JPH01206804A - Magnetically levitated vehicle - Google Patents

Magnetically levitated vehicle

Info

Publication number
JPH01206804A
JPH01206804A JP2753688A JP2753688A JPH01206804A JP H01206804 A JPH01206804 A JP H01206804A JP 2753688 A JP2753688 A JP 2753688A JP 2753688 A JP2753688 A JP 2753688A JP H01206804 A JPH01206804 A JP H01206804A
Authority
JP
Japan
Prior art keywords
magnetic field
rail
liquid nitrogen
electromagnets
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2753688A
Other languages
Japanese (ja)
Inventor
Masahiro Ogiwara
荻原 正弘
Naofumi Tada
直文 多田
Katsuzo Aihara
勝蔵 相原
Yasuo Suzuki
保夫 鈴木
Katsuo Koriki
高力 勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2753688A priority Critical patent/JPH01206804A/en
Publication of JPH01206804A publication Critical patent/JPH01206804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable traveling of a magnetic levitating vehicle driven by the use of liquid nitrogen with the longitudinal speed thereof being controlled, by arranging a plurality of electromagnets as a rail and exciting predetermined number of them arranged in the vicinity of the magnetically levitated vehicle such that a trough of magnetic field is produced. CONSTITUTION:Seventy-two normal superconducting electromagnets 3 having inner diameter of 10mm, outer diameter of 30mm and height of 100mm and comprising a core 4 wound with copper wire of 1mm diameter are arranged concentrically in two rows together with supporting members 5 to prepare a rail 2 having outer diameter of 500mm. A pellet 1 having thickness of 2mm, outer diameter of 50mm and height of 30mm is made of Y, Ba, Cu, oxide, then the pellet 1 is cooled in liquid nitrogen and poured with liquid nitrogen 6 and placed on the rail 2. When the normal superconducting electromagnet 3 is excited such that a trough of magnetic field is produced, the oxide superconductor runs along the trough of the magnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気浮上車に係り、特に展示用、デモンストレ
ーション用、玩具に好適な磁気浮上車に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic levitation vehicle, and particularly to a magnetic levitation vehicle suitable for exhibitions, demonstrations, and toys.

〔従来の技術〕[Conventional technology]

従来の磁気浮上車は、リニアモーターカーとして知られ
ているように磁気浮上車に搭載した浮上側の電磁石と地
上に設置された浮上用、及び推進用電磁石を励磁して磁
界を発生させて、磁界の反発力で浮上9反発及び吸引力
で推進するものであった。浮上側の電磁石は、重量を低
減し、かつ、高磁界を発生させるために超電導電磁石が
用いられている。この超電導電磁石は、Nb−Ti超電
導材料が使われており、励磁するには冷却材として高価
な液体ヘリウムが必要で、断熱容器も複雑な構造であっ
た。
Conventional magnetic levitation vehicles, known as linear motor cars, generate a magnetic field by exciting electromagnets on the levitation side mounted on the magnetic levitation vehicle and levitation and propulsion electromagnets installed on the ground. It was levitated by the repulsive force of the magnetic field and propelled by the repulsive and attractive forces. As the electromagnet on the floating side, a superconducting electromagnet is used to reduce weight and generate a high magnetic field. This superconducting electromagnet used Nb-Ti superconducting material, required expensive liquid helium as a coolant to excite it, and had a complicated heat-insulating container structure.

最近発見された酸化物超電導材料は液体窒素でも超電導
性を示すことから注目されている。ところが酸化物超電
導材料は現在のところバルクとして臨界電流密度が低く
、さらに脆弱なことから線材化及びコイル化が困難であ
る。従って、ただちにリニアモーターカーに用いられる
超電導電磁石への応用展開は不可能である。
Recently discovered oxide superconducting materials are attracting attention because they exhibit superconductivity even in liquid nitrogen. However, oxide superconducting materials currently have a low critical current density as a bulk material, and are also brittle, making it difficult to form them into wires and coils. Therefore, it is impossible to immediately apply this method to superconducting electromagnets used in linear motor cars.

以上述べたのは超電導物質の電気抵抗率零の性質を利用
したものである。ところで超電導物質にはこの性質のほ
かにマイスナー効果と呼ばれる完全反磁性の性質がある
。永久磁石の上に超電導状態に保持した物質を置くと、
完全反磁性により超電導物質は永久磁石の上で浮上する
。あるいは永電磁石と超電導物質の配置を逆にして、超
電導物質の上に永久磁石を置いても同様な結果が得られ
る。前述の方法は完全反磁性の容易な確認方法として一
般的に知られている。この方法を利用した、酸化物超電
導体を敷いた上に永久磁石を備えた磁気浮上車が、昭和
62年11月25日発行の日刊工業新聞に掲載されてい
る。なお、この磁気浮上車の例では、レールとしての酸
化物超電導体は傾斜を有するように敷かれており、推進
力は重力である。
The method described above takes advantage of the zero electrical resistivity property of superconducting materials. In addition to this property, superconducting materials also have a completely diamagnetic property called the Meissner effect. When a superconducting substance is placed on top of a permanent magnet,
Perfect diamagnetism causes the superconducting material to levitate above the permanent magnet. Alternatively, similar results can be obtained by reversing the arrangement of the permanent magnet and superconducting material and placing the permanent magnet on top of the superconducting material. The above-mentioned method is generally known as an easy method for confirming perfect diamagnetism. A magnetically levitated vehicle using this method and equipped with permanent magnets on an oxide superconductor was published in the Nikkan Kogyo Shimbun published on November 25, 1988. In this example of a magnetically levitated vehicle, the oxide superconductor as the rail is laid so as to have an inclination, and the propulsion force is gravity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、液体窒素で作動する磁気浮上車の推進
力の制御方法について配慮されておらず、傾斜のついた
レールの上から下に走行するのみでなおかつ走行速度も
制御することができなかった。
The above-mentioned conventional technology does not take into account the method of controlling the propulsion force of the magnetically levitated vehicle operated by liquid nitrogen, and the vehicle only travels from the top to the bottom of the inclined rail, and it is not possible to control the traveling speed. Ta.

本発明の目的は、液体窒素で作動する磁気浮上車をレー
ル上の前後方向に速度を制御して走行させることにある
An object of the present invention is to allow a magnetically levitated vehicle operated by liquid nitrogen to travel in the longitudinal direction on a rail while controlling its speed.

〔課題を解決するための手段〕 上記目的は、浮上側に酸化物超電導体を使用し、レール
として電磁石を複数個配置し、そのうちの磁気浮上車近
傍の所定個数の電磁石を磁界の谷間が生じるように励磁
して、その磁界の谷間を連続的に移動させることにより
、達成される。
[Means for solving the problem] The above purpose is to use an oxide superconductor on the levitation side, arrange a plurality of electromagnets as rails, and place a predetermined number of electromagnets near the magnetically levitated vehicle to create a valley in the magnetic field. This is achieved by exciting the magnetic field and moving the valley of the magnetic field continuously.

〔作用〕[Effect]

レールとして用いた電磁石の所定個数を磁界の谷間が生
じるように励磁すると、磁気浮上車である超電導状態に
保持された酸化物超電導体は安定配置を取ろうとするの
で、磁界の谷間に落ちつくように移動する。前述したよ
うに磁界の谷間を連続的に移動させることにより、酸化
物超電導体すなわち磁気浮上車は磁界の谷間に追従する
ように走行する。言うまでもなく、磁気浮上車の速度は
磁界の谷間の移動速度を変えることによって制御できる
When a predetermined number of electromagnets used as rails are excited so that a valley in the magnetic field is generated, the oxide superconductor that is maintained in a superconducting state, which is a magnetically levitated vehicle, tries to take a stable arrangement, so it settles in the valley in the magnetic field. Moving. As described above, by continuously moving the valleys of the magnetic field, the oxide superconductor, that is, the magnetically levitated vehicle travels to follow the valleys of the magnetic field. Of course, the speed of the magnetic levitation vehicle can be controlled by varying the speed at which the magnetic field travels through the valleys.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1の実施例:直径1ffiの銅線を鉄心4に巻回シテ
、内径ioam、外怪30nm、高さ100nn(7)
常電導電磁石3を第2図に示す支持材5と共に72個最
外径500++nになるように、同心円的に2列にして
並べて第1図に示すレール2とした。Y。
First example: A copper wire with a diameter of 1ffi is wound around the iron core 4, the inner diameter is ioam, the outer diameter is 30 nm, and the height is 100 nn (7).
The rail 2 shown in FIG. 1 was made by arranging 72 normally conducting electromagnets 3 and the supporting material 5 shown in FIG. 2 concentrically in two rows so that the outermost diameter was 500++n. Y.

Ba、Cu酸化物で、第3図、第4図に示す肉厚2nn
、外径50mm、高さ30mn+の器状のペレット1を
作製し、液体窒素中で冷却した後に、ペレット1に液体
窒素6を注いで、前述のレール2の上に置いた。常電導
電磁石3を8個、第5図に示すように、1個当たりの常
電導電磁石の最大磁界が4000ガウス、磁界の谷間部
が3000ガウスになるように励磁した。本実施例によ
れば、常電導電磁石3を2列にして並べてあり、レール
上の横振れに対して安定にペレット1を走行させること
ができ、またペレット1を器状に作製して、その中に液
体窒素を溜めることができるので、走行前に注入した液
体窒素6で、5分間走行させることができる。
Made of Ba and Cu oxides, with a thickness of 2 nn as shown in Figures 3 and 4.
A container-shaped pellet 1 with an outer diameter of 50 mm and a height of 30 mm+ was prepared, and after cooling in liquid nitrogen, liquid nitrogen 6 was poured into the pellet 1 and placed on the rail 2 described above. As shown in FIG. 5, eight normal conducting electromagnets 3 were excited so that the maximum magnetic field of each normal conducting electromagnet was 4000 Gauss and the valley part of the magnetic field was 3000 Gauss. According to this embodiment, the normal conductive electromagnets 3 are arranged in two rows, and the pellet 1 can be run stably against lateral vibration on the rail, and the pellet 1 is made into a container shape. Since liquid nitrogen can be stored inside, it is possible to run for 5 minutes with liquid nitrogen 6 injected before running.

第2の実施例;第6図に示すように、直径10m高さ1
0nmのサマリウム・コバルト永久磁石7の上に直径0
.1 mの銅線を鉄心4に巻回して作製した外径15m
a+、内径10I、高さ20nn+の常電導磁石3を固
定させて、複合磁石8を作製した。
Second embodiment: As shown in Figure 6, diameter 10m height 1
0 nm diameter samarium cobalt permanent magnet 7
.. An outer diameter of 15 m made by winding 1 m of copper wire around iron core 4.
A composite magnet 8 was produced by fixing a normal conductive magnet 3 having a diameter of 10 I and a height of 20 nn+.

この複合磁石8を最外径500mmになるように第7図
の如く、同心円的に8列にして並べてレール2とした。
The composite magnets 8 were arranged concentrically in eight rows as shown in FIG. 7 so as to have an outermost diameter of 500 mm to form a rail 2.

第1の実施例と同様にして、64個の常電導電磁石3を
励磁した。本実施例によれば、磁場分布を精度よく、制
御できるので、より滑らかにペレット1を走行させるこ
とができる。
Sixty-four normally conducting electromagnets 3 were excited in the same manner as in the first example. According to this embodiment, since the magnetic field distribution can be controlled with high precision, the pellet 1 can be run more smoothly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液体窒素で作動する磁気浮上車をレー
ルの前後方向に速度を制御して走行させることができる
According to the present invention, a magnetically levitated vehicle operated by liquid nitrogen can be caused to travel in the longitudinal direction of the rail with its speed controlled.

【図面の簡単な説明】 第1図は本発明の第1の実施例のペレット、及びレール
の平面図、第2図はレールの一部分の断面図、第3図は
ペレットの斜視図、第4図はペレットに液体窒素を入れ
た断面図、第5図は常電導電磁石の励磁パターンを示す
コイル電流のタイムチャート、第6図は本発明の第2の
実施例の複合磁石の縦断面図、第7図はレールの一部分
の平面図である。 1・・・ペレット、2・・・レール、3・・・常電導電
磁石、4・・・鉄心、5・・・支持材、6・・・液体窒
素、7・・・永久第1図
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a plan view of a pellet and rail according to the first embodiment of the present invention, Fig. 2 is a sectional view of a portion of the rail, Fig. 3 is a perspective view of the pellet, and Fig. The figure is a cross-sectional view of a pellet filled with liquid nitrogen, Figure 5 is a time chart of coil current showing the excitation pattern of a normal conducting electromagnet, and Figure 6 is a longitudinal cross-sectional view of a composite magnet according to a second embodiment of the present invention. FIG. 7 is a plan view of a portion of the rail. 1...Pellet, 2...Rail, 3...Normal conducting electromagnet, 4...Iron core, 5...Support material, 6...Liquid nitrogen, 7...Permanent Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、酸化物超電導体を超電導状態に保持し、完全反磁性
で浮上させて走行させる磁気浮上車において、複数の電
磁石をレールとして配置させ、該電磁石を励磁して発生
した磁界を利用して浮上および走行させることを特徴と
する磁気浮上車。
1. In a magnetic levitation vehicle that maintains an oxide superconductor in a superconducting state and levitates it with complete diamagnetic properties, multiple electromagnets are arranged as rails, and the magnetic field generated by exciting the electromagnets is used to levitate. and a magnetic levitation vehicle characterized by being driven.
JP2753688A 1988-02-10 1988-02-10 Magnetically levitated vehicle Pending JPH01206804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2753688A JPH01206804A (en) 1988-02-10 1988-02-10 Magnetically levitated vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2753688A JPH01206804A (en) 1988-02-10 1988-02-10 Magnetically levitated vehicle

Publications (1)

Publication Number Publication Date
JPH01206804A true JPH01206804A (en) 1989-08-21

Family

ID=12223820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2753688A Pending JPH01206804A (en) 1988-02-10 1988-02-10 Magnetically levitated vehicle

Country Status (1)

Country Link
JP (1) JPH01206804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287026A (en) * 1990-10-29 1994-02-15 Hitachi, Ltd. Superconducting magnetic levitation apparatus
US5375531A (en) * 1991-06-28 1994-12-27 Hitachi, Ltd. Composite superconductor body and magnetic levitation system
US5521570A (en) * 1993-07-28 1996-05-28 Imra Material R&D Co., Ltd. Superconductive magnetic levitation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287026A (en) * 1990-10-29 1994-02-15 Hitachi, Ltd. Superconducting magnetic levitation apparatus
US5375531A (en) * 1991-06-28 1994-12-27 Hitachi, Ltd. Composite superconductor body and magnetic levitation system
US5521570A (en) * 1993-07-28 1996-05-28 Imra Material R&D Co., Ltd. Superconductive magnetic levitation apparatus

Similar Documents

Publication Publication Date Title
JP2656659B2 (en) Article transfer equipment using high-temperature superconductor
US3589300A (en) Magnetic suspension system
US5669310A (en) Electromagnetic induction suspension and horizontal switching system for a vehicle on a planar guideway
JP3251654B2 (en) System for levitating and guiding objects by magnetic force
US5375531A (en) Composite superconductor body and magnetic levitation system
CN101192463B (en) High temperature superconducting magnet applied in electromagnetic suspension type high speed magnetic levitation train
JPH088724B2 (en) Magnetic devices for low-friction transport of loads
US4979445A (en) Magnetically levitated vehicle with superconducting mirror sheets interacting with guideway magnetic fields
KR20120015502A (en) Magnetically levitated system and magnetically levitated vehicle system using superconductor
US5253592A (en) Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
CN110803029A (en) Hybrid electric levitation system
KR20180021673A (en) Cryogenic holding devices and related magnetic levitation vehicles and systems
US3927735A (en) Magnet system for use in the contactless guidance of a moving vehicle
JPH11122718A (en) Propelling, floating and guiding ground coil for magnetic levitated railway system, connection thereof and supporting and guiding structure of magnetic levitated railway system
CN108382264A (en) Permanent magnetism magnetic suspension linear electromagnetic propulsion system
US5586504A (en) Dual-keel electrodynamic maglev system
JPH01206804A (en) Magnetically levitated vehicle
JPH077812A (en) Solenoid suspension device using superconductive magnet
JP3282421B2 (en) Magnet track on which magnetic levitation travels and traveling method
US5602430A (en) Superconducting electromagnet arrangement for a magnetic levitation system
JP2592430B2 (en) Transfer device
JP2664233B2 (en) Article transfer device using superconductor
JPH05328538A (en) Magnetically levitated transportation system
JPH04365722A (en) Magnetic levitation transport apparatus
JP3144838B2 (en) Magnetic levitation traveling device