JPS627892B2 - - Google Patents

Info

Publication number
JPS627892B2
JPS627892B2 JP54091849A JP9184979A JPS627892B2 JP S627892 B2 JPS627892 B2 JP S627892B2 JP 54091849 A JP54091849 A JP 54091849A JP 9184979 A JP9184979 A JP 9184979A JP S627892 B2 JPS627892 B2 JP S627892B2
Authority
JP
Japan
Prior art keywords
activated carbon
hexafluoropropene
fluoride
reaction
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54091849A
Other languages
Japanese (ja)
Other versions
JPS5616429A (en
Inventor
Yonosuke Aisaka
Takashi Totsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP9184979A priority Critical patent/JPS5616429A/en
Priority to GB8023597A priority patent/GB2055824B/en
Priority to DE19803027229 priority patent/DE3027229A1/en
Priority to US06/170,151 priority patent/US4296265A/en
Publication of JPS5616429A publication Critical patent/JPS5616429A/en
Publication of JPS627892B2 publication Critical patent/JPS627892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ヘキサフルオロプロペンオリゴマー
の製法に関する。 ヘキサフルオロプロペンのオリゴマー、すなわ
ちヘキサフルオロプロペンの二量体および三量体
は、自体溶媒として、また界面活性剤の中間体と
して有用である。 これまで、ヘキサフルオロプロペンオリゴマー
は、ヘキサフルオロプロペンを塩基またはフツ化
物イオン(たとえばフツ化カリウム、フツ化セシ
ウム)の存在下に非プロトン性溶媒中でオリゴマ
ー化することによつて得られることが知られてい
る。 かかる溶媒中の反応では、溶媒が非水系である
ので、使用する溶媒を脱水乾燥することが必要で
ある。また、オリゴマーが当該溶媒には不溶で反
応槽の底部に1相をなすので、反応終了後生成オ
リゴマーを底部から抜き出すことができ、この為
オリゴマーと溶媒の分離が一見容易と思われる
が、実際には溶媒がオリゴマー中に溶解してお
り、その分離のためには水洗または蒸留の操作が
必要である。さらに、フツ化アルカリを再使用す
るにはオリゴマーからの分離回収が必要である。
これらの必要な操作はやつかいなものである。 また、溶媒を用いず、この様なやつかいな操作
を必要としないヘキサフルオロプロペンのオリゴ
メリゼーシヨンは、オートクレーブ中、200℃付
近の高温で行われ、従つて反応圧力が高くなり、
しかも反応に長時間を要する。 一方、気相流通系では、実質上オリゴマーが得
られないことが知られている。すなわち、ヘキサ
フルオロプロペンを、350℃、接触時間2分でフ
ツ化セシウムの粉末上に通したとき、その転化率
は3.5%に過ぎず、また、フツ化セシウムを存在
せしめたオートクレーブ中でヘキサフルオロプロ
ペンを70%転化するには、215℃の温度、14気圧
の圧力において87時間も要するのである〔ザ・ジ
ヤーナル・オブ・オーガニツク・ケミストリー
(The Journal of Organic Chemistry)第30巻
3524頁1965年参照〕。 本発明の目的は、ヘキサフルオロプロペンから
そのオリゴマーを容易に製造する方法を提供する
ことにある。 本発明によれば、上記の目的は、フツ化アルカ
リ金属を活性炭上に担持し、これに気相でヘキサ
フルオロプロペンを接触させることにより達成さ
れる。 本発明の製法により、200℃付近の温度、任意
の圧力において、たとえば2分の接触時間により
数十%の転化率でヘキサフルオロプロペンオリゴ
マーを製造することができる。 また、溶媒を使用しないので、溶媒の脱水乾燥
や反応生成物と溶媒の分離が不要であり、気相反
応であるので触媒と反応生成物の分離も極めて簡
単である。しかも、活性炭にフツ化アルカリ金属
を担持させるには、その水溶液に活性炭を浸漬し
て乾燥加熱するだけでよいのであるから、本発明
では、従来の技術に付加された特別に面倒な手段
は不要であるという利点がある。 かかる効果を有する本発明は、ヘキサフルオロ
プロペンのオリゴメリゼーシヨンの触媒として従
来知られていたフツ化アルカリ金属を活性炭に担
持することにより、極めて短時間の接触時間によ
り数十%の転化率をもつてオリゴメリゼーシヨン
が進行するという発見に基く。 しかして、本発明において使用する活性炭に担
持したフツ化アルカリ金属は、フツ化アルカリ金
属の水溶液に活性炭を浸漬して、その水溶液を含
浸した活性炭を乾燥し、不活性気体、たとえば窒
素気流中、反応温度ないしそれより300℃高い温
度で熱処理することにより調製することができ
る。活性炭に対するフツ化アルカリ金属の含有量
は、活性炭の重量を基準として10〜100重量%が
適当である。 フツ化アルカリ金属の種類は特に制限はない
が、なかでもフツ化セシウムおよびフツ化カリウ
ムが好ましい。 本発明にかかる反応において、反応温度は生成
されるヘキサフルオロプロペン三量体の沸点
(106℃/1気圧)ないし300℃であり、好ましく
は150〜250℃である。 反応圧力は、上限が制限を受ける、すなわち三
量体が気体状態を保つ圧力に制限されるほかは、
加圧でも減圧でも広い範囲から自由に選ばれる。
通常、0.1〜10気圧の反応圧力が採用される。 また、接触時間は、活性炭単位重量に対するフ
ツ化アルカリ金属の含有量、フツ化アルカリ金属
の種類、活性炭の種類、反応温度、反応圧力およ
び意図する転化率などに依存して適宜定められ
る。通常、30秒ないし10分である。 さらに、本発明の製法では、窒素、ヘリウム、
アルゴンなどの希釈剤を使用することもできる。 次に実施例を示し、本発明の製法を更に具体的
に説明する。 実施例 1 活性炭(武田薬品工業株式会社製白鷺CX)30
gをフツ化カリウムの30重量%水溶液に浸漬し、
含浸されなかつた水溶液を分離した後、100℃で
20時間乾燥し、さらに窒素気流中、350℃で5時
間加熱した。フツ化カリウムを担持した活性炭の
得量は43.4gであり、担持されたフツ化カリウム
の含有量は活性炭重量の44.7重量%であつた。 長さ1mの3/4インチ・ハステロイC製反応管
にフツ化カリウム担持活性炭35gを充填し、窒素
気流中、400℃で加熱した後、設定温度を200℃と
し、大気圧でヘキサフルオロプロペンを20ml/分
の流速で流通させた。 排出物は、ドライアイスで冷却したトラツプに
補集し、ガスクロマトグラフイ、質量分析および
核磁気共鳴により分析した。結果は次の通りであ
つた。 ヘキサフルオロプロペンの転化率 81モル% 生成物組成 二量体 33.8モル% C9F16 10.0モル% 三量体 56.2モル% なお、三量体のうち90.5モル%は
The present invention relates to a method for producing hexafluoropropene oligomers. Oligomers of hexafluoropropene, ie, hexafluoropropene dimers and trimers, are useful as solvents themselves and as surfactant intermediates. Hitherto, it has been known that hexafluoropropene oligomers can be obtained by oligomerizing hexafluoropropene in an aprotic solvent in the presence of a base or fluoride ions (e.g. potassium fluoride, cesium fluoride). It is being In such a reaction in a solvent, since the solvent is non-aqueous, it is necessary to dehydrate and dry the solvent used. In addition, since the oligomer is insoluble in the solvent and forms a single phase at the bottom of the reaction tank, the oligomer produced can be extracted from the bottom after the reaction is completed. For this reason, separation of the oligomer and solvent may seem easy at first glance, but in reality The solvent is dissolved in the oligomer, and its separation requires water washing or distillation. Furthermore, in order to reuse the alkali fluoride, it is necessary to separate and recover it from the oligomer.
These necessary operations are cumbersome. In addition, oligomerization of hexafluoropropene, which does not use a solvent and does not require such complicated operations, is carried out in an autoclave at a high temperature of around 200°C, and therefore the reaction pressure is high.
Moreover, the reaction takes a long time. On the other hand, it is known that substantially no oligomers are obtained in a gas phase flow system. That is, when hexafluoropropene was passed over cesium fluoride powder at 350°C for 2 minutes, the conversion rate was only 3.5%; 70% conversion of propene takes 87 hours at a temperature of 215°C and a pressure of 14 atmospheres (The Journal of Organic Chemistry, Vol. 30).
See page 3524, 1965]. An object of the present invention is to provide a method for easily producing oligomers of hexafluoropropene. According to the present invention, the above object is achieved by supporting an alkali metal fluoride on activated carbon and contacting it with hexafluoropropene in the gas phase. According to the production method of the present invention, hexafluoropropene oligomers can be produced at a temperature around 200° C., at any pressure, and with a contact time of 2 minutes, for example, at a conversion rate of several tens of percent. Furthermore, since no solvent is used, there is no need to dehydrate and dry the solvent or to separate the reaction product from the solvent, and since the reaction is a gas phase reaction, separation of the catalyst and the reaction product is extremely simple. Furthermore, in order to support the alkali metal fluoride on activated carbon, it is sufficient to immerse the activated carbon in the aqueous solution and dry and heat it, so the present invention does not require any special troublesome measures added to conventional techniques. It has the advantage of being The present invention, which has such effects, can achieve a conversion rate of several tens of percent with an extremely short contact time by supporting an alkali metal fluoride, which has been known as a catalyst for oligomerization of hexafluoropropene, on activated carbon. It is based on the discovery that oligomerization progresses over time. Thus, the alkali metal fluoride supported on the activated carbon used in the present invention is obtained by immersing the activated carbon in an aqueous solution of the alkali metal fluoride, drying the activated carbon impregnated with the aqueous solution, and then drying the activated carbon in an inert gas, for example, a nitrogen stream. It can be prepared by heat treatment at the reaction temperature or at a temperature 300°C higher than it. The content of alkali metal fluoride in activated carbon is suitably 10 to 100% by weight based on the weight of activated carbon. The type of alkali metal fluoride is not particularly limited, but cesium fluoride and potassium fluoride are particularly preferred. In the reaction according to the present invention, the reaction temperature ranges from the boiling point of the hexafluoropropene trimer produced (106°C/1 atm) to 300°C, preferably from 150 to 250°C. The reaction pressure is limited by an upper limit, i.e., by the pressure at which the trimer remains in the gaseous state.
Pressure or depressurization can be freely selected from a wide range.
Usually a reaction pressure of 0.1 to 10 atmospheres is employed. Further, the contact time is appropriately determined depending on the content of alkali metal fluoride relative to the unit weight of activated carbon, the type of alkali metal fluoride, the type of activated carbon, reaction temperature, reaction pressure, intended conversion rate, and the like. Usually 30 seconds to 10 minutes. Furthermore, in the production method of the present invention, nitrogen, helium,
Diluents such as argon can also be used. Next, Examples will be shown to further specifically explain the manufacturing method of the present invention. Example 1 Activated carbon (Shirasagi CX manufactured by Takeda Pharmaceutical Company Limited) 30
g is immersed in a 30% by weight aqueous solution of potassium fluoride,
After separating the unimpregnated aqueous solution, it was heated at 100℃.
It was dried for 20 hours and further heated at 350° C. for 5 hours in a nitrogen stream. The amount of activated carbon supporting potassium fluoride was 43.4 g, and the content of supported potassium fluoride was 44.7% by weight of the weight of the activated carbon. A 1 m long 3/4 inch Hastelloy C reaction tube was filled with 35 g of potassium fluoride-supported activated carbon, heated at 400°C in a nitrogen stream, set at a temperature of 200°C, and heated with hexafluoropropene at atmospheric pressure. The flow rate was 20 ml/min. The effluent was collected in a trap cooled with dry ice and analyzed by gas chromatography, mass spectrometry, and nuclear magnetic resonance. The results were as follows. Conversion rate of hexafluoropropene 81 mol% Product composition Dimer 33.8 mol% C 9 F 16 10.0 mol% Trimer 56.2 mol% Note that 90.5 mol% of the trimer is

【式】(シス体および トランス体の混合物)であつた。 また、二量体は、87モル%が(CF32C=
CFCF2CF3、13モル%が(CF32CFCF(CF32
であつた。 実施例 2 粒状活性炭30gをフツ化カリウムの20重量%水
溶液に浸漬し、含浸されなかつた水溶液を分離し
た後、実施例1と同様に乾燥および加熱処理を行
つた。フツ化カリウムを担持した活性炭の得量は
36.3gであり、担持されたフツ化カリウムの含有
量は活性炭重量の21重量%であつた。 実施例1と同様に、上記フツ化カリウム担持活
性炭を使用してヘキサフルオロプロペンを反応さ
せ、排出物を分析して次に示す結果を得た。 ヘキサフルオロプロペンの転化率 76モル% 生成物組成 二量体 32.0モル% C9F16 8.3モル% 三量体 59.7モル% なお、三量体のうち88モル%は
[Formula] (mixture of cis and trans forms). In addition, 87 mol% of the dimer is (CF 3 ) 2 C=
CFCF 2 CF 3 , 13 mol% is (CF 3 ) 2 CFCF(CF 3 ) 2
It was hot. Example 2 After immersing 30 g of granular activated carbon in a 20% by weight aqueous solution of potassium fluoride and separating the aqueous solution that was not impregnated, drying and heat treatment were performed in the same manner as in Example 1. The yield of activated carbon supporting potassium fluoride is
The amount of supported potassium fluoride was 36.3 g, and the content of supported potassium fluoride was 21% by weight of the activated carbon. In the same manner as in Example 1, hexafluoropropene was reacted using the potassium fluoride-supported activated carbon, and the discharged material was analyzed to obtain the following results. Conversion rate of hexafluoropropene 76 mol% Product composition Dimer 32.0 mol% C 9 F 16 8.3 mol% Trimer 59.7 mol% Note that 88 mol% of the trimer is

【式】(シス体および トランス体の混合物)であつた。 また、二量体は、87モル%が(CF32C=
CFCF2CF3であり、13モル%が(CF32CFCF
(CF32であつた。 実施例 3 活性炭(武田薬品工業株式会社製白鷺C)30g
をフツ化セシウムの13重量%水溶液に浸漬し、含
浸されなかつた水溶液を分離した後、実施例1と
同様に乾燥および加熱処理を行つた。フツ化セシ
ウムを担持した活性炭の得量は32.8gであり、担
持されたフツ化セシウムの含有量は活性炭重量の
9.3重量%であつた。 長さ1mの1インチ・パイレツクスガラス製反
応管に得られたフツ化セシウム担持活性炭全量を
充填し、窒素気流中、400℃で5時間加熱した
後、設定温度を200℃とし、大気圧でヘキサフル
オロプロペンを30ml/分の流速で5時間流し、そ
の間に排出されたガス(60g)をドライアイスト
ラツプにより補集した。 その後、設定温度を250℃にして同じく5時間
ヘキサフルオロプロペンを流し、その間に排出さ
れたガスをドライアイストラツプにより別に補集
した。 それぞれの補集ガスを分析した結果を第1表に
示す。
[Formula] (mixture of cis and trans forms). In addition, 87 mol% of the dimer is (CF 3 ) 2 C=
CFCF 2 CF 3 and 13 mol% is (CF 3 ) 2 CFCF
(CF 3 ) It was 2 . Example 3 Activated carbon (Shirasagi C manufactured by Takeda Pharmaceutical Co., Ltd.) 30g
was immersed in a 13% by weight aqueous solution of cesium fluoride, and the aqueous solution that was not impregnated was separated, followed by drying and heat treatment in the same manner as in Example 1. The amount of activated carbon supporting cesium fluoride was 32.8g, and the content of supported cesium fluoride was equal to the weight of the activated carbon.
It was 9.3% by weight. A 1-meter-long 1-inch Pyrex glass reaction tube was filled with the entire amount of the obtained cesium fluoride-supported activated carbon, heated in a nitrogen stream at 400°C for 5 hours, set at a temperature of 200°C, and heated at atmospheric pressure. Hexafluoropropene was flowed at a flow rate of 30 ml/min for 5 hours, during which time the gas (60 g) discharged was collected with a dry ice trap. Thereafter, the set temperature was set at 250°C, and hexafluoropropene was allowed to flow for 5 hours, and the gas discharged during that time was separately collected using a dry ice trap. Table 1 shows the results of analyzing each scavenged gas.

【表】【table】

Claims (1)

【特許請求の範囲】 1 活性炭上に担持したフツ化アルカリ金属にヘ
キサフルオロプロペンを気相状態で接触させるこ
とを特徴とするヘキサフルオロプロペンオリゴマ
ーの製法。 2 ヘキサフルオロプロペンをその三量体の沸点
ないし300℃の温度で接触させる特許請求の範囲
第1項記載の製法。 3 フツ化アルカリ金属がフツ化カリウムまたは
フツ化セシウムである特許請求の範囲第1項また
は第2項記載の製法。
[Scope of Claims] 1. A method for producing a hexafluoropropene oligomer, which comprises bringing hexafluoropropene into contact with an alkali metal fluoride supported on activated carbon in a gas phase. 2. The method according to claim 1, wherein hexafluoropropene is contacted at a temperature between the boiling point of the trimer and 300°C. 3. The production method according to claim 1 or 2, wherein the alkali metal fluoride is potassium fluoride or cesium fluoride.
JP9184979A 1979-07-19 1979-07-19 Preparation of hexafluoropropene oligomer Granted JPS5616429A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9184979A JPS5616429A (en) 1979-07-19 1979-07-19 Preparation of hexafluoropropene oligomer
GB8023597A GB2055824B (en) 1979-07-19 1980-07-18 Process for preparing hexafluoropropene oligomers
DE19803027229 DE3027229A1 (en) 1979-07-19 1980-07-18 METHOD FOR PRODUCING HEXAFLUORPROPEN OLIGOMERS
US06/170,151 US4296265A (en) 1979-07-19 1980-07-18 Process for preparing hexafluoropropene oligomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9184979A JPS5616429A (en) 1979-07-19 1979-07-19 Preparation of hexafluoropropene oligomer

Publications (2)

Publication Number Publication Date
JPS5616429A JPS5616429A (en) 1981-02-17
JPS627892B2 true JPS627892B2 (en) 1987-02-19

Family

ID=14038012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9184979A Granted JPS5616429A (en) 1979-07-19 1979-07-19 Preparation of hexafluoropropene oligomer

Country Status (1)

Country Link
JP (1) JPS5616429A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645987B2 (en) * 1987-09-26 1994-06-15 武治 市毛 Window operator equipment
EP3601470B1 (en) * 2017-03-21 2024-04-24 3M Innovative Properties Company A method for selectively making hfp-trimer
RU2686316C1 (en) * 2018-12-06 2019-04-25 Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" Method of producing 2-perfluoromethylpentene-2
JP7436777B2 (en) * 2019-07-12 2024-02-22 ダイキン工業株式会社 Method for producing fluoroolefin compounds
CN114669311B (en) * 2022-03-17 2023-08-15 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Composite catalyst and preparation method and application thereof
CN114957195B (en) * 2022-06-23 2023-12-01 中国五环工程有限公司 Preparation method of high-yield fluoroethylene carbonate

Also Published As

Publication number Publication date
JPS5616429A (en) 1981-02-17

Similar Documents

Publication Publication Date Title
US4900872A (en) Process for the preparation of fluorohalogenated ethers starting from fluorooxy-compounds and halogenated olefins
JPS627892B2 (en)
US4296265A (en) Process for preparing hexafluoropropene oligomers
US4760205A (en) 2-iodo-perfluoro-2-methylalkanes, processes for their preparation and their use
JPH0466220B2 (en)
EP1375469B1 (en) A process for preparing acylfluorides
JPS627893B2 (en)
CA1297122C (en) Hypofluorites and bis-hypofluorites, and process for preparing same
RU2004534C1 (en) Method of 2-bromoperfluoroethylhypofluoride synthesis
SU910113A3 (en) Process for producing 3-phenoxybenzaldehyde derivatives
JPS5838231A (en) Preparation of pentafluoropropionyl fluoride
KR20160145835A (en) Method for preparation of alkylated or fluoro, chloro and fluorochloro alkylated compounds by heterogeneous catalysis
SU569554A1 (en) Method of preparing perfluorated ketones
US4967019A (en) Method of manufacturing 2-propyn-1-ol
JPH07507791A (en) Production of hydrofluorocarbons
Yinghuai et al. An effective system to synthesize arylacetones. Substrate-ionic liquid-ultrasonic irradiation
Yamanaka et al. Preparation of 1-Choro-1-fluoroethylenes via Chlorofluorocarbene
JPS62123140A (en) Production of cycloalkanol
JPS6131084B2 (en)
Chang et al. Fluoride-catalyzed reactions of perfluoromethanimine. Novel chemistry of the perfluoromethanamine ion
Ikeda et al. Synthesis of perfluoro-(1, 1-dimethylbutyl) methyl ethers by vic-oxymethylfluorination of perfluoro-2-methyl-2-pentene with chloromethyl ethers
SU657031A1 (en) Method of obtaining selencyclohexane
US4035424A (en) Method of preparing symmetrical diarylsulphides
EP0068080A1 (en) Liquid phase synthesis of hexafluoroisobutylene
SU522787A3 (en) Method for preparing hexafluoropropylene oligomers