ
たときの経時的な反応性を1.4.10時間後に測定し
その結果を第2表に示す。
Further, using the same catalyst, the reactivity over time was measured after 1.4.10 hours when the reaction was carried out at a reaction temperature of 270°C, and the results are shown in Table 2.

実施例3 市販(東ソー■製)の4〜8メツシユのNa−Y型ゼオ
ライト触媒(SiOz/八I!、へ03=5.60)を
80°Cの1規定塩化カリウム水溶液(pH5,2)中
で3時間イオン交換する操作を10回繰り返した後ゼオ
ライトの付着水を減圧除去し、110°Cで2時間乾燥
し更に200°Cで2時間焼成してゼオライト触媒(酸
強度+1.5〈≦+3.3)を調製した。こうして得ら
れたゼオライト触媒80mj2を実施例1と同じく電気
炉中に固定した内径23mmの石英管に充填し、常圧で
触媒層を第3表に示す反応温度に保持させた。次に実施
例1と同じ条件で原料を通過させサンプリングして得ら
れた留分を定量した。その結果を第3表に示す。
Example 3 A commercially available (manufactured by Tosoh) 4-8 mesh Na-Y type zeolite catalyst (SiOz/8 I!, He03 = 5.60) was added to a 1N aqueous potassium chloride solution (pH 5.2) at 80°C. After repeating the ion-exchange operation for 3 hours in the zeolite 10 times, the water adhering to the zeolite was removed under reduced pressure, dried at 110°C for 2 hours, and further calcined at 200°C for 2 hours to prepare the zeolite catalyst (acid strength +1.5 ≦+3.3) was prepared. 80 mj2 of the zeolite catalyst thus obtained was filled into a 23 mm inner diameter quartz tube fixed in an electric furnace as in Example 1, and the catalyst layer was maintained at the reaction temperature shown in Table 3 under normal pressure. Next, the raw material was passed through and sampled under the same conditions as in Example 1, and the obtained fraction was quantified. The results are shown in Table 3.

実施例4〜14 第1表に示す各種触媒について反応温度を270°Cま
たは330°Cで実施例1と同様にしてその活性、選択
性を調べた。得られた結果を第4表に示す。
Examples 4 to 14 The activity and selectivity of the various catalysts shown in Table 1 were investigated in the same manner as in Example 1 at a reaction temperature of 270°C or 330°C. The results obtained are shown in Table 4.

実施例15〜17 実施例4〜14の中で良好な結果を与えたNa−X型、
H−Na−Y型、K−Na−Y型について2−ヒドロキ
シイソ酪酸メチルと3−メトキシイソ酪酸メチルの濃度
比を変えて、メタクリル酸メチルの回収を試みた。得ら
れた結果を第5表に示す。
Examples 15 to 17 Na-X type which gave good results among Examples 4 to 14,
Recovery of methyl methacrylate was attempted by changing the concentration ratio of methyl 2-hydroxyisobutyrate and methyl 3-methoxyisobutyrate for H-Na-Y type and K-Na-Y type. The results obtained are shown in Table 5.

実施例18 実施例11において更に反応を継続し反応性が半減した
に−Na−Y型ゼオライトを600−650°Cで3時
間空気焼成(SV、300h−’、線速−27cm/m
1n)し再生した。この再生触媒を使用し再度実施例1
1と同様にして反応させ、原料ガス通過開始1時間5 6 後、サンプリングし定量する。一方丈に反応性が半減す
るまで反応を継続した。更に反応温度330°Cで実施
例1と同様な条件で検討した上記再生反応の操作を繰り
返し、触媒再生による触媒活性への影響を試験しその結
果を第6表に示す。
Example 18 The reaction in Example 11 was further continued, and Ni-Na-Y type zeolite, whose reactivity was halved, was air-calcined at 600-650°C for 3 hours (SV, 300 h-', linear velocity -27 cm/m).
1n) and reproduced. Example 1 was repeated using this regenerated catalyst.
The reaction was carried out in the same manner as in 1, and after 1 hour 5 6 from the start of passage of the raw material gas, it was sampled and quantified. On the other hand, the reaction was continued until the reactivity was reduced by half. Furthermore, the above regeneration reaction operation studied under the same conditions as in Example 1 at a reaction temperature of 330°C was repeated to test the effect of catalyst regeneration on catalyst activity, and the results are shown in Table 6.

実施例19 アセトンシアンヒドリンに硫酸及びメタノールを作用さ
せてメタクリル酸メチルを製造する方法においてエステ
ル化工程からの粗メタクリル酸メチルを精製する際得ら
れたメタクリル酸メチル25重量%、2−ヒドロキシイ
ソ酪酸メチル20重量%、3−メトキシイソ酪酸メチル
8重量%、メタクリル酸40重量%、重合物や重合禁止
剤などのその他7重量%の組成からなる缶残液、及び実
施例9のH−Na−Y型ゼオライト触媒を用いる他は実
施例1と同様にして反応温度280°Cで反応させ留分
を定量した。得られた結果を第7表に示す。
Example 19 In a method for producing methyl methacrylate by reacting acetone cyanohydrin with sulfuric acid and methanol, 25% by weight of methyl methacrylate, 2-hydroxyisomer, obtained during purification of crude methyl methacrylate from the esterification step The can residual liquid consisting of 20% by weight of methyl butyrate, 8% by weight of methyl 3-methoxyisobutyrate, 40% by weight of methacrylic acid, and 7% by weight of other substances such as polymers and polymerization inhibitors, and the H-Na- of Example 9. The reaction was carried out in the same manner as in Example 1 except that a Y-type zeolite catalyst was used at a reaction temperature of 280°C, and the fraction was quantified. The results obtained are shown in Table 7.

実施例20 蒸留操作により缶残液から重合物、禁止剤およびメタク
リル酸の一部を除いてメタクリル酸メチル40重量%、
2−ヒドロキシイソ醋酸メチル33重量%、3−メトキ
シイソ酪酸メチル12重量%、メタクリル酸15重量%
の組成からなる高沸物を用いる他は実施例20と同様に
して反応させ留分を定量した。
Example 20 40% by weight of methyl methacrylate was obtained by removing a portion of the polymer, inhibitor and methacrylic acid from the bottom liquid of the can by distillation.
Methyl 2-hydroxyisoacetate 33% by weight, methyl 3-methoxyisobutyrate 12% by weight, methacrylic acid 15% by weight
The reaction was carried out in the same manner as in Example 20, except that a high boiling material having the composition was used, and the fraction was quantified.

得られた結果を第7表に示す。The results obtained are shown in Table 7.

第1表 160      0.0 220      3.4 270     9B、0 360    100.0 4]、5     93.2 500    100.0 o、o        o、。Table 1 160 0.0 220 3.4 270 9B, 0 360 100.0 4], 5 93.2 500 100.0 o, o, o,.

O,434,6 87,379,5 100,031,2 90,90,4 100,00,0 7 B 第2表 1 93.0 43.3 79.5 5.4 92.4 40.6 84.5 5.3 第3表 9.0 46.1 95.0 99.6 0.4 10.1 69.6 98.8 32.8 69.8 86.0 52.6 23.5 18.7 4.1 1.6 ■ 1 0 第6表 71.3 94.8  70.2 95.1  72.0 95.3 86.1 85.8 86.0 第7表 9 0 92.1 96.9 63.5 76.5O,434,6 87,379,5 100,031,2 90,90,4 100,00,0 7 B Table 2 1 93.0 43.3 79.5 5.4 92.4 40.6 84.5 5.3 Table 3 9.0 46.1 95.0 99.6 0.4 10.1 69.6 98.8 32.8 69.8 86.0 52.6 23.5 18.7 4.1 1.6 ■ 1 0 Table 6 71.3 94.8 70.2 95.1 72.0 95.3 86.1 85.8 86.0 Table 7 9 0 92.1 96.9 63.5 76.5

Claims (1)

【特許請求の範囲】 1、アセトンシアンヒドリンに硫酸及びメタノールを作
用させてメタクリル酸メチルを製造する方法においてエ
ステル化工程からの粗メタクリル酸メチルを精製する際
得られる缶残液を、そのままもしくは蒸留操作を施した
後気相でゼオライト触媒と接触反応させることを特徴と
するメタクリル酸メチルの回収方法。 2、SiO_2/Al_2O_3モル比が2〜20の範
囲であるゼオライト触媒を用いる請求項1記載の回収方
法。 3、酸強度がpKa値で−5.6から+4.8の範囲に
あるゼオライト触媒を用いる請求項1記載の回収方法。
[Claims] 1. In a method for producing methyl methacrylate by reacting acetone cyanohydrin with sulfuric acid and methanol, the bottom liquid obtained when refining crude methyl methacrylate from the esterification step is used as it is or A method for recovering methyl methacrylate, which comprises carrying out a catalytic reaction with a zeolite catalyst in the gas phase after a distillation operation. 2. The recovery method according to claim 1, which uses a zeolite catalyst having a SiO_2/Al_2O_3 molar ratio in the range of 2 to 20. 3. The recovery method according to claim 1, which uses a zeolite catalyst having an acid strength in the range of -5.6 to +4.8 in pKa value.
JP2065896A 1990-03-15 1990-03-15 Recovery of methyl methacrylate Pending JPH03264551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2065896A JPH03264551A (en) 1990-03-15 1990-03-15 Recovery of methyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065896A JPH03264551A (en) 1990-03-15 1990-03-15 Recovery of methyl methacrylate

Publications (1)

Publication Number Publication Date
JPH03264551A true JPH03264551A (en) 1991-11-25

Family

ID=13300189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065896A Pending JPH03264551A (en) 1990-03-15 1990-03-15 Recovery of methyl methacrylate

Country Status (1)

Country Link
JP (1) JPH03264551A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393918A (en) * 1993-12-02 1995-02-28 Rohm And Haas Company High yield process for the production of methacrylic acid esters
US8183406B2 (en) 2009-09-30 2012-05-22 Rohm And Haas Company Process for recovering valued compounds from a stream derived from purification of methyl methacrylate
JP2014501697A (en) * 2010-10-07 2014-01-23 ローム アンド ハース カンパニー Process for the production of methacrylate esters
US9199910B2 (en) 2012-06-04 2015-12-01 Rohm And Haas Company Process for production of methacrylic acid esters
JP2016522256A (en) * 2013-06-26 2016-07-28 ローム アンド ハース カンパニーRohm And Haas Company Process for the production of methacrylate esters
US20190194119A1 (en) * 2014-10-17 2019-06-27 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393918A (en) * 1993-12-02 1995-02-28 Rohm And Haas Company High yield process for the production of methacrylic acid esters
US8183406B2 (en) 2009-09-30 2012-05-22 Rohm And Haas Company Process for recovering valued compounds from a stream derived from purification of methyl methacrylate
JP2014501697A (en) * 2010-10-07 2014-01-23 ローム アンド ハース カンパニー Process for the production of methacrylate esters
US9199910B2 (en) 2012-06-04 2015-12-01 Rohm And Haas Company Process for production of methacrylic acid esters
JP2016522256A (en) * 2013-06-26 2016-07-28 ローム アンド ハース カンパニーRohm And Haas Company Process for the production of methacrylate esters
US20190194119A1 (en) * 2014-10-17 2019-06-27 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
US10633326B2 (en) * 2014-10-17 2020-04-28 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
US10774026B2 (en) 2014-10-17 2020-09-15 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
US11242308B2 (en) 2014-10-17 2022-02-08 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid

Similar Documents

Publication Publication Date Title
EP0379691B2 (en) Process for preparing unsaturated carboxylic acid or ester thereof
JPH09118501A (en) Preparation of hydrogen rich gas
JPS6191142A (en) Synthesis of iodobenzene
JPH0251534B2 (en)
JP2006509025A (en) Continuous production method of ethyl lactate
JPH03264551A (en) Recovery of methyl methacrylate
RU2127726C1 (en) Process for preparing 3-methylpiperidine and 3- methylpyridine and 3-methylpyridine
JPH0416458B2 (en)
JPH0285223A (en) Production of halogenophenol
JP2884637B2 (en) Method for producing unsaturated carboxylic acid ester
JPH0344061B2 (en)
JPH03206066A (en) Production of methyl methacrylate
JP2002053524A (en) Method for producing methyl methacrylate
JPS6314739A (en) Production of mono and/or dialkyl-substituted naphthalene
JPH08500608A (en) Method for Isomerizing Lactone to Pentenoic Acid with Acidic or Basic Catalyst
EP0009290B1 (en) 3-azabicyclo(3.1.0)hexane derivatives and process for their preparation
JPH0430394B2 (en)
JPS61112040A (en) Production of phenylacetaldehyde
JPH058193B2 (en)
JPH06135859A (en) Production of biphenyl
JP2715525B2 (en) Dehydrohalogenation method
JP4858897B2 (en) Process for producing dihydroxydiphenylsulfone isomer mixture
JPH03255053A (en) Preparation of methyl methacrylate
SU620472A1 (en) Method of obtaining allylvinyl ester
JPH05246955A (en) Method for preparation of nitrobenzene