JPH0120724B2 - - Google Patents

Info

Publication number
JPH0120724B2
JPH0120724B2 JP6639980A JP6639980A JPH0120724B2 JP H0120724 B2 JPH0120724 B2 JP H0120724B2 JP 6639980 A JP6639980 A JP 6639980A JP 6639980 A JP6639980 A JP 6639980A JP H0120724 B2 JPH0120724 B2 JP H0120724B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal molecules
angle
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6639980A
Other languages
Japanese (ja)
Other versions
JPS56162722A (en
Inventor
Kazutoshi Sawada
Shoichi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6639980A priority Critical patent/JPS56162722A/en
Publication of JPS56162722A publication Critical patent/JPS56162722A/en
Publication of JPH0120724B2 publication Critical patent/JPH0120724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • G02F1/13737Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition in liquid crystals doped with a pleochroic dye

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゲスト−ホスト型カラー液晶表示装置
に関し、更に詳しくは、一方の電極基板の表面
で、液晶分子が基板表面に対し、ほぼ平行に配列
し、もう一方の電極基板の表面で傾きを持つ相転
移型液晶表示装置に関する。 誘電異方性が正のコレステリツク液晶に多色性
色素を添加してカラー表示を行う方法は、既に相
転移型ゲスト−ホスト表示として知られている。
この方式は、コントラストの角度依存性が小さく
視野角が広く、又偏光板が不必要な事から明るい
表示ができる等従来のTNモードより優れた利点
を有している。この方式の作動原理を第1図に示
した。 第1図において1は電極基板、2は電極、3は
液晶組成物の配列状態、4はスイツチ、5は交流
電源を示し、電圧無印加又はしきい電圧値以下の
電圧が印加されている時は、左側半分に示す様に
液晶組成物は全体にわたつて、液晶分子がラ旋構
造を有しているために、液晶層を通過する光は色
素によつて吸収を受け、着色状態にある。次にし
きい値電圧以上の電圧を印加すると右側半分に示
す様に液晶分子のラ旋のピツチが無限大に伸ばさ
れて電極界面に液晶分子軸がほぼ垂直に整列しネ
マチツク状態へと遷移する。この時分子長軸の方
向のみに、光吸収による電子遷移モーメントを可
視光部に有する二色性色素が含有されていると、
この色素分子も液晶分子と同じ整列状態をとるか
ら、光吸収が起きないために、透明状態になる。
この方法を行う場合の配向制御方法としては、液
晶分子長軸が電極界面にほぼ垂直になるように処
理されたいわゆる垂直配向とほぼ水平になる水平
配向方法との二つの方法が大別するとある。水平
配向方法は、垂直配向方法に比べ、同一着色濃度
を得るために使用する色素材料が少なく、又配向
制御方法においては、従来TN型表示装置で既に
確立したラビング法又は斜方蒸着法が利用でき有
利である。 本発明者はかかる観点から、水平配向方法を採
用した相転移型液晶表示装置に関して種々検討を
重ねた結果、液晶組成物のラ旋方向によらず、常
に良好なコントラストで表示が行える条件が、相
対向する電極表面上での液晶分子の傾き角度に関
連しているという興味ある知見を得るに至つた。
本発明はかかる知見に基づいてなされたものであ
り、一方の電極基板表面に対して液晶分子は、ほ
ぼ平行に配列し、他方の電極基板表面上では傾き
角を持つた組合せから成る表示装置を採用する事
により、良好なコントラストで書込み及び消去が
できる液晶表示装置を提供するものであり、更に
はその中でも液晶層厚みと液晶のピツチPの比を
/2π≦d/P≦/2π+1/4の範囲でダイナミツ
ク駆動 を可能にした装置を提供するものである。液晶分
子を基板表面に対し、任意の傾きを持ち、且、一
定方向に整列する様に配向制御する方法として
は、ラビング法又は斜方蒸着法が例示され、通常
ラビング法では、傾き角αは0〜8゜、斜方蒸着法
ではその蒸着方向を選択する事により、0〜10゜、
或は20〜30゜の範囲で得られる。 ラビング法では、液晶分子はラビング方向の手
前側で基板に接して配向し、斜方蒸着法では、液
晶分子は蒸着源から遠い側で基板に接して配向す
る。 両基板表面上の液晶分子の傾き角を、共に等し
くする事は、液晶表示セルの製造上、相対向する
電極基板の配向制御方法を同一にできるため有利
であるが、次にあげる表示上の問題点がある。即
ち、傾き角αが両基板共にほぼ0゜の場合には、電
圧印加にコレステリツク着色状態から、ネマチツ
クの透明状態へ遷移(点燈)する際に、直ちに透
明状態へ遷移せず、散乱状態ができるために、表
示コントラストが悪い。又、第2図に示すように
傾き角αが両基板共に0゜以外の値を持つ場合には
液晶組成物のラ旋方向と両電極基板間での液晶分
子の回転角及び配向制御の方向がなす角θによ
り、点燈時に散乱がでる条件と、でない条件があ
り、良好なコントラストを常に得るためには、
θ、、ラ旋方向を選択する繁雑さが生ずる。こ
れに対し、本発明による表示装置は、一方の電極
板表面で液晶分子をほぼ平行、2度以下に整列さ
せ、他方の電極板表面で5度以上の傾きで整列さ
せることにより、θ、、ラ旋方向によらず、常
に良好なコントラストを提示できるため、配向制
御方向及び液晶組成物の設計が容易になる利点を
有する。 第3図に本発明による配向制御の方向と、その
方向が両基板間でなす角θ、及び基板表面に対す
る液晶分子の傾き角αを示す。第2図及び第3図
の実線で示した方向は、前面電極基板表面上で、
液晶分子長軸の整列方向を示しており破線で示し
た矢印方向は裏面電極基板表面上で液晶分子長軸
の整列方向と基板に対して液晶分子が傾き角αを
もつて配列する方向を示している。本発明におけ
る配向制御の方向がなす角θとは、この前面基板
の配向制御の方向に対して反時計方向に裏面基板
の配向制御の方法がなす角をいう。即ち、第2図
に示すように、両基板における基板に接している
点を中心とした液晶分子の長軸方向がなす角度差
を前面基板からみて反時計方向にみた角をθとす
る。この場合、例えば、両基板を同一方向からラ
ビングした時にはθ=0゜となる。又、回転角は
裏面電極基板の配向制御方向から前面電極基板の
配向制御方向へ達するまでの液晶分子の回転角を
いい、これは液晶のピツチPと液晶層厚みd及び
θとの関係によつて決まる。本発明に用いる液晶
組成物は、誘電異方性が正のネマチツク液晶に多
色性色素及びラ旋構造を与える物質、例えばコレ
ステリツク液晶及び/又は光学活性物質を添加し
たものであり、添加物により右ラ旋性と左ラ旋性
に分けられる。 右ラ旋性液晶(以下RHと略す)とは、液晶分
子長軸が裏面電極基板から前面電極基板側へ反時
計方向に回転して整列する液晶をいい、左ラ旋性
液晶(以下LHと略す)とはその逆に時計方向に
回転して整列する液晶をいう。 以下実施例を説明するが実施例において共通に
用いる用語は次の通りである。 左ラ旋性液晶(LH): 誘電異方性が正のネマチツク液晶(メルク社製
ZLI−1285−TNC)にBDH社製二色性色素D−
16を2wt%添加した液晶にコレステリル・ノナノ
エートを添加した左ラ旋性を示す液晶。 右ラ旋性液晶(RH): 誘電異方性が正のネマチツク液晶(メルク社製
ZLI−1285−TNC)にBDH社製二色性色素D−
16を2wt%添加した液晶にBDH社製光学活性物
質CB−15を添加した右ラ旋性を示す液晶。 ラビング処理基板: 電極基板表面を一定方向にラビングした基板で
液晶分子が0〜2゜あるいは7〜8゜の傾き角をもつ
て整列する様に処理した基板。 斜方蒸着処理基板: 電極基板表面の法線方向から85゜ずらしてシリ
カを斜方蒸着した基板で、液晶分子が23〜26゜、
60゜ずらした場合は0〜2゜の傾き角をもつて整列
するように処理した基板。 実施例及び比較例 共にラビング処理基板と共に斜方蒸着処理基板
を用いてそれぞれ表示セルを作り、各セルにそれ
ぞれピツチの異るRH及びLHを充填して表示装
置を形成した。この表示装置の相対向する電極間
に100Hzの交流矩形波を印加して、スタテイツク
駆動した場合と、100Hzで1/2バイアス、1/2デユ
ーテイ波形でダイナミツク駆動した場合の表示状
態の目視観察結果をθとの関係で第1表〜第4表
に示す。第1表は、両基板上での液晶分子の傾き
角αが共に1〜3゜になる様、ラビング配向処理さ
れた場合で、θがπ/2及び3/2πの場合の比較例
であり、第2表から第4表までは、ラビングによ
り、片面基板のαが0〜2゜、もう一方のαが、7
〜8゜になる様に配向処理された基板を組合せた場
合及び、シリカの斜方蒸着により、片面基板のα
が0〜2゜、もう一方のαが23〜26゜になる様に配
向処理された基板を組合せた場合の実施例を示
し、第2表は、θ=0、πの場合、第3表はθ=
1/4π、5/4π、第4表はθ=π/2、3/2πの場合
であり、本発明による実施例を示す。 尚、各表において〇判定はON時に透明状態へ
直ちに遷移するもの、又OFF時に非散乱着色状
態に直ちに遷移するものを示し、×判定は、ON
時に散乱状態になるもの、又はOFF時に散乱状
態あるいはメモリー性が室温で1秒以上でてしま
う場合を示す。
The present invention relates to a guest-host type color liquid crystal display device, and more specifically, on the surface of one electrode substrate, liquid crystal molecules are arranged almost parallel to the substrate surface, and on the surface of the other electrode substrate, liquid crystal molecules are arranged at an angle. The present invention relates to a phase change type liquid crystal display device. A method of displaying color by adding a pleochroic dye to a cholesteric liquid crystal with positive dielectric anisotropy is already known as a phase change type guest-host display.
This method has advantages over the conventional TN mode, such as a small angular dependence of contrast, a wide viewing angle, and a bright display because no polarizing plate is required. The operating principle of this system is shown in Figure 1. In Fig. 1, 1 is the electrode substrate, 2 is the electrode, 3 is the arrangement state of the liquid crystal composition, 4 is the switch, and 5 is the AC power supply, and when no voltage is applied or a voltage below the threshold voltage value is applied. As shown in the left half of the liquid crystal composition, since the liquid crystal molecules have a spiral structure throughout the liquid crystal composition, the light passing through the liquid crystal layer is absorbed by the pigment, resulting in a colored state. . Next, when a voltage higher than the threshold voltage is applied, the pitch of the spiral rotation of the liquid crystal molecules is extended to infinity as shown in the right half, and the axes of the liquid crystal molecules are aligned almost perpendicularly to the electrode interface, resulting in a transition to a nematic state. At this time, if a dichroic dye that has an electronic transition moment in the visible light region due to light absorption is contained only in the direction of the long axis of the molecule,
Since these dye molecules also align in the same state as the liquid crystal molecules, no light absorption occurs, resulting in a transparent state.
There are two main alignment control methods for this method: vertical alignment, in which the long axis of the liquid crystal molecules is almost perpendicular to the electrode interface, and horizontal alignment, in which the long axis of the liquid crystal molecules is almost horizontal. . Compared to the vertical alignment method, the horizontal alignment method uses less pigment material to obtain the same color density, and the alignment control method uses the rubbing method or oblique evaporation method that has already been established for conventional TN display devices. It is advantageous. From this point of view, the inventors of the present invention have conducted various studies regarding phase change type liquid crystal display devices that employ the horizontal alignment method, and have found that the conditions under which display can always be performed with good contrast, regardless of the radial direction of the liquid crystal composition, are as follows: We have come to the interesting finding that this is related to the angle of inclination of liquid crystal molecules on the surfaces of opposing electrodes.
The present invention has been made based on this knowledge, and provides a display device in which liquid crystal molecules are arranged approximately parallel to the surface of one electrode substrate, and are tilted at an angle on the surface of the other electrode substrate. By adopting this, it is possible to provide a liquid crystal display device that can write and erase with good contrast, and furthermore, the ratio of the liquid crystal layer thickness to the pitch P of the liquid crystal is /2π≦d/P≦/2π+1/4. The present invention provides a device that enables dynamic drive within this range. A rubbing method or an oblique evaporation method is exemplified as a method for controlling the orientation of liquid crystal molecules so that they have an arbitrary inclination with respect to the substrate surface and are aligned in a certain direction.In the rubbing method, the inclination angle α is usually 0 to 8 degrees, 0 to 10 degrees by selecting the deposition direction in the oblique deposition method,
Alternatively, it can be obtained within the range of 20 to 30°. In the rubbing method, liquid crystal molecules are oriented in contact with the substrate on the near side in the rubbing direction, and in the oblique evaporation method, liquid crystal molecules are oriented in contact with the substrate on the side far from the evaporation source. Making the tilt angles of the liquid crystal molecules on the surfaces of both substrates equal is advantageous in manufacturing a liquid crystal display cell because it allows the alignment control method of opposing electrode substrates to be the same; There is a problem. That is, when the tilt angle α is approximately 0° for both substrates, when the voltage is applied and the state changes from the cholesteric coloring state to the nematic transparent state (lighting up), the transition to the transparent state does not occur immediately and the scattering state changes. Due to this, the display contrast is poor. In addition, as shown in Figure 2, when the tilt angle α has a value other than 0° for both substrates, the radial direction of the liquid crystal composition, the rotation angle of the liquid crystal molecules between the two electrode substrates, and the direction of orientation control. Depending on the angle θ formed by
θ, the complexity of selecting the spiral direction arises. On the other hand, in the display device according to the present invention, the liquid crystal molecules are aligned almost parallel and at an angle of 2 degrees or less on the surface of one electrode plate, and aligned at an angle of 5 degrees or more on the surface of the other electrode plate. Since good contrast can always be presented regardless of the direction of rotation, it has the advantage that the orientation control direction and the design of the liquid crystal composition are facilitated. FIG. 3 shows the direction of alignment control according to the present invention, the angle θ that the direction makes between both substrates, and the tilt angle α of the liquid crystal molecules with respect to the substrate surface. The direction shown by the solid line in FIGS. 2 and 3 is on the front electrode substrate surface.
The direction of the arrow shown by the broken line indicates the direction in which the long axes of liquid crystal molecules are aligned on the surface of the back electrode substrate, and the direction in which the liquid crystal molecules are aligned at a tilt angle α with respect to the substrate. ing. The angle θ formed by the direction of orientation control in the present invention refers to the angle formed by the method of orientation control of the back substrate in a counterclockwise direction with respect to the direction of orientation control of the front substrate. That is, as shown in FIG. 2, the angular difference between the long axis directions of liquid crystal molecules centered on the point in contact with the substrates on both substrates, viewed counterclockwise from the front substrate, is defined as θ. In this case, for example, when both substrates are rubbed from the same direction, θ=0°. In addition, the rotation angle refers to the rotation angle of liquid crystal molecules from the alignment control direction of the back electrode substrate to the alignment control direction of the front electrode substrate, and this depends on the relationship between the pitch P of the liquid crystal and the liquid crystal layer thickness d and θ. It will be decided. The liquid crystal composition used in the present invention is a nematic liquid crystal with positive dielectric anisotropy to which a pleochroic dye and a substance giving a helical structure, such as a cholesteric liquid crystal and/or an optically active substance, are added. It is divided into right-handed and left-handed. A right-handed liquid crystal (hereinafter abbreviated as RH) refers to a liquid crystal in which the long axes of liquid crystal molecules are aligned by rotating counterclockwise from the back electrode substrate to the front electrode substrate. (abbreviated) refers to liquid crystals that rotate clockwise and align in the opposite direction. Examples will be described below, and the terms commonly used in the examples are as follows. Left-handed liquid crystal (LH): Nematic liquid crystal with positive dielectric anisotropy (manufactured by Merck & Co.)
ZLI-1285-TNC) and BDH dichroic dye D-
A liquid crystal that exhibits left-handed rotation by adding cholesteryl nonanoate to a liquid crystal containing 2wt% of 16. Right-handed liquid crystal (RH): Nematic liquid crystal with positive dielectric anisotropy (manufactured by Merck & Co., Ltd.)
ZLI-1285-TNC) and BDH dichroic dye D-
A liquid crystal exhibiting right-handed rotation, made by adding the optically active substance CB-15 manufactured by BDH to a liquid crystal containing 2 wt% of 16. Rubbed substrate: A substrate whose electrode substrate surface has been rubbed in a certain direction so that liquid crystal molecules are aligned at an inclination angle of 0 to 2 degrees or 7 to 8 degrees. Oblique evaporation treated substrate: A substrate on which silica is obliquely evaporated 85 degrees from the normal direction of the electrode substrate surface, and the liquid crystal molecules are oriented at 23 to 26 degrees.
When shifted by 60 degrees, the substrates are processed so that they are aligned at an inclination angle of 0 to 2 degrees. Examples and Comparative Examples In both cases, display cells were made using a rubbed substrate and an oblique evaporation treated substrate, and each cell was filled with RH and LH of different pitches to form a display device. Visual observation results of the display state when this display device was statically driven by applying a 100Hz AC rectangular wave between opposing electrodes, and when it was dynamically driven at 100Hz with a 1/2 bias and 1/2 duty waveform. are shown in Tables 1 to 4 in relation to θ. Table 1 shows comparative examples where the rubbing alignment process is performed so that the tilt angles α of the liquid crystal molecules on both substrates are both 1 to 3 degrees, and when θ is π/2 and 3/2π. , Tables 2 to 4 show that due to rubbing, α of one side board is 0 to 2 degrees, and α of the other side is 7 degrees.
When combining substrates that have been oriented so that the angle is ~8°, or by oblique evaporation of silica, the α of a single-sided substrate can be
An example is shown in which the substrates are oriented so that α is 0 to 2 degrees and the other α is 23 to 26 degrees. is θ=
1/4π, 5/4π, and Table 4 is for θ=π/2, 3/2π, and shows examples according to the present invention. In addition, in each table, the 〇 judgment indicates that the state immediately transitions to a transparent state when ON, and the case that immediately changes to a non-scattering colored state when OFF.
Indicates a case that sometimes becomes a scattering state, or a case where a scattering state or memory property appears for more than 1 second at room temperature when turned off.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上の実施例及び比較例で示した如く、一方の
基板表面では、液晶分子がほぼ平行(傾き2゜以
下)に配列し、もう一方の基板表面に対し、5゜以
上の傾きを持ち、且つ一定方向に整列する様に配
向制御された表示セルに、誘電異方性が正でラ旋
構造が付与された多色性色素を含有した液晶組成
物を封入した表示装置において、点燈及び消去時
共にすむやかに散乱のない透明状態及び着色状態
に遷移できる条件は、スタテイツク駆動の場合、
両電極間での液晶分子軸の回転角度がほぼ3π未
満であつた。 又、ダイナミツク駆動がコントラスト良くでき
る条件は、が大きくなつた場合スタテイツク駆
動が可能な条件内で、且つ液晶のピツチ(P)と
液晶層の厚み(d)との比(d/P)が/2π≦d/P≦ /2π+1/4の範囲でのみ可能である事が判つた。 以上の如く、本発明による液晶表示装置は、
θ、液晶組成物のラ旋方向によらず良好なコント
ラスで表示が行えるため、配向制御方向及び液晶
組成物の設計が容易であり、且つ従来からTN型
液晶表示装置に用いられていたラビングあるいは
シリカ等の斜方蒸着による配向制御技術がそのま
ま応用できるため、TN及びゲスト−ホスト型表
示装置の併産が同一製造ラインで可能である利点
を有する。又、更に本発明による表示装置は偏光
板が不要であるため低コストである他に視野範囲
が広く、明るい表示が可能であり且つ、点燈消去
時に散乱がなくコントラスト良く、早い応答を示
す表示品位の優れた表示装置を提供できる。又、
更にダイナミツク駆動を可能としたため、表示機
能を増やせる等その利用価値は大である。
[Table] As shown in the above Examples and Comparative Examples, on the surface of one substrate, the liquid crystal molecules are arranged almost parallel (with an inclination of 2° or less), and with respect to the surface of the other substrate, the molecules are arranged with an inclination of 5° or more. In a display device in which a liquid crystal composition containing a pleochroic dye having a positive dielectric anisotropy and a helical structure is enclosed in a display cell whose orientation is controlled so as to be aligned in a certain direction, In the case of static drive, the conditions that can quickly transition to a transparent state without scattering and a colored state during both lighting and erasing are as follows:
The rotation angle of the liquid crystal molecular axis between the two electrodes was approximately less than 3π. Furthermore, the conditions under which dynamic driving can have good contrast are such that when is large, static driving is possible, and the ratio (d/P) between the pitch (P) of the liquid crystal and the thickness (d) of the liquid crystal layer is / It was found that this is possible only in the range of 2π≦d/P≦/2π+1/4. As described above, the liquid crystal display device according to the present invention has
Since display can be performed with good contrast regardless of θ and the latitude direction of the liquid crystal composition, it is easy to design the orientation control direction and the liquid crystal composition. Since orientation control technology using oblique evaporation of silica or the like can be applied as is, it has the advantage that TN and guest-host display devices can be produced simultaneously on the same production line. Furthermore, since the display device according to the present invention does not require a polarizing plate, it is low cost, has a wide viewing range, can provide a bright display, is free from scattering when turned on and off, has good contrast, and exhibits a fast response. A display device with excellent quality can be provided. or,
Furthermore, since dynamic driving is possible, its utility value is great, such as the ability to increase display functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は相転移型液晶表示装置の断面図、第2
図は比較例を示すための斜視図、第3図は本実施
例を説明するための斜視図を示す。 1……電極基板、2……電極、3……液晶の配
列状態、4……スイツチ、5……交流電源。
Figure 1 is a cross-sectional view of a phase change type liquid crystal display device;
The figure shows a perspective view for showing a comparative example, and FIG. 3 shows a perspective view for explaining the present example. 1... Electrode substrate, 2... Electrode, 3... Arrangement state of liquid crystal, 4... Switch, 5... AC power supply.

Claims (1)

【特許請求の範囲】 1 一方の電極基板の表面で、液晶分子が基板表
面に対しほぼ平行に配列し、もう一方の電極基板
の表面で傾きを持ち、且一定方向に整列する様に
配向制御され、更に互にその配向制御の方向が一
定角度θをなす様に二枚の電極基板をほぼ平行に
配置し、両電極基板間に誘電異方性が正のネマチ
ツク液晶に多色性色素及びラ旋構造を与える物質
を添加した液晶組成物を挟持するに際して、両電
極基板間での液晶分子の回転角(ψ)が3π未満
とされ、その液晶層の厚みdと液晶ピツチpの比
が、ψ/2π≦d/P≦ψ/2π+1/4の範囲とし、ダ
イナミ ツク駆動する事を特徴とした液晶表示装置。 2 液晶分子が一方の電極基板表面で2度以下の
傾きで配列し、もう一方の電極基板表面で5度以
上の傾きをもつて配列していることを特徴とする
特許請求の範囲第1項記載の液晶表示装置。
[Claims] 1. Orientation control so that on the surface of one electrode substrate, liquid crystal molecules are arranged almost parallel to the substrate surface, and on the surface of the other electrode substrate, they are aligned at an angle and in a fixed direction. Furthermore, two electrode substrates are arranged almost parallel to each other so that their orientation control directions form a constant angle θ, and a pleochroic dye and a nematic liquid crystal with positive dielectric anisotropy are placed between the electrode substrates. When sandwiching a liquid crystal composition to which a substance giving a helical structure is added, the rotation angle (ψ) of the liquid crystal molecules between the two electrode substrates is set to be less than 3π, and the ratio of the thickness d of the liquid crystal layer to the liquid crystal pitch p is , ψ/2π≦d/P≦ψ/2π+1/4, and is dynamically driven. 2. Claim 1, characterized in that the liquid crystal molecules are arranged at an inclination of 2 degrees or less on the surface of one electrode substrate, and arranged at an inclination of 5 degrees or more on the surface of the other electrode substrate. The liquid crystal display device described.
JP6639980A 1980-05-21 1980-05-21 Liquid crystal display device Granted JPS56162722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6639980A JPS56162722A (en) 1980-05-21 1980-05-21 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6639980A JPS56162722A (en) 1980-05-21 1980-05-21 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS56162722A JPS56162722A (en) 1981-12-14
JPH0120724B2 true JPH0120724B2 (en) 1989-04-18

Family

ID=13314690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6639980A Granted JPS56162722A (en) 1980-05-21 1980-05-21 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS56162722A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168636A (en) * 1980-05-30 1981-12-24 Seiko Epson Corp Liquid crystal display body
EP0098070B2 (en) * 1982-06-29 2000-12-13 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Liquid crystal devices
US4596446B2 (en) * 1982-06-29 1997-03-18 Secr Defence Brit Liquid crystal devices with particular cholestric pitch-cell thickness ratio
EP0106386A3 (en) * 1982-09-23 1985-03-13 BBC Brown Boveri AG Method of triggering a multiplexable bistable liquid crystal display
DE3609141A1 (en) * 1986-03-19 1987-09-24 Merck Patent Gmbh ELECTROOPTICAL DISPLAY ELEMENT
JPS62167219U (en) * 1986-04-14 1987-10-23
JP2676508B2 (en) * 1986-09-12 1997-11-17 コニカ株式会社 Liquid crystal display

Also Published As

Publication number Publication date
JPS56162722A (en) 1981-12-14

Similar Documents

Publication Publication Date Title
EP0455160B1 (en) Liquid crystal display device
JPH07113112B2 (en) Ferroelectric chiral smectic liquid crystal composition
JPH08101368A (en) Smectic liquid crystal device
JPS62284334A (en) Liquid crystal element
JPH0120724B2 (en)
JPS56156816A (en) Liquid-crystal display device
Raynes Electro-optic and thermo-optic effects in liquid crystals
JPS61226730A (en) Twisted nematic type liquid crystal display element
US3984343A (en) Liquid crystal mixtures with selectively variable dielectric anisotropies
US5844653A (en) Liquid crystal mixture
JP2812601B2 (en) Liquid crystal display
JP2880807B2 (en) Liquid crystal display
JP2727239B2 (en) Ferroelectric liquid crystal device
JPH0756148A (en) Liquid crystal display element
JPH0128364B2 (en)
JPS6337193A (en) Liquid crystal display device
JPS5876483A (en) Liquid crystal mixture
JPS63186217A (en) Liquid crystal display device
JP2523802B2 (en) Liquid crystal display element
KR0163936B1 (en) Ferroelectric liquid crystal dopant for lcd
JPS6237766B2 (en)
JPH10177348A (en) Reflection type liquid crystal display element
JPH1152388A (en) Liquid crystal element and liquid crystal device
JPS6332162B2 (en)
JPH0239772B2 (en)