JPH05328538A - Magnetically levitated transportation system - Google Patents

Magnetically levitated transportation system

Info

Publication number
JPH05328538A
JPH05328538A JP12186192A JP12186192A JPH05328538A JP H05328538 A JPH05328538 A JP H05328538A JP 12186192 A JP12186192 A JP 12186192A JP 12186192 A JP12186192 A JP 12186192A JP H05328538 A JPH05328538 A JP H05328538A
Authority
JP
Japan
Prior art keywords
magnetic
track
magnetic field
temperature superconductor
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12186192A
Other languages
Japanese (ja)
Inventor
Noriko Kasahara
紀子 笠原
Akihira Morishita
明平 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12186192A priority Critical patent/JPH05328538A/en
Publication of JPH05328538A publication Critical patent/JPH05328538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

PURPOSE:To reduce magnetic flux leaking out of a transportation track for a vehicle levitated by pinning effect of a high-temperature superconductor, by covering a magnetic-field generating means almost entirely with a magnetic shielding unit. CONSTITUTION:A transportation track 3, where a vehicle 10 is levitated and moved, comprises a permanent magnet 5 for generating a given pattern of a magnetic field, and magnetic shielding units 4a and 4b made of ferromagnetic material like an iron for enclosing the permanent magnet 5. A plurality of permanent magnets 5 are laid all along the track 3 to form a given pattern of magnetic field across the transportation track 3. Through a notched part 23 of the magnetic shielding units 4a and 4b, the vehicle 10 made up of a mounting member 20, a container 22, and a high-temperature superconductor 21 can be moved freely on the track 3. Then, a 1iquid nitrogen is infected in the container 22 to cool the high-temperature superconductor 21. A linear-motor stator 6 for providing thrust to move a vehicle 10 on the track 3 is fixed to a placement member 7 on a base 2. Consequently, strong magnetic flux leaking out of the track 3 can be prevented, and a bad effect caused by the magnetic flux can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温超電導体を使用して
車両を浮上走行させる磁気浮上搬送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation transfer device for levitating a vehicle using a high temperature superconductor.

【0002】[0002]

【従来の技術】近年、高速度走行が可能であり、騒音の
ない軌道に非接触に浮上走行する搬送装置が研究開発さ
れ、特に高温超電導技術を利用して搬送車を磁気浮上さ
せるものが注目をあびている。
2. Description of the Related Art In recent years, research and development has been carried out on a carrier device capable of high-speed traveling and levitating traveling on a track without noise, and particularly, a device for magnetically levitating a carrier vehicle by using high temperature superconducting technology has attracted attention. Is flying.

【0003】高温超電導技術を利用した磁気浮上搬送装
置は搬送車に液体窒素温度レベル以上の温度で超電導状
態になる材料(以下、高温超電導体と呼称する。)を搭
載し、この高温超電導体と軌道側に設けられた磁石との
間に生じる磁気的反発力で搬送車を浮上させる。高温超
電導体にはHC1(下部臨界磁場)以下では外部磁場を完
全に排除する(マイスナー効果)がそれ以上の外部磁場
では磁束が量子化された磁束線として超電導体内に侵入
し、常電導状態になってしまう第1種超電導体と、HC1
以上の外部磁場を印加すると、磁束線は侵入するがピン
止め点に捕捉(ピン止め)されるため、後から磁束線が
侵入しようとしても、超電導内には入っていけない、つ
まりHC1より高い磁場HC2まで磁場を排除する(ピン止
め効果)効果をもつ第2種超電導体とがある。
A magnetic levitation transportation apparatus utilizing high-temperature superconducting technology is equipped with a material (hereinafter referred to as a high-temperature superconductor) which is in a superconducting state at a temperature higher than a liquid nitrogen temperature level in a transportation vehicle. The carrier is levitated by the magnetic repulsive force generated between the magnet provided on the track side. High-temperature superconductors completely eliminate the external magnetic field below H C1 (lower critical magnetic field) (Meissner effect), but above the external magnetic field, magnetic flux penetrates into the superconductor as quantized magnetic flux lines and is in the normal conducting state. Type 1 superconductor and H C1
When the above external magnetic field is applied, magnetic flux lines enter, but they are trapped (pinned) at pinning points, so even if magnetic flux lines try to enter later, they cannot enter the superconducting field, that is, higher than H C1. There is a type II superconductor having the effect of eliminating the magnetic field up to the magnetic field H C2 (pinning effect).

【0004】ここで、高温超電導体におけるピン止め効
果を利用した磁気浮上搬送装置は特願平3−18375
5に見られるように研究されており、このような磁気浮
上搬送装置について説明する。搬送車に搭載された高温
超電導体の内部に、平板の軌道側に設けられた磁石から
発生する磁界より所定の磁束分布パターンを形成する磁
界をピン止めし、それを保持することによって搬送車を
浮上させている。
Here, a magnetic levitation transfer apparatus utilizing the pinning effect in a high temperature superconductor is disclosed in Japanese Patent Application No. 3-18375.
The magnetic levitation transporting device has been studied as described in No. 5 and will be described. Inside the high temperature superconductor mounted on the carrier, a magnetic field that forms a predetermined magnetic flux distribution pattern is pinned from the magnetic field generated from the magnet provided on the orbit side of the flat plate, and the carrier is held by holding it. It is emerging.

【0005】そして、軌道側にコイル列を設け、このコ
イル列の励磁で生じる磁極間に高温超電導体を捕捉し、
コイルの励磁を順次切換えて捕捉位置を移動させること
によって搬送車に走行力を与えている。
Then, a coil array is provided on the track side, and a high temperature superconductor is captured between magnetic poles generated by the excitation of the coil array,
The traveling force is applied to the transport vehicle by sequentially switching the excitation of the coils to move the capture position.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記した
ように搬送車に高温超電導体を搭載し、高温超電導体の
ピン止め効果を利用して搬送車を浮上走行させる磁気浮
上搬送装置において、搬送車が走行する軌道を構成し、
搬送車に所定のパターンに磁界を形成して、搬送車を浮
上走行させる磁界発生手段は平板の軌道に固着されてい
る。ここで従来の磁気浮上搬送装置の走行軌道を図4を
用いて説明する。図4は従来の磁気浮上搬送装置の走行
軌道の横断面図である。
However, as described above, in a magnetic levitation transfer device in which a high-temperature superconductor is mounted on a carrier and the pinning effect of the high-temperature superconductor is used to levitate the carrier, the carrier is Configure the track to run,
The magnetic field generating means for forming a magnetic field in a predetermined pattern on the carrier and causing the carrier to levitate is fixed to the flat track. Here, the traveling track of the conventional magnetic levitation transport device will be described with reference to FIG. FIG. 4 is a cross-sectional view of a traveling track of a conventional magnetic levitation transport device.

【0007】図4において平板の軌道25の上面に磁気
発生手段である永久磁石5の上面を軌道25の経路に沿
って中心部と左右両端とに極性が異なるように配置して
ある。永久磁石5から発生する磁界の磁束は図中の磁束
線26の如く磁路を描く。よって軌道を形成する磁界発
生手段から発生する磁界は、軌道の周辺への漏れが生じ
やすくなる。従って磁性粉塵の多い環境では磁性の塵が
つきやすくなり、磁界発生手段の表面付近の磁場が弱く
なる。また周辺環境の磁界変動が磁界発生手段の形成し
ている所定のパタ−ンの磁界に影響を与えることがあ
り、安定性のある走行ができなくなる。
In FIG. 4, an upper surface of a permanent magnet 5 as a magnetism generating means is arranged on the upper surface of a flat track 25 so that the central portion and the left and right ends have different polarities along the path of the track 25. The magnetic flux of the magnetic field generated from the permanent magnet 5 draws a magnetic path as the magnetic flux line 26 in the figure. Therefore, the magnetic field generated by the magnetic field generating means that forms the track easily leaks to the periphery of the track. Therefore, in an environment with a large amount of magnetic dust, magnetic dust is likely to be attached, and the magnetic field near the surface of the magnetic field generating means becomes weak. Further, the magnetic field fluctuation of the surrounding environment may affect the magnetic field of a predetermined pattern formed by the magnetic field generating means, which makes stable traveling impossible.

【0008】また、磁界発生手段から発生する磁界の影
響で磁気を嫌う積荷、例えばフロッピーディスク等の搬
送はできなかった。つまり従来のように平板状の軌道に
敷設された磁界発生手段からの磁界の軌道周辺への磁束
漏れが大きい磁気浮上搬送装置においては、装置の使用
環境及び積荷の材質に制限があるといった欠点があっ
た。
Further, it has not been possible to convey a cargo, such as a floppy disk, which is unfavorable to magnetism due to the influence of the magnetic field generated by the magnetic field generating means. That is, in the conventional magnetic levitation transfer device in which magnetic field leakage from the magnetic field generating means laid on a flat track is large in the vicinity of the track, there is a drawback in that the operating environment of the device and the material of the cargo are limited. there were.

【0009】そこで本発明では、上記欠点を除去し、磁
界発生手段の軌道周辺への漏れ磁束を極めて小さくし、
装置の使用環境および積荷の材質に対する制限をなく
し、常に安定した浮上状態が得られる磁気浮上搬送装置
を提供することを目的とする。
Therefore, in the present invention, the above-mentioned drawbacks are eliminated, and the leakage magnetic flux around the track of the magnetic field generating means is made extremely small.
It is an object of the present invention to provide a magnetic levitation transfer device that eliminates restrictions on the environment in which the device is used and the material of the cargo and can always obtain a stable levitation state.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明では、経路に沿って敷設され、この
経路と直交する方向に所定のパターンの磁界を形成する
磁界発生手段とこの経路に沿って磁界発生手段をほぼ囲
うように配置される磁気遮蔽部とを備えた軌道と、この
磁界発生手段より形成された所定のパターンの磁界をピ
ン止め効果によって保持する高温超電導体要素を軌道に
敷設されている磁界発生手段に対向して配設し、搬送物
の搭載部を有する搬送車と、軌道に近接して設けられ、
移動磁界を発生させて搬送車に軌道と非接触に推進力を
与える推進手段とを具備してなることを特徴とする。ま
た請求項2の発明では、請求項1の発明に記載の磁気浮
上搬送装置において軌道を構成している磁気遮蔽部が強
磁性材料から成ることを特徴とする。
In order to achieve the above object, in the invention of claim 1, a magnetic field generating means is laid along a path and forms a magnetic field of a predetermined pattern in a direction orthogonal to the path. A high-temperature superconductor element for holding a track having a magnetic shield arranged so as to substantially surround the magnetic field generating means along this path, and holding a magnetic field of a predetermined pattern formed by the magnetic field generating means by a pinning effect. Is disposed so as to face the magnetic field generating means laid on the track, and is provided in the vicinity of the track with a transporting vehicle having a loading portion for the transported object,
Propulsion means for generating a moving magnetic field to apply a propulsive force to the carrier without contacting the track is provided. According to a second aspect of the present invention, in the magnetic levitation transport apparatus according to the first aspect of the invention, the magnetic shield portion forming the track is made of a ferromagnetic material.

【0011】さらに請求項3の発明では、請求項1の発
明に記載の磁気浮上搬送装置において、軌道を構成して
いる磁気遮蔽部が軌道に沿った切り欠き部を有し、搬送
車が磁気遮蔽部の内側に位置する高温超電導体要素と磁
気遮蔽部の外側に位置する搬送物の搭載部とで磁気遮蔽
部の切り欠き部を介して結合していることを特徴とす
る。
According to a third aspect of the present invention, in the magnetic levitation transport apparatus according to the first aspect of the invention, the magnetic shield portion forming the track has a cutout portion along the track, and the transport vehicle is magnetic. It is characterized in that the high-temperature superconductor element located inside the shield portion and the carrying portion on the outside of the magnetic shield portion are coupled via the cutout portion of the magnetic shield portion.

【0012】[0012]

【作用】上記した構成により、搬送車に搭載された高温
超電導要素は、ピン止め効果によって所定のパターンの
磁界を保持して、軌道に備えられた磁気発生手段が搬送
車の進行方向に対して磁束分布が一様な磁場を形成する
ことによって搬送車に安定した浮上力及び案内力を与え
る。そして、搬送車が浮上している状態で推進手段を動
作させれば、搬送車に推進力を与えることができ、搬送
車は軌道経路に沿って浮上走行する。ここで軌道に備え
られている磁界発生手段の磁路が、磁気遮蔽部を通るこ
とによって磁気遮蔽部の外へ漏れる磁束が極めて少なく
なる。従って磁性の塵がつきにくくなる。
With the above-mentioned structure, the high temperature superconducting element mounted on the carrier holds the magnetic field of a predetermined pattern by the pinning effect, and the magnetism generating means provided on the track is directed to the traveling direction of the carrier. By forming a magnetic field with a uniform magnetic flux distribution, a stable levitation force and guide force are applied to the carrier. Then, by operating the propulsion means in a state where the carrier vehicle is levitating, a propulsive force can be applied to the carrier vehicle, and the carrier vehicle levitates along the track path. When the magnetic path of the magnetic field generating means provided on the track passes through the magnetic shield portion, the magnetic flux leaking to the outside of the magnetic shield portion becomes extremely small. Therefore, magnetic dust is less likely to adhere.

【0013】また磁気遮蔽部を強磁性材料で形成する
と、その磁気抵抗が弱いため、磁気遮蔽部の内部を磁界
発生手段から発生する磁界の磁束が通るので軌道周辺へ
の磁束の漏れが極めて少なくなり、さらに磁界発生手段
の表面周辺の磁界が弱くなり、搬送車により安定した浮
上力及び案内力を与えることができる。
When the magnetic shield is made of a ferromagnetic material, its magnetic resistance is weak, so that the magnetic flux of the magnetic field generated from the magnetic field generating means passes through the inside of the magnetic shield, so that the leakage of the magnetic flux around the track is extremely small. In addition, the magnetic field around the surface of the magnetic field generating means becomes weaker, and a stable levitation force and guide force can be given to the carrier.

【0014】さらに、磁気遮蔽部が軌道に沿った切り欠
き部を有し、搬送車は磁気遮蔽部の内側に位置する高温
超電導体要素と磁気遮蔽部の外側に位置する搬送物の搭
載部とが切り欠き部を介して結合しているため搬送物が
磁気遮蔽部の外側に位置するので、磁界発生手段から発
生する磁界は磁気遮蔽部によって遮蔽され、搬送物には
その磁界の影響が及ばなくなり、磁気を嫌う材質でも搬
送できるようになる。
Further, the magnetic shield portion has a notch portion along the track, and the transport vehicle has a high temperature superconductor element located inside the magnetic shield portion and a portion for mounting a transported article located outside the magnetic shield portion. Since the object is located outside the magnetic shield because the two are coupled via the notch, the magnetic field generated by the magnetic field generating means is shielded by the magnetic shield, and the magnetic field affects the object. It becomes possible to transport even materials that dislike magnetism.

【0015】[0015]

【実施例】本発明の第1の実施例を図1及び図2を用い
て詳細に説明する。図1は本発明の第1の実施例による
磁気浮上搬送装置の斜傾図を局部的に示したものであ
る。図1において、磁気浮上搬送装置1を取り付けるベ
ース2の上には搬送車10が浮上走行する経路に沿って
軌道3が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a partial oblique view of a magnetic levitation transport apparatus according to a first embodiment of the present invention. In FIG. 1, a track 3 is provided on a base 2 on which the magnetic levitation transport device 1 is mounted, along a route along which a transport vehicle 10 floats.

【0016】軌道3は所定のパターンに磁界を形成する
磁界発生手段である永久磁石5と、この永久磁石5を囲
むように軌道3の経路に沿って設けられた強磁性部材例
えば鉄で形成された磁気遮蔽部4a、4bとから構成さ
れている。永久磁石5は軌道3の経路の直交方向に所定
のパターンに磁界を形成し、軌道3の経路に沿って複数
個敷設されている。
The track 3 is formed of a permanent magnet 5 which is a magnetic field generating means for forming a magnetic field in a predetermined pattern, and a ferromagnetic member such as iron provided along the path of the track 3 so as to surround the permanent magnet 5. And magnetic shields 4a and 4b. The permanent magnets 5 form a magnetic field in a predetermined pattern in a direction orthogonal to the path of the track 3, and a plurality of permanent magnets 5 are laid along the path of the track 3.

【0017】本実施例では、各永久磁石5は各々四角形
に形成され、軌道3の経路に沿って隙間なく4列に配置
されており、軌道3の延びる方向の直交方向に中央2列
は上面からS極に、外側2列は上面がN極になるように
配列されている。また軌道3の一部には、軌道3に連設
した図示されないピン止めステーションが設けられてい
る。このピン止めステーションは高温超電導体に磁束を
ピン止めするためのもので上述と同様に配列した永久磁
石5と非磁性材製のスペーサとから構成されている。
In the present embodiment, the permanent magnets 5 are each formed in a quadrangle and are arranged in four rows along the path of the track 3 with no gaps. The central two rows are the upper surface in the direction orthogonal to the extending direction of the track 3. To the S pole, and the outer two rows are arranged so that the upper surface becomes the N pole. Further, a part of the track 3 is provided with a pinning station (not shown) connected to the track 3. This pinning station is for pinning the magnetic flux to the high temperature superconductor, and is composed of the permanent magnets 5 and the spacers made of a non-magnetic material arranged in the same manner as described above.

【0018】一方、軌道3の下方に設置され、軌道3を
固定し、かつ搬送車10に走行力を与える機能をもつリ
ニア誘導モータ固定子6及び軌道3を支持し、各永久磁
石5の高さを揃える台座7がベース2に固着されてい
る。
On the other hand, the linear induction motor stator 6 and the track 3 which are installed below the track 3 and have the function of fixing the track 3 and giving a traveling force to the carrier 10 are supported, and the height of each permanent magnet 5 is increased. A pedestal 7 for adjusting the height is fixed to the base 2.

【0019】ここで例えば上述した磁気遮蔽部4aは逆
L字形を成し、永久磁石5を両側からはさみこむように
し、リニア誘導モータ固定子6の側面に固着されてい
る。また磁気遮蔽部4bは溝型を成し、永久磁石を囲む
ようにリニア誘導モータ固定子6のない箇所に配置され
ている。このようにそれぞれ磁気遮蔽部4a、4b及び
リニア誘導モータ固定子6によって永久磁石5を囲んで
いる。一方、リニア誘導モータ固定子6の近傍には搬送
車3の有無を検出するセンサ8がL字型の金具9を介し
てベース1に固定されている。ここで搬送車10につい
て図2を用いて説明する。図2は本発明の第1の実施例
における搬送車が軌道上に浮上した状態での軌道の横断
面図である。
Here, for example, the above-mentioned magnetic shield portion 4a has an inverted L-shape, and the permanent magnet 5 is sandwiched from both sides and fixed to the side surface of the linear induction motor stator 6. The magnetic shield 4b has a groove shape, and is arranged in a place where the linear induction motor stator 6 does not exist so as to surround the permanent magnet. In this way, the permanent magnet 5 is surrounded by the magnetic shields 4a and 4b and the linear induction motor stator 6, respectively. On the other hand, a sensor 8 for detecting the presence or absence of the transport vehicle 3 is fixed to the base 1 via an L-shaped metal fitting 9 near the linear induction motor stator 6. Here, the carrier 10 will be described with reference to FIG. FIG. 2 is a cross-sectional view of the track in the state where the carrier vehicle according to the first embodiment of the present invention floats on the track.

【0020】図2において搬送車10は軌道3を構成す
る磁気遮蔽部4a,4bの内側に位置し、高温超電導要
素である高温超電導体21を軌道3の永久磁石5に対向
するように収納する非磁性非導電性でかつ断熱構造の容
器22と磁気遮蔽部4の外側に位置し、積荷を載せる搭
載部20とが軌道の経路に沿って設けられた切り欠き部
23を介して接合して構成されている。この容器22に
は高温超電導体21を冷却し、超電導状態を保つために
液体窒素Nを注入する図示されない注入口を有してい
る。
In FIG. 2, the carrier 10 is located inside the magnetic shields 4a and 4b forming the track 3, and houses the high temperature superconductor 21 which is a high temperature superconducting element so as to face the permanent magnet 5 of the track 3. A non-magnetic, non-conductive container 22 having a heat insulating structure and a mounting portion 20 which is located outside the magnetic shielding portion 4 and on which a load is placed are joined to each other via a notch portion 23 provided along a trajectory path. It is configured. The container 22 has an injection port (not shown) for injecting liquid nitrogen N to cool the high temperature superconductor 21 and maintain the superconducting state.

【0021】上述したような構成をもつ磁気浮上搬送装
置1の浮上走行について説明する。軌道3に敷設された
永久磁石5から発生している磁界について図3を用いて
説明する。図3は図1における軌道の横断面図である。
The levitation traveling of the magnetic levitation transfer apparatus 1 having the above-mentioned structure will be described. The magnetic field generated from the permanent magnet 5 laid on the track 3 will be described with reference to FIG. FIG. 3 is a cross-sectional view of the track in FIG.

【0022】軌道3に敷設された永久磁石5から発生し
ている磁界の強さは、下部臨界磁界以上でピン止め効果
を示す範囲内とし、その磁界は軌道3を構成している磁
気遮蔽部4a、4bの磁気抵抗が小さいので、その内部
を通る。磁気遮蔽部4a、4bの内側の磁界は図3に図
示する磁束線24のようになり走行方向に同じ所定のパ
ターンの磁界を形成する。
The strength of the magnetic field generated from the permanent magnets 5 laid on the track 3 is within a range that exhibits a pinning effect above the lower critical magnetic field, and the magnetic field is the magnetic shield part forming the track 3. Since the magnetic resistances of 4a and 4b are small, they pass through the inside. The magnetic field inside the magnetic shields 4a and 4b becomes like a magnetic flux line 24 shown in FIG. 3 and forms a magnetic field having the same predetermined pattern in the traveling direction.

【0023】まず搬送車3に搭載されている高温超電導
体21は常電導状態で軌道3に連設されたピン止めステ
ーションに搬送車10を配置する。ここでピン止めステ
ーションにおいても図3に図示された磁束曲線24のよ
うな磁束が形成されている。
First, the high-temperature superconductor 21 mounted on the carrier 3 is placed in the pinning station connected to the track 3 in the normal conducting state. Here, also in the pinning station, a magnetic flux is formed like the magnetic flux curve 24 shown in FIG.

【0024】この時、高温超電導体21は常電導状態な
ので高温超電導体21内には永久磁石5から発生した所
定のパターンの磁界が通る。この状態で高温超電導体2
1を液体窒素によって冷却し、超電導状態に転移させ
る。すると高温超電導体21内には所定のパターンの磁
束がピン止めされ、軌道上に搬送車10が浮上する。ま
たリニア誘導モータ固定子6は図示されないインバータ
装置に接続され、センサ8は図示されないコントローラ
に接続されている。コントローラは発進指令、停止指令
が与えられる毎に対応するセンサからの信号に基づいて
対応するインバータ装置の出力を制御し、インバータ装
置の出力によってリニア誘導モータ固定子6の図示され
ない固定子巻線が所定周波数で励磁され、搬送車10の
加減速及び停止制御を行う。
At this time, since the high temperature superconductor 21 is in the normal conducting state, the magnetic field having a predetermined pattern generated from the permanent magnet 5 passes through the high temperature superconductor 21. In this state, high temperature superconductor 2
1 is cooled by liquid nitrogen and transformed into a superconducting state. Then, the magnetic flux having a predetermined pattern is pinned in the high-temperature superconductor 21, and the carrier 10 floats on the track. The linear induction motor stator 6 is connected to an inverter device (not shown), and the sensor 8 is connected to a controller (not shown). The controller controls the output of the corresponding inverter device based on the signal from the corresponding sensor each time the start command and the stop command are given, and the stator winding (not shown) of the linear induction motor stator 6 is controlled by the output of the inverter device. Excitation is performed at a predetermined frequency, and acceleration / deceleration and stop control of the transport vehicle 10 are performed.

【0025】このようなリニア誘導モータ固定子6の制
御によって、リニア誘導モータ固定子6は移動磁界を発
生する。移動磁界が発生すると、搬送車10に搭載され
ている高温超電導体21に移動磁界を打ち消す向きに電
流が誘導され、この誘導電流と移動磁界との相互作用に
よる電磁力によって搬送車10に推進力を与える。
By controlling the linear induction motor stator 6 as described above, the linear induction motor stator 6 generates a moving magnetic field. When the moving magnetic field is generated, a current is induced in the high-temperature superconductor 21 mounted on the carrier 10 in a direction of canceling the moving magnetic field, and the electromagnetic force due to the interaction between the induced current and the moving magnetic field causes a propulsive force on the carrier 10. give.

【0026】さらに搬送車10に搭載された高温超電導
体21の内部にはピン止め効果によって所定のパターン
の磁界が保持されているので、その所定のパターンの磁
界と軌道3に敷設された永久磁石5から発生する磁界と
の反発力によって搬送車10に対して軌道3に倣わせる
案内力が作用する。
Further, since a magnetic field having a predetermined pattern is held inside the high-temperature superconductor 21 mounted on the transport vehicle 10 by the pinning effect, the magnetic field having the predetermined pattern and the permanent magnet laid on the track 3 are held. A repulsive force with respect to the magnetic field generated from 5 causes a guide force to follow the track 3 with respect to the carrier 10.

【0027】この結果、本実施例では、軌道3に敷設さ
れている永久磁石5を磁気遮蔽部4a、4bによって囲
むことにより、永久磁石5から発生する磁界が磁気遮蔽
部4a、4bから外への放出することが少なくなり、軌
道周辺への磁束の漏れが極めて少なくすることができ
る。よって軌道周辺からの磁性の塵がつくことがなくな
り、永久磁石5の作用に磁気障害を受けなくなるので、
搬送車10の安定な走行が保証される。
As a result, in this embodiment, by surrounding the permanent magnet 5 laid on the track 3 with the magnetic shield portions 4a and 4b, the magnetic field generated from the permanent magnet 5 is outward from the magnetic shield portions 4a and 4b. Is less likely to be emitted, and the leakage of the magnetic flux around the track can be extremely reduced. Therefore, magnetic dust from the periphery of the track will not be attached, and the action of the permanent magnet 5 will not be magnetically disturbed.
Stable running of the carrier vehicle 10 is guaranteed.

【0028】また、搬送車10の積荷を搭載部20を永
久磁石5を囲んでいる磁気遮蔽部4a、4bの外側に位
置させることにより、積荷は永久磁石5から発生する磁
界の影響をうけないので、磁気を嫌う物品例えばフロッ
ピーディスク等を搬送することが可能になる。また磁気
搬送装置1の設置場所においても磁気を嫌う物品に隣接
した場所に設置することが可能になる。つまり、軌道3
周辺への磁束の漏れが極めて少なくなることにより、装
置の使用環境及び積荷の材質に対する制限がなくなる。
Further, by placing the load of the carrier 10 on the outside of the magnetic shields 4a and 4b surrounding the permanent magnet 5 with the mounting portion 20 on the load, the load is not affected by the magnetic field generated from the permanent magnet 5. Therefore, it becomes possible to carry an article that dislikes magnetism, such as a floppy disk. Also, the magnetic carrier device 1 can be installed at a place adjacent to an article that dislikes magnetism. That is, orbit 3
Since the leakage of magnetic flux to the surroundings is extremely small, there are no restrictions on the operating environment of the device and the material of the cargo.

【0029】また、軌道3に敷設された永久磁石5を軌
道3の経路に直交する方向にその表面が異なる極を有す
るよう配置し、その永久磁石5を囲む磁気遮蔽部4a、
4bを鉄にすることにより、鉄の磁気抵抗が弱いので永
久磁石5から発生する磁界の磁路は磁気遮蔽部4a、4
b内を通り、再び永久磁石5に流れこむことから、永久
磁石5の表面付近には不均一で強い磁場が生じる。よっ
て搬送車10に収納されている高温超電導体21に発生
する浮上力・案内力を強化することができ、更に安定し
た浮上状態を保つことができる。
Further, the permanent magnet 5 laid on the track 3 is arranged so that its surface has different poles in the direction orthogonal to the path of the track 3, and the magnetic shield 4a surrounding the permanent magnet 5 is provided.
By making 4b iron, the magnetic resistance of iron is weak, so that the magnetic path of the magnetic field generated from the permanent magnet 5 is the magnetic shield portions 4a, 4
Since it passes through the inside of b and flows into the permanent magnet 5 again, a nonuniform and strong magnetic field is generated in the vicinity of the surface of the permanent magnet 5. Therefore, the levitation force / guide force generated in the high-temperature superconductor 21 housed in the transport vehicle 10 can be enhanced, and a more stable levitation state can be maintained.

【0030】尚、本発明は上述した実施例に限定される
ものではない。すなわち上述した実施例では磁気遮蔽部
4a、4bは鉄で角をもつ形状に形成されているが、こ
れは磁気遮蔽部4a,4bの材質および形状を限定する
ものではなく、材質は強磁性材であればよく、形状も永
久磁石5から発生する磁界を軌道の周辺へ漏らさない形
状であれば何等さしつかえない。
The present invention is not limited to the above embodiment. That is, in the above-described embodiment, the magnetic shields 4a and 4b are made of iron and have an angular shape. However, this does not limit the material and shape of the magnetic shields 4a and 4b, and the material is a ferromagnetic material. Any shape may be used as long as it does not leak the magnetic field generated from the permanent magnet 5 to the periphery of the track.

【0031】また、搬送車10形状や軌道3の位置関係
においても上述した実施例に限定されるものではない。
つまり、上述した実施例では磁気遮蔽部4a、4bの切
り欠き部23はその上部中央に位置するが、これは切り
欠き部23の位置を限定するものではなく搬送車10の
収納されている高温超電導体21の容器22が磁気遮蔽
部4a,4b内にあり軌道3に敷設されている永久磁石
5に対向する位置に高温超電導体21が配置され、搬送
車10の積荷の搭載部20が磁気遮蔽部4a、4bの外
側に位置し、容器22と切り欠き部23を通して結合さ
れている形状であれば何ら差しつかえない。
Further, the shape of the carrier 10 and the positional relationship of the track 3 are not limited to those in the above-described embodiment.
That is, in the above-described embodiment, the cutout portion 23 of the magnetic shield portions 4a and 4b is located at the center of the upper portion thereof, but this does not limit the position of the cutout portion 23, and the high temperature in which the transport vehicle 10 is stored. The high temperature superconductor 21 is arranged at a position where the container 22 of the superconductor 21 is located inside the magnetic shield portions 4a and 4b and faces the permanent magnet 5 laid on the track 3, and the load carrying portion 20 of the carrier 10 is magnetic. Any shape may be used as long as it is located outside the shielding portions 4a and 4b and is connected to the container 22 through the cutout portion 23.

【0032】例えば図5、図6及び図7に示されるよう
な磁気遮蔽部4a、4bの切り欠き部23の位置や永久
磁石5の取り付け位置を搬送車10の形状によって種々
に変形させることが可能となる。ここで、図5、図6、
図7は本発明の他の実施例による磁気浮上搬送装置の横
断面図である。その他、本発明の要旨を逸脱しない範囲
で種々変更して実施することができる。
For example, the positions of the notches 23 of the magnetic shields 4a and 4b and the mounting positions of the permanent magnets 5 as shown in FIGS. 5, 6 and 7 can be variously changed depending on the shape of the carrier 10. It will be possible. Here, FIG. 5, FIG.
FIG. 7 is a cross-sectional view of a magnetic levitation transport device according to another embodiment of the present invention. In addition, various modifications can be made without departing from the scope of the present invention.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
高温超電導体のピン止め効果を利用して搬送車を浮上走
行させる磁気浮上搬送装置において、軌道に敷設されて
いる磁気発生手段を磁気遮蔽部でほぼ囲むことによっ
て、軌道周辺への漏れ磁束が極めて小さくなり、装置の
使用環境及び積荷の材質に対する制限をなくすことがで
きる。
As described above, according to the present invention,
In a magnetic levitation transfer device that uses the pinning effect of a high-temperature superconductor to levitate a transfer vehicle, the magnetic flux generating means installed around the track is surrounded by a magnetic shield, so that the leakage flux around the track is extremely high. The size can be reduced, and restrictions on the use environment of the device and the material of the cargo can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による磁気浮上搬送装置
の斜視図である。
FIG. 1 is a perspective view of a magnetic levitation transport device according to a first embodiment of the present invention.

【図2】[図1]における搬送車と軌道との関係を示す
横断面図である。
FIG. 2 is a cross-sectional view showing the relationship between the guided vehicle and the track in FIG.

【図3】[図1]における磁界発生手段から発生する磁
路を示す軌道の横断面図である。
FIG. 3 is a transverse cross-sectional view of an orbit showing a magnetic path generated by the magnetic field generating means in FIG.

【図4】従来の磁気浮上搬送装置における磁界発生手段
から発生する磁路を示す軌道の横断面図である。
FIG. 4 is a transverse cross-sectional view of an orbit showing a magnetic path generated from a magnetic field generating means in a conventional magnetic levitation transport device.

【図5】本発明の第2の実施例による磁気浮上搬送装置
の横断面図である。
FIG. 5 is a cross-sectional view of a magnetic levitation transport device according to a second embodiment of the present invention.

【図6】本発明の第3の実施例による磁気浮上搬送装置
の横断面図である。
FIG. 6 is a cross-sectional view of a magnetic levitation transport device according to a third embodiment of the present invention.

【図7】本発明の第4の実施例による磁気浮上搬送装置
の横断面図である。
FIG. 7 is a cross-sectional view of a magnetic levitation transport device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…磁気浮上搬送装置 3…軌道 4a、4b…磁気遮蔽部 5…永久磁石 6…リニア誘導モータ固定子 8…センサ 10…搬送車 20…搭載部 21…高温超電導体 22…容器 23…切り欠き部 24…磁束線 DESCRIPTION OF SYMBOLS 1 ... Magnetic levitation conveyance apparatus 3 ... Orbit 4a, 4b ... Magnetic shielding part 5 ... Permanent magnet 6 ... Linear induction motor stator 8 ... Sensor 10 ... Conveying vehicle 20 ... Mounting part 21 ... High temperature superconductor 22 ... Container 23 ... Notch Part 24 ... Magnetic flux line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 経路に沿って敷設され、この経路の直交
する方向に所定のパターンの磁界を形成する磁界発生手
段と、前記経路に沿って前記磁界発生手段をほぼ囲うよ
うに配置される磁気遮蔽部とを備えた軌道と、 前記磁界発生手段より形成された前記所定のパターンの
磁界をピン止め効果によって保持する高温超電導体要素
を前記軌道の前記磁界発生手段に対向して配設し、搬送
物の搭載部を有する搬送車と、 前記軌道に近接して設けられ、移動磁界を発生させて前
記搬送車に前記軌道と非接触に推進力を与える推進手段
とを具備してなることを特徴とする磁気浮上搬送装置。
1. A magnetic field generator that is laid along a path and that forms a magnetic field of a predetermined pattern in a direction orthogonal to the path, and a magnet that is arranged so as to substantially surround the magnetic field generator along the path. A track provided with a shield portion, a high-temperature superconductor element that holds the magnetic field of the predetermined pattern formed by the magnetic field generating means by a pinning effect is arranged facing the magnetic field generating means of the track, And a propulsion unit that is provided close to the track and that generates a moving magnetic field and applies a propulsive force to the car without contacting the track. Characteristic magnetic levitation transport device.
【請求項2】 前記軌道の磁気遮蔽部が強磁性材料から
成ることを特徴とする請求項1に記載の磁気浮上搬送装
置。
2. The magnetic levitation transfer apparatus according to claim 1, wherein the magnetic shield portion of the track is made of a ferromagnetic material.
【請求項3】 前記軌道の磁気遮蔽部が前記軌道に沿っ
た切り欠き部を有し、前記搬送車において前記磁気遮蔽
部の内側に位置する前記高温超電導体要素と前記磁気遮
蔽部の外側に位置する前記搭載部とが前記切り欠き部を
介して結合していることを特徴とする請求項1に記載の
磁気浮上搬送装置。
3. The magnetic shield part of the track has a notch part along the track, and the high temperature superconductor element located inside the magnetic shield part and the outside of the magnetic shield part in the transport vehicle. 2. The magnetic levitation transport device according to claim 1, wherein the mounting portion located is coupled to the mounting portion via the cutout portion.
JP12186192A 1992-05-14 1992-05-14 Magnetically levitated transportation system Pending JPH05328538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12186192A JPH05328538A (en) 1992-05-14 1992-05-14 Magnetically levitated transportation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12186192A JPH05328538A (en) 1992-05-14 1992-05-14 Magnetically levitated transportation system

Publications (1)

Publication Number Publication Date
JPH05328538A true JPH05328538A (en) 1993-12-10

Family

ID=14821751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12186192A Pending JPH05328538A (en) 1992-05-14 1992-05-14 Magnetically levitated transportation system

Country Status (1)

Country Link
JP (1) JPH05328538A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521570A (en) * 1993-07-28 1996-05-28 Imra Material R&D Co., Ltd. Superconductive magnetic levitation apparatus
KR101137968B1 (en) * 2010-08-12 2012-04-26 한국철도기술연구원 Magnetically levitated system and magnetically levitated vehicle system using superconductor
CN102717724A (en) * 2012-06-25 2012-10-10 西南交通大学 Method for improving performance of magnetic suspension system and magnetic suspension system thereof
CN105463957A (en) * 2015-12-28 2016-04-06 西南交通大学 Permanent magnetic guide way
CN106787457A (en) * 2016-12-29 2017-05-31 中铁二院工程集团有限责任公司 Magnetic-levitation magnetic shielding device and method
JP2017532936A (en) * 2014-09-08 2017-11-02 スカイトラン インコーポレイテッド Levitation control system for transport system
WO2017202199A1 (en) * 2016-05-26 2017-11-30 袁哲 New maglev system integrating levitation and propulsion
KR20210018409A (en) * 2018-07-23 2021-02-17 무라다기카이가부시끼가이샤 Goods conveying device
WO2024142123A1 (en) * 2022-12-28 2024-07-04 I.M.A. Industria Macchine Automatiche S.P.A. Object moving device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521570A (en) * 1993-07-28 1996-05-28 Imra Material R&D Co., Ltd. Superconductive magnetic levitation apparatus
KR101137968B1 (en) * 2010-08-12 2012-04-26 한국철도기술연구원 Magnetically levitated system and magnetically levitated vehicle system using superconductor
CN102717724A (en) * 2012-06-25 2012-10-10 西南交通大学 Method for improving performance of magnetic suspension system and magnetic suspension system thereof
JP2017532936A (en) * 2014-09-08 2017-11-02 スカイトラン インコーポレイテッド Levitation control system for transport system
JP2020174528A (en) * 2014-09-08 2020-10-22 スカイトラン インコーポレイテッド Levitation control system for transport system
US11890946B2 (en) 2014-09-08 2024-02-06 Skytran, Inc. Levitation control system for a transportation system
CN105463957A (en) * 2015-12-28 2016-04-06 西南交通大学 Permanent magnetic guide way
CN105463957B (en) * 2015-12-28 2017-04-26 西南交通大学 Permanent magnetic guide way
WO2017202199A1 (en) * 2016-05-26 2017-11-30 袁哲 New maglev system integrating levitation and propulsion
CN106787457A (en) * 2016-12-29 2017-05-31 中铁二院工程集团有限责任公司 Magnetic-levitation magnetic shielding device and method
KR20210018409A (en) * 2018-07-23 2021-02-17 무라다기카이가부시끼가이샤 Goods conveying device
WO2024142123A1 (en) * 2022-12-28 2024-07-04 I.M.A. Industria Macchine Automatiche S.P.A. Object moving device

Similar Documents

Publication Publication Date Title
JP2656659B2 (en) Article transfer equipment using high-temperature superconductor
JPH0678412A (en) Superconductive magnetic support equipment
US10604898B2 (en) Rail-bound maglev train
JPH05328538A (en) Magnetically levitated transportation system
US5980193A (en) Magnetically levitated robot and method of increasing levitation force
JP2553043B2 (en) Floating carrier
JPH0687603B2 (en) Floating carrier
Wang et al. A new repulsive magnetic levitation approach using permanent magnets and air-core electromagnets
JPH05153704A (en) Method and apparatus for controlling planar magnetic repellent/attractive levitation control
JP3421095B2 (en) Superconducting magnetic levitation transfer device
US5085149A (en) Ground vehicle suspension and guidance and electromagnetic system thereof with multiple surface arcuate reaction rails
JP3144837B2 (en) Magnetic levitation traveling device
JPS61224808A (en) Levitating conveyor
JP3144836B2 (en) Magnetic levitation traveling device
JPH054717A (en) Magnetic levitation carrier device
JP2664233B2 (en) Article transfer device using superconductor
JPH05122807A (en) Conveyor
JPH05336614A (en) Superconducting magnetic bearing carrier
JP2882850B2 (en) AC magnetic levitation transfer device
JPH06211350A (en) Conveyer in nonmagnetic pipe
JPH04248303A (en) Magnetic levitation carrier
JPS6096106A (en) Magnetic supporting device of levitating type conveying system
JPH01206804A (en) Magnetically levitated vehicle
JPH0919005A (en) Attraction type magnetic levitation vehicle
JP2976504B2 (en) Magnetic levitation transfer device