JPH01206705A - Non-directional micro-strip antenna - Google Patents

Non-directional micro-strip antenna

Info

Publication number
JPH01206705A
JPH01206705A JP3109088A JP3109088A JPH01206705A JP H01206705 A JPH01206705 A JP H01206705A JP 3109088 A JP3109088 A JP 3109088A JP 3109088 A JP3109088 A JP 3109088A JP H01206705 A JPH01206705 A JP H01206705A
Authority
JP
Japan
Prior art keywords
radiating element
microstrip antenna
antenna according
omnidirectional
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3109088A
Other languages
Japanese (ja)
Other versions
JPH0666578B2 (en
Inventor
Toru Matsuoka
徹 松岡
Kenji Suzuki
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP63031090A priority Critical patent/JPH0666578B2/en
Publication of JPH01206705A publication Critical patent/JPH01206705A/en
Publication of JPH0666578B2 publication Critical patent/JPH0666578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To cause an antenna to be compact and to be non-directional in a horizontal surface and to cause the change of an impedance to be small over a wide band by provided a cylinder-shaped secondary radiating element in the outer circumference of a primary radiating to be composed of a metal- covered film, which is attached on the surface of a conductor substrate. CONSTITUTION:A primary radiating element 2 to be composed of the metal- covered film is formed on the surface of a substrate 1 which is composed of a conductor. The lower edge part of the primary radiating element 2 is connected through a ribbon-shaped conductor 3 and an impedance matching element 4 to a feeding terminal 6. A secondary radiating element 7 to be composed of the cylinder-shaped conductor, whose both edges are opened, is provided so as to cover the surface of the primary radiating element 2. The shaft length of the secondary radiating element 7 is formed to be suitably shorter than the 1/2 of a wavelength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、陸」−における移動無線基地局用のコ拳リニ
ア・アンテナの基本放射素子等に好適な無指向性マイク
ロストリップアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an omnidirectional microstrip antenna suitable for use as the basic radiating element of a linear antenna for mobile radio base stations on land.

従来の技術 第20図は、従来におけるマイクロストリップアンテナ
の一例を示す斜視図で、11は波長に比し十分薄い誘電
体より成る基板、12は基板11の表面中央に設けた矩
形状の導体より成る放射素子、13はリボン状の導体、
14は基板11の背面に設けた接地導体、15は同軸形
給電端子で、その外部導体を接地導体14に接続し、内
部導体をリボン状の導体13に接続しである。
BACKGROUND ART FIG. 20 is a perspective view showing an example of a conventional microstrip antenna, in which 11 is a substrate made of a dielectric material that is sufficiently thin compared to the wavelength, and 12 is a rectangular conductor provided at the center of the surface of the substrate 11. 13 is a ribbon-shaped conductor,
Reference numeral 14 denotes a ground conductor provided on the back surface of the substrate 11, and 15 a coaxial power supply terminal, the outer conductor of which is connected to the ground conductor 14, and the inner conductor connected to the ribbon-shaped conductor 13.

給電端子15、リボン状の導体13及び接地導体14よ
り成るマイクロストリップ線路を介して基本モードで励
振する場合、放射素子120所要の長さaは、基板11
の比誘電率なε「、波長を入とすると、入/2吊となり
、給電点、即ち、放射素子12とリボン状の導体13と
の接続点を含む放射素子12の下端縁に対向する上端縁
を接地導体14に短絡接続せしめた場合には、放射素子
12の所要の長さaはほぼ入/4八]となる。
When exciting in the fundamental mode via a microstrip line consisting of the feed terminal 15, the ribbon-shaped conductor 13, and the ground conductor 14, the required length a of the radiating element 120 is the same as that of the substrate 11.
If the relative dielectric constant ε' is input, the wavelength becomes input/2, and the upper end opposite to the lower edge of the radiating element 12 including the feeding point, that is, the connection point between the radiating element 12 and the ribbon-shaped conductor 13. When the edge is short-circuited to the ground conductor 14, the required length a of the radiating element 12 is approximately 1/48].

このマイクロストリップアンテナの基本的な特性は、放
射素子I2の給電点が波源となると共に、放射素子12
の中心点に対して給電点と対称な上端縁部分が波源とな
り、この2個所の波源から放射される電磁波が合成され
るため、基板11の誘電率が一様で、基板11が平板で
あるとすると、放射電界面及び磁界面は共に正面方向に
のみ指向性を有する。
The basic characteristics of this microstrip antenna are that the feeding point of the radiating element I2 serves as a wave source, and the radiating element 12
The upper edge portion that is symmetrical to the feeding point with respect to the center point becomes a wave source, and the electromagnetic waves radiated from these two wave sources are combined, so the dielectric constant of the substrate 11 is uniform and the substrate 11 is a flat plate. Then, both the radiation electric surface and the magnetic surface have directivity only in the front direction.

第20図における放射素子12の中心を座標原点と6一 し、矢印を付した実線を以て示すように、放射素子12
の長ご方向をX軸方向、幅方向をY軸方向、基板11の
板面と直交する方向をX軸方向とした場合、72面の指
向性、即ち、磁界面の指向性の一例を示すと第21図の
ようになり、図から明らかなように半値幅はほぼ80°
である。
The center of the radiating element 12 in FIG. 20 is aligned with the coordinate origin, and as shown by a solid line with an arrow, the radiating element 12
An example of the directivity of the 72 planes, that is, the directivity of the magnetic interface, is shown when the longitudinal direction is the X-axis direction, the width direction is the Y-axis direction, and the direction perpendicular to the plate surface of the substrate 11 is the X-axis direction. and as shown in Figure 21, and as is clear from the figure, the half width is approximately 80°
It is.

XZ面の指向性、即ち、電界面の指向性の一例を示すと
第22図のようになり、半値幅はほぼ76°である。
An example of the directivity of the XZ plane, that is, the directivity of the electric surface, is shown in FIG. 22, and the half width is approximately 76°.

又、このマイクロストリップアンテナのインピーダンス
特性は、このアンテナが不平衡平面回路共振器より成る
ため、Qが大で、比帯域は狭帯域である。
Further, the impedance characteristics of this microstrip antenna are such that, since this antenna is composed of an unbalanced planar circuit resonator, Q is large and the fractional band is narrow.

第23図は、第20図に示したアンテナにおける基板1
1の比誘電率ε、を3.6に選んだ場合における放射周
波数と反射減衰量の関係の一例を示す図で、横軸は周波
数、縦軸は反射減衰量(dB)であるが、図から明らか
なように、反射減衰量10dB (電圧定在波比VSW
R岬1.9)において比帯域は2.5%程度である。
FIG. 23 shows the substrate 1 in the antenna shown in FIG.
This is a diagram showing an example of the relationship between radiation frequency and return loss when the relative dielectric constant ε of 1 is selected as 3.6. The horizontal axis is frequency and the vertical axis is return loss (dB). As is clear from the return loss of 10 dB (voltage standing wave ratio VSW
At Cape R 1.9), the specific band is about 2.5%.

第24図は、水平面内における指向性を無指向性とする
ために従来提案実施されているマイクロストリップアン
テナの一例を示す図、第25図は、その要部の展開図で
、両図において、1Gは砲弾形支持体、17は誘電体よ
り成る可撓性基体、18はリボン状の導体より成る放射
素子で、基体17の表面に設けである。19は給電線で
ある。
Fig. 24 is a diagram showing an example of a microstrip antenna that has been proposed and implemented in the past to make the directivity non-directional in the horizontal plane, and Fig. 25 is an exploded view of its main parts. 1G is a bullet-shaped support, 17 is a flexible base made of a dielectric material, and 18 is a radiating element made of a ribbon-shaped conductor, which is provided on the surface of the base 17. 19 is a power supply line.

発明が解決しようとする問題点 陸上における移動無線基地局用のアンテナは、垂直偏波
で、水平面内の指向性か無指向性であることが要求され
ると共に、特に送受信に共用する場合には、比帯域がほ
ぼ10%に及ぶことが要求されるため、第20図に示し
た従来のマイクロストリップアンテナは陸上における移
動無線基地局用のアンテナとしては不適である。
Problems to be Solved by the Invention An antenna for a mobile radio base station on land is required to be vertically polarized and directional or omnidirectional in the horizontal plane, and especially when used for both transmission and reception. , the conventional microstrip antenna shown in FIG. 20 is not suitable as an antenna for a mobile radio base station on land.

第24図及び第25図に示したアンテナはYZ平面にお
いて無指向性であるが、形状構造が大形複雑なばかりで
なく、放射素子17は基本的には不平衡平面回路共振器
であるから周波数特性が狭帯域で、矢張り陸上における
移動無線基地局用のアンテナとしては不適である。
The antenna shown in FIGS. 24 and 25 is omnidirectional in the YZ plane, but not only is the shape and structure large and complex, but the radiating element 17 is basically an unbalanced planar circuit resonator. Its frequency characteristics are narrow, making it unsuitable as an antenna for mobile radio base stations on land.

問題点を解決するための手段 本発明マイクロストリップアンテナは、誘電体基板の表
面に被着せしめた金属被膜より成る一次放射素子の外周
に筒状の二次放射素子を設けて成ることを特徴とするも
のである。
Means for Solving the Problems The microstrip antenna of the present invention is characterized in that a cylindrical secondary radiating element is provided around the outer periphery of a primary radiating element made of a metal film deposited on the surface of a dielectric substrate. It is something to do.

作用 上記のように構成することにより、小形で、水平面内に
おいて無指向性を呈せしめ得ると共に、広帯域に亙って
インピーダンス特性の変化を極めて小ならしめることが
出来る。
Effect: By configuring as described above, it is possible to have a small size and exhibit omnidirectionality in the horizontal plane, and to make changes in impedance characteristics extremely small over a wide band.

実施例 第1図は、本発明の一実施例を示す正面図、第2図は側
面図、第3図は背面図、第4図は平面図、第5図は要部
の正面図、第6図は要部の側面図で、各図において、1
は誘電体より成る基板、2は基板1の表面に設けた矩形
状の導体より成る一次放射素子、3は基板1の表面に設
けたリボン状の導体で、上端部を一次放射素子2の下端
部に接続しである。4はリボン状の導体3の中間部分を
適宜の長さに亙って幅を広く形成して成るインピーダン
ス整合素子、5は基板1の背面に設けた接地導体、6は
給電端子で、例えば同軸端子より成り、その内部導体を
リボン状の導体3に接続し、外部導体を接地導体5に接
続しである。
Embodiment FIG. 1 is a front view showing an embodiment of the present invention, FIG. 2 is a side view, FIG. 3 is a rear view, FIG. 4 is a plan view, and FIG. 5 is a front view of main parts. Figure 6 is a side view of the main parts, and in each figure, 1
is a substrate made of a dielectric material, 2 is a primary radiation element made of a rectangular conductor provided on the surface of the substrate 1, and 3 is a ribbon-shaped conductor provided on the surface of the substrate 1, the upper end of which is the lower end of the primary radiation element 2. It is connected to the part. 4 is an impedance matching element formed by widening the middle part of a ribbon-shaped conductor 3 over an appropriate length; 5 is a grounding conductor provided on the back surface of the substrate 1; 6 is a power supply terminal, such as a coaxial It consists of a terminal, the inner conductor of which is connected to a ribbon-shaped conductor 3, and the outer conductor of which is connected to a ground conductor 5.

一次放射素子2、リボン状の導体3、インピーダンス整
合素子4及び接地導体5等は、プリント配線手法又は蒸
着等の手段によって基板1の表面又は背面に被着せしめ
た銅箔等を以て形成しである。
The primary radiation element 2, the ribbon-shaped conductor 3, the impedance matching element 4, the ground conductor 5, etc. are formed of copper foil or the like that is deposited on the front or back surface of the substrate 1 by means such as printed wiring or vapor deposition. .

7は本発明の要旨である二次放射素子で、両端を開放し
た筒状の導体より成り、その中心軸を基板1の長手方向
の中心軸にほぼ一致せしめ、その軸長を波長の渉より適
宜短く形成して二次放射素子7の側壁が一次放射素子2
の表面を覆うと共に、二次放射素子7の内径を適当なら
しめて一次放射素子2、リボン状の導体3及び接地導体
5等が二次放射素子7に接触することのないように配設
しである。
Reference numeral 7 denotes a secondary radiating element, which is the gist of the present invention, and is made of a cylindrical conductor with both ends open. Its central axis is approximately aligned with the central axis in the longitudinal direction of the substrate 1, and its axial length is determined by adjusting the wavelength. The side wall of the secondary radiating element 7 is formed to be appropriately short so that the side wall of the secondary radiating element 7 is the same as that of the primary radiating element 2.
In addition to covering the surface of the secondary radiating element 7, the inner diameter of the secondary radiating element 7 is appropriately adjusted so that the primary radiating element 2, the ribbon-shaped conductor 3, the grounding conductor 5, etc. do not come into contact with the secondary radiating element 7. be.

81乃至84は誘電体より成る支持体で、それぞれ例え
ば横断面の形状を半円形に形成し、平坦な側壁に基板1
の嵌入凹部を設け、支持体81及び82を二次放射素子
7の」一端部に内装し、支持体83及び84を二次放射
素子7の下端部に内装すると共に、支持体81乃至84
の各嵌入凹部の間に基板1を挟持せしめ、支持体81乃
至84と二次放射素子7との間及び支持体81乃至84
と基板1との間を適当な接着剤等で固着せしめる。
Reference numerals 81 to 84 denote supports made of dielectric material, each having a semicircular cross-sectional shape, and having a flat side wall on which the substrate 1 is attached.
A fitting recess is provided, supports 81 and 82 are installed inside one end of the secondary radiation element 7, supports 83 and 84 are installed inside the lower end of the secondary radiation element 7, and supports 81 to 84 are installed inside the lower end of the secondary radiation element 7.
The substrate 1 is sandwiched between each of the fitting recesses, and between the supports 81 to 84 and the secondary radiation element 7 and the supports 81 to 84.
and the substrate 1 are fixed with a suitable adhesive or the like.

支持体81乃至84の各平坦な側壁に嵌入凹部を設ける
ことなく、平坦な側壁の状態で基板1を挟持せしめても
よい。
The substrate 1 may be held between the flat side walls of the supports 81 to 84 without providing a fitting recess in each of the flat side walls.

図には一次放射素子2の正面から見た輪郭形状を矩形に
形成した場合を例示しであるが、円形又は楕円形等に形
成してもよく、又、二次放射素子7の横断面の形状も円
形のほか楕円形、正方形又は矩形等任意の形状に形成し
ても本発明を実施することが出来る。
The figure shows an example in which the outline shape of the primary radiating element 2 seen from the front is formed into a rectangular shape, but it may be formed into a circular or elliptical shape, or the cross-sectional shape of the secondary radiating element 7 The present invention can be practiced even if the shape is formed in any arbitrary shape such as a circle, an ellipse, a square, or a rectangle.

二次放射素子7の横断面の形状に応じて支持体81乃至
84の各横断面の形状を定めること勿論である。
Of course, the shape of each cross section of the supports 81 to 84 is determined depending on the shape of the cross section of the secondary radiation element 7.

更に、二次放射素子7を導板より成る筒体を以て形成す
る代りに網状又は格子状の導体を以て形成するか、筒状
の誘電体より成る基体の外表面又は内表面にプリント配
線手法又は蒸着等の手法によって被着せしめた銅箔等を
以て形成してもよい。
Furthermore, instead of forming the secondary radiation element 7 with a cylinder made of a conductive plate, it can be formed with a net-like or lattice-like conductor, or it can be formed with a printed wiring method or vapor deposition on the outer or inner surface of a cylindrical dielectric substrate. It may also be formed using a copper foil or the like deposited by a method such as the above.

本発明マイクロストリップアンテナにおける二次放射素
子2を基本モードで励振する場合における一次放射素子
2の長さaは、基板1の比誘電率をε「、波長を入とす
ると、入/2八丁に形成する。
When the secondary radiating element 2 in the microstrip antenna of the present invention is excited in the fundamental mode, the length a of the primary radiating element 2 is equal to ε/2, where the relative dielectric constant of the substrate 1 is ε'' and the wavelength is input. Form.

第7図乃至第9図は、本発明アンテナの作動原理を説明
するための図で、各図の符号は第1図乃至第6図と同様
で、矢印を付した実線は電界分布を、破線は電流分布を
示す。
FIGS. 7 to 9 are diagrams for explaining the operating principle of the antenna of the present invention. The symbols in each figure are the same as those in FIGS. 1 to 6, and the solid lines with arrows indicate the electric field distribution, and the broken lines indicates the current distribution.

第7図における0点は、リボン状の導体3及び接地導体
5より成るマイクロストリップ線路を以て形成した給電
線と一次放射素子2との接続点、即ち、給電点で、この
給電点Cを介して励振した場合、一次放射素子2の開放
端の近傍において発生した電界に基づく電流分布は、一
次放射素子2の中心点d2において最大となり、この点
における電圧は最小であるから、62点に対応する接地
導体5における65点と62点とを短絡しても電気的に
何隻問題を生ずることはない。
Point 0 in FIG. 7 is the connection point between the primary radiating element 2 and the feed line formed by the microstrip line consisting of the ribbon-shaped conductor 3 and the ground conductor 5, that is, the feed point. When excited, the current distribution based on the electric field generated near the open end of the primary radiating element 2 is maximum at the center point d2 of the primary radiating element 2, and the voltage at this point is minimum, so it corresponds to 62 points. Even if points 65 and 62 on the ground conductor 5 are short-circuited, no electrical problem will occur.

第8図に示すように、一次放射素子2に発生した電界に
よって二次放射素子7に電界が誘導発生するが、この誘
導電界は一次放射素子2に発生した電界を打ち消すよう
に作用すると共に、この誘導電界によって二次放射素子
7の内表面及び外表面に電流が流れる。
As shown in FIG. 8, an electric field is induced in the secondary radiating element 7 by the electric field generated in the primary radiating element 2, but this induced electric field acts to cancel the electric field generated in the primary radiating element 2, and A current flows through the inner and outer surfaces of the secondary radiation element 7 due to this induced electric field.

二次放射素子7の内表面に流れる電流に着目すると、一
次放射素子2の中心点d2に対応する二次放射素子7の
内表面における67点においては、電流最大で電圧最小
となるから一次放射素子2の62点、二次放射素子7の
67点及び接地導体5の65点をすべて短絡しても電気
的に何隻問題はない。
Focusing on the current flowing through the inner surface of the secondary radiating element 7, at 67 points on the inner surface of the secondary radiating element 7 corresponding to the center point d2 of the primary radiating element 2, the current is maximum and the voltage is minimum, so the primary radiation Even if all 62 points of the element 2, 67 points of the secondary radiation element 7, and 65 points of the ground conductor 5 are short-circuited, there is no problem electrically.

二次放射素子7の外表面に着目すると、二次放射素子7
の軸長はほぼ入/2であるから、半波長ダイポールアン
テナを、その両端において電圧給電したことと等価とな
り、二次放射素子7の外径を波長に比し小ならしめれば
、その外表面の円周方向全域に亙って第8図に示したの
と同様の電流分布を生じ、外表面全域の電流分布は第9
図のようになる。
Focusing on the outer surface of the secondary radiation element 7, the secondary radiation element 7
Since the axial length of is approximately input/2, it is equivalent to feeding a voltage to both ends of a half-wave dipole antenna, and if the outer diameter of the secondary radiating element 7 is made smaller than the wavelength, the outer diameter of A current distribution similar to that shown in Fig. 8 is generated over the entire circumferential area of the surface, and the current distribution across the entire outer surface is similar to that shown in Fig. 9.
It will look like the figure.

したがって、二次放射素子7の67点を含み、軸と直角
な面と二次放射素子7の側壁との交線」−の任意の点、
一次放射素子2の中心点dノ及び接地導体5の65点は
何れも電流最大、電圧最小となるから、上記例れの点を
短絡しても電気的に問題を生ずることはない。
Therefore, any point on the line of intersection between the plane perpendicular to the axis and the side wall of the secondary radiating element 7, including 67 points of the secondary radiating element 7,
Since both the center point d of the primary radiation element 2 and the 65 points of the ground conductor 5 have the maximum current and the minimum voltage, no electrical problem will occur even if any of the above points are short-circuited.

第10図は、本発明アンテナの等価回路図で、L2及び
C2は一次放射素子2の実効インダクタンス及び実効容
量、L7及びC7は二次放射素子7の実効インダクタン
ス及び実効容量、C27は一次放射素子2と二次放射素
子7の電界結合容量、Rrは電磁波の放射に寄与する放
射抵抗、Tfは給電点である。
FIG. 10 is an equivalent circuit diagram of the antenna of the present invention, where L2 and C2 are the effective inductance and effective capacitance of the primary radiating element 2, L7 and C7 are the effective inductance and effective capacitance of the secondary radiating element 7, and C27 is the primary radiating element. 2 and the electric field coupling capacity of the secondary radiation element 7, Rr is a radiation resistance that contributes to radiation of electromagnetic waves, and Tf is a feeding point.

一次放射素子2の幅すを変えるか、基板1及び二次放射
素子7の中心軸をずらせるか、又は基板1を適宜曲率の
曲面に形成するか、或いは二次放射素子7の横断面の形
状を、例えば楕円形又は長方形等に変化せしめることに
よって電界結合容量C27の大きさを変えることが出来
、電界結合容量027の大きさを変えることによって反
射減衰量の周波数特性を変化せしめることが出来る。
Either the width of the primary radiating element 2 is changed, the central axes of the substrate 1 and the secondary radiating element 7 are shifted, the substrate 1 is formed into a curved surface with an appropriate curvature, or the cross section of the secondary radiating element 7 is changed. By changing the shape to, for example, an ellipse or a rectangle, the size of the electric field coupling capacitance C27 can be changed, and by changing the size of the electric field coupling capacitance 027, the frequency characteristics of the return loss can be changed. .

以上は、本発明アンテナを基本モードで励振した場合に
ついて説明したが、第7図乃至第9図について説明した
ように、一次放射素子2の中心点d2と接地導体5を短
絡しても電気的には何等問題を生ずることはないから、
第1図乃至第6図に示した一次放射素子2の長手方向の
中間点において、第11図に一部切矢部を有する正面図
を示すように短絡ピン又はスルーホール91乃至83を
介して一次放射素子2と接地導体5とを短絡し、この短
絡個所から上部の一次放射素子部分を除いても本発明を
実施することが出来る。この実施例においては、二次放
射素子7への励振は二次放射素子7の一端に対する電圧
給電と等価となり、半波長ダイポールアンテナと等測的
に作動することとなる。
The above description has been made of the case where the antenna of the present invention is excited in the fundamental mode, but as explained with reference to FIGS. will not cause any problems,
At the midpoint in the longitudinal direction of the primary radiating element 2 shown in FIGS. 1 to 6, the primary radiation The present invention can also be practiced by short-circuiting the radiating element 2 and the ground conductor 5 and removing the upper primary radiating element portion from the short-circuited point. In this embodiment, the excitation to the secondary radiating element 7 is equivalent to voltage feeding to one end of the secondary radiating element 7, and it operates isometrically as a half-wavelength dipole antenna.

第12図は、本発明の他の実施例を示す正面図、第13
図は側面図で、両図において、1は共通の誘電体基板、
21及び22は一次放射素子で、基板1の長手方向に適
宜間隔を隔てて設けである。3はリボン状の導体、41
及び42はインピーダンス整合素子、5は基板lの背面
に設けた接地導体、7I及び72は二次放射素子で、そ
れぞれ一次放射素子21及び22の各外周に設けである
FIG. 12 is a front view showing another embodiment of the present invention;
The figure is a side view, and in both figures, 1 is a common dielectric substrate,
21 and 22 are primary radiation elements, which are provided at appropriate intervals in the longitudinal direction of the substrate 1. 3 is a ribbon-shaped conductor, 41
and 42 are impedance matching elements, 5 is a ground conductor provided on the back surface of the substrate l, and 7I and 72 are secondary radiating elements, which are provided on the outer peripheries of the primary radiating elements 21 and 22, respectively.

この実施例においては、リボン状の導体3及び接地導体
5より成るマイクロストリップ線路を以て形成された給
電線を介して一次放射素子21及び22が直列に給電さ
れる。
In this embodiment, power is supplied to the primary radiating elements 21 and 22 in series through a power supply line formed by a microstrip line consisting of a ribbon-shaped conductor 3 and a ground conductor 5.

第14図に正面図を示すように、主給電線を形成するリ
ボン状の導体3及び分岐給電線を形成するリボン状の導
体31及び32を設けて並列給電を行うように構成して
も本発明を実施することが出来る。
As shown in the front view in FIG. 14, a configuration in which a ribbon-shaped conductor 3 forming a main feed line and ribbon-shaped conductors 31 and 32 forming a branch feed line are provided to perform parallel power feeding may also be used. Able to carry out inventions.

以上何れの実施例においても、基板lの表面に設けたリ
ボン状の導体3.31及び32と基板lの背面に設けた
接地導体5より成るマイクロストリップ線路を以て給電
線を形成した場合を例示したが、マイクロストリップ線
路の代りに平衡線路を以て給電線を形成してもよく、基
板lの表面及び背面に被着せしめた金属被膜によってマ
イクロストリップ線路又は平衡線路を形成する代りに基
板1の表面を用いることなく背面側のみで給電線を形成
せしめてもよい。
In each of the above embodiments, the case where the feeder line is formed by a microstrip line consisting of ribbon-shaped conductors 3, 31 and 32 provided on the surface of the substrate 1 and a ground conductor 5 provided on the back surface of the substrate 1 is exemplified. However, the feed line may be formed using a balanced line instead of a microstrip line, and instead of forming a microstrip line or a balanced line using a metal film deposited on the front and back surfaces of the substrate 1, the feed line may be formed using a balanced line. The power supply line may be formed only on the back side without using it.

又、第15図に正面図を、第16図に側面図を示すよう
に、基板lの背面側に設けた同軸線路10及び基板lの
表面側に設けたリボン状の導体3を以て主給電線を形成
し、リボン状の導体31及び32を以て分岐給電線を形
成するか、全給電線を同軸線路を以て形成してもよい。
In addition, as shown in the front view in FIG. 15 and in the side view in FIG. It is also possible to form branch feed lines using ribbon-shaped conductors 31 and 32, or to form all feed lines using coaxial lines.

尚、同軸線路を用いる場合には放射特性への影響を軽減
するために、同軸線路の外部導体を接地導体5に接続す
ることが望ましい。
In addition, when using a coaxial line, it is desirable to connect the outer conductor of the coaxial line to the ground conductor 5 in order to reduce the influence on the radiation characteristics.

第12図乃至第18図には、2組の一次放射素子及び二
次放射素子を共通の誘電体基板に設けた場合を例示した
が、2以上任意複数組の一次放射素子及び二次放射素子
を設けても本発明を実施することが出来る。
12 to 18 illustrate the case where two sets of primary radiating elements and secondary radiating elements are provided on a common dielectric substrate, but any two or more sets of primary radiating elements and secondary radiating elements The present invention can be carried out even if the following is provided.

第11図乃至第16図には示していないが、基板と二次
放射素子との間に支持体を介装して二次放射素子を所要
の位置に保持せしめること並びに各図における他の符号
及び構成等は第1図乃至第6図に示した実施例と同様で
ある。
Although not shown in FIGS. 11 to 16, a support may be interposed between the substrate and the secondary radiating element to hold the secondary radiating element in a desired position, and other symbols in each figure may be used. The configuration and the like are the same as the embodiment shown in FIGS. 1 to 6.

発明の効果 本発明マイクロストリップアンテナは、小形軽量で、構
造も簡潔なると共に、広帯域に亙って無指向性の放射特
性を呈し得るもので、陸上における移動無線基地局用の
コ・リニア・アンテナの基本放射素子等に好適である。
Effects of the Invention The microstrip antenna of the present invention is small and lightweight, has a simple structure, and can exhibit omnidirectional radiation characteristics over a wide band, and can be used as a co-linear antenna for mobile radio base stations on land. It is suitable for basic radiating elements, etc.

第17図は、第1図乃至第6図に示した本発明アンテナ
において、一次放射素子2の長さaを0.2B1 人、
接地導体5の幅Wを0.075人、基板1の厚さを0.
005人、比誘電率εrを3.6、二次放射素子7の軸
長りを0.377 人、二次放射素子7の外径を0.0
87人にそれぞれ形成した試作品について、一次放射素
子2の幅すを変化せしめた場合における反射減衰量の周
波数特性の変化の実測値を示すもので、横軸は周波数、
縦軸は反射減衰量(dB) 、曲線b1は一次放射素子
2の@bを0.058 入に選んだ場合、曲線b2は0
.048人、曲線b3は0.035 人、曲線b4は0
.023人にそれぞれ選んだ場合である。
FIG. 17 shows that in the antenna of the present invention shown in FIGS. 1 to 6, the length a of the primary radiating element 2 is 0.2B1,
The width W of the ground conductor 5 is 0.075 mm, and the thickness of the substrate 1 is 0.07 mm.
005 people, the relative dielectric constant εr is 3.6, the axial length of the secondary radiating element 7 is 0.377 people, and the outer diameter of the secondary radiating element 7 is 0.0.
This shows the actual measured value of the change in the frequency characteristic of the return loss when the width of the primary radiation element 2 is changed for the prototypes formed by 87 people, and the horizontal axis is the frequency;
The vertical axis is the return loss (dB), and the curve b1 is 0.058 when @b of the primary radiating element 2 is selected.
.. 048 people, curve b3 is 0.035 people, curve b4 is 0
.. This is the case where 023 people each selected the following.

図から明らかなように、一次放射素子2の幅すを広くす
ることにより反射減衰量が大で帯域幅が広くなる傾向を
有し、b = 0.058 人においては反射減衰量1
0dBで、比帯域は12%、b = 0.035人にお
いては反射減衰量2EidBで、比帯域4%で、使用目
的に応じて調整可能である。
As is clear from the figure, increasing the width of the primary radiating element 2 tends to increase the return loss and widen the bandwidth.
At 0 dB, the fractional bandwidth is 12%, and when b = 0.035 people, the return loss is 2EidB and the fractional bandwidth is 4%, which can be adjusted depending on the purpose of use.

第18図は、上記試作品において一次放射素子2の幅を
0.048入に選び、他の機械的寸法及び比誘電率等を
すべて同一ならしめ、第1図乃至第6図における一次放
射素子2の中心を座標原点とし、矢印を付した実線を以
て示すように、一次放射素子2の長さ方向にX軸を、幅
方向にY軸を、基板1の板面と直交する方向にZ軸をそ
れぞれとった場合におけるYZ面における指向性の実測
値を示すもので、図から明らかなように、極めて良好な
無指向性を呈している。
Figure 18 shows the width of the primary radiating element 2 in the prototype above selected to be 0.048 mm, and all other mechanical dimensions and relative permittivity, etc., being the same, and the primary radiating element in Figures 1 to 6 2 is the coordinate origin, and as shown by solid lines with arrows, the X axis is in the length direction of the primary radiation element 2, the Y axis is in the width direction, and the Z axis is in the direction orthogonal to the plate surface of the substrate 1. This shows the actual measured values of the directivity in the YZ plane for each case, and as is clear from the figure, extremely good omnidirectionality is exhibited.

第19図は、」−配賦作品におけるXZ面の指向性の実
測値で、半波長ダイポールアンテナと同様の8の字形の
指向性を有すること図から明らかであ
Figure 19 shows the measured values of the directivity in the XZ plane for the "-allocation work," and it is clear from the figure that it has a figure-eight directivity similar to that of a half-wavelength dipole antenna.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す正面図、第2図は側
面図、第3図は背面図、第4図は平面図、第5図は要部
の正面図、第6図は要部の側面図、第7図乃至第9図は
本発明アンテナの作動原理を説明するための図、第11
図は、本発明の他の実施例を示す一部切欠部を有する正
面図、第12図、第14図及び第15図は、本発明の他
の実施例を示す正面図、第13図及び第16図は側面図
、第17図乃至第19図は、本発明アンテナの特性の一
例を示す図、第20図は、従来のアンテナの一例を示す
斜視図、第21図乃至第23図は、従来のアンテナの特
性の一例を示す図、第24図は、従来のアンテナの他の
一例を示す図、第25図は、その要部の展開図で、1:
誘電体基板、2,2I及び22ニ一次放射素子、3,3
1及び32:リボン状の導体、4゜41及び42:イン
ピーダンス整合素子、5:接地導体、6:給電端子、7
,71及び72:二次放射素子、81乃至84:支持体
、81乃至83:短絡ピン、1吐同軸線路、11:誘電
体基板、12:放射素子、13:リボン状の導体、14
:接地導体、15:給電端子、16:砲弾形支持体、1
7:誘電体より成る可撓性基体、18:放射素子、19
:給電線である。
Fig. 1 is a front view showing an embodiment of the present invention, Fig. 2 is a side view, Fig. 3 is a rear view, Fig. 4 is a plan view, Fig. 5 is a front view of main parts, Fig. 6 is a side view of the main part, FIGS. 7 to 9 are diagrams for explaining the operating principle of the antenna of the present invention, and FIG.
12, 14 and 15 are front views showing other embodiments of the present invention, and FIGS. FIG. 16 is a side view, FIGS. 17 to 19 are diagrams showing an example of the characteristics of the antenna of the present invention, FIG. 20 is a perspective view showing an example of a conventional antenna, and FIGS. 21 to 23 are diagrams showing an example of the characteristics of the antenna of the present invention. , FIG. 24 is a diagram showing an example of the characteristics of a conventional antenna, FIG. 24 is a diagram showing another example of the conventional antenna, and FIG. 25 is a developed view of the main parts. 1:
Dielectric substrate, 2, 2I and 22 primary radiating element, 3, 3
1 and 32: Ribbon-shaped conductor, 4° 41 and 42: Impedance matching element, 5: Ground conductor, 6: Power supply terminal, 7
, 71 and 72: secondary radiating element, 81 to 84: support body, 81 to 83: shorting pin, single coaxial line, 11: dielectric substrate, 12: radiating element, 13: ribbon-shaped conductor, 14
: Ground conductor, 15: Power supply terminal, 16: Bullet-shaped support, 1
7: Flexible base made of dielectric, 18: Radiation element, 19
:It is a power supply line.

Claims (19)

【特許請求の範囲】[Claims] (1)波長に比し薄い誘電体基板の表面に被着せしめた
金属被膜より成る一次放射素子と、前記誘電体基板の背
面に被着せしめた金属被膜より成る接地導体と、前記一
次放射素子に接続された給電線と、前記一次放射素子の
外周に設けられ、波長のにより短い軸長を有する筒状の
二次放射素子とを備えて成ることを特徴とする無指向性
マイクロストリップアンテナ。
(1) A primary radiating element made of a metal coating coated on the surface of a dielectric substrate thinner than the wavelength, a ground conductor made of a metal coating coated on the back side of the dielectric substrate, and the primary radiating element 1. An omnidirectional microstrip antenna comprising: a feed line connected to the primary radiating element; and a cylindrical secondary radiating element having an axial length with a shorter wavelength and provided around the outer periphery of the primary radiating element.
(2)波長に比し薄い共通の誘電体基板の表面に適宜間
隔を隔てて被着せしめた金属被膜より成る複数個の一次
放射素子と、前記共通の誘電体基板の背面に被着せしめ
た金属被膜より成る共通の接地導体と、前記複数個の一
次放射素子に接続された給電線と、前記複数個の一次放
射素子の各外周に設けられ、それぞれ波長の1/2より
短い軸長を有する複数個の筒状の二次放射素子とを備え
て成ることを特徴とする無指向性マイクロストリップア
ンテナ。
(2) a plurality of primary radiating elements made of metal films deposited at appropriate intervals on the surface of a common dielectric substrate that is thinner than the wavelength; and a plurality of primary radiating elements made of metal films deposited on the back surface of the common dielectric substrate. A common ground conductor made of a metal film, a feeder line connected to the plurality of primary radiating elements, and a common ground conductor provided on the outer periphery of each of the plurality of primary radiating elements, each having an axial length shorter than 1/2 of the wavelength. 1. An omnidirectional microstrip antenna comprising a plurality of cylindrical secondary radiating elements.
(3)一次放射素子及び二次放射素子の各長手方向の中
心軸がほぼ一致するように配設した特許請求の範囲第1
項又は第2項記載の無指向性マイクロストリップアンテ
ナ。
(3) Claim 1 in which the primary radiating element and the secondary radiating element are arranged so that their central axes in the longitudinal direction substantially coincide with each other.
The omnidirectional microstrip antenna according to item 1 or 2.
(4)誘電体基板の背面に設けた接地導体と二次放射素
子の長手方向のほぼ中央部とが高周波的に接続された特
許請求の範囲第1項又は第2項記載の無指向性マイクロ
ストリップアンテナ。
(4) The omnidirectional micro as claimed in claim 1 or 2, wherein the ground conductor provided on the back surface of the dielectric substrate and the approximately central portion in the longitudinal direction of the secondary radiation element are connected at high frequency. strip antenna.
(5)二次放射素子の横断面の形状が円形又は楕円形で
ある特許請求の範囲第1項又は第2項記載の無指向性マ
イクロストリップアンテナ。
(5) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the cross-sectional shape of the secondary radiating element is circular or elliptical.
(6)二次放射素子の横断面の形状が角形である特許請
求の範囲第1項又は第2項記載の無指向性マイクロスト
リップアンテナ。
(6) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the secondary radiating element has a rectangular cross-sectional shape.
(7)二次放射素子が導板より成る筒体を以て形成され
た特許請求の範囲第1項又は第2項記載の無指向性マイ
クロストリップアンテナ。
(7) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the secondary radiating element is formed of a cylinder made of a conductive plate.
(8)二次放射素子が網状又は格子状導体より成る特許
請求の範囲第1項又は第2項記載の無指向性マイクロス
トリップアンテナ。
(8) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the secondary radiating element is made of a mesh or lattice conductor.
(9)二次放射素子が筒状誘電体基体の表面に被着せし
めた金属被膜より成る特許請求の範囲第1項又は第2項
記載の無指向性マイクロストリップアンテナ。
(9) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the secondary radiating element comprises a metal coating deposited on the surface of a cylindrical dielectric substrate.
(10)一次放射素子の正面の輪郭形状が角形である特
許請求の範囲第1項又は第2項記載の無指向性マイクロ
ストリップアンテナ。
(10) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the front profile of the primary radiating element is rectangular.
(11)一次放射素子の正面の輪郭形状が円形又は楕円
形である特許請求の範囲第1項又は第2項記載の無指向
性マイクロストリップアンテナ。
(11) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the front profile of the primary radiating element is circular or elliptical.
(12)誘電体基板と二次放射素子との間に長手方向に
適宜間隔を隔てて誘電体より成る支持体を介装して成る
特許請求の範囲第1項又は第2項記載の無指向性マイク
ロストリップアンテナ。
(12) The non-direction according to claim 1 or 2, wherein a support made of dielectric is interposed between the dielectric substrate and the secondary radiation element at an appropriate interval in the longitudinal direction. Microstrip antenna.
(13)一次放射素子が電圧最小部において誘電体基板
の背面に設けられた接地導体に接続された特許請求の範
囲第1項又は第2項記載の無指向性マイクロストリップ
アンテナ。
(13) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the primary radiating element is connected to a ground conductor provided on the back surface of the dielectric substrate at the minimum voltage portion.
(14)一次放射素子の給電点側端部又はその対向端部
の何れかが、誘電体基板の背面に設けた接地導体に接続
された特許請求の範囲第1項又は第2項記載の無指向性
マイクロストリップアンテナ。
(14) The device according to claim 1 or 2, wherein either the feed point side end of the primary radiating element or the opposite end thereof is connected to a ground conductor provided on the back surface of the dielectric substrate. Directional microstrip antenna.
(15)給電線が誘電体基板に設けたマイクロストリッ
プ線路より成る特許請求の範囲第1項又は第2項記載の
無指向性マイクロストリップアンテナ。
(15) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the feed line is a microstrip line provided on a dielectric substrate.
(16)給電線が誘電体基板に設けた平衡線路より成る
特許請求の範囲第1項又は第2項記載の無指向性マイク
ロストリップアンテナ。
(16) The omnidirectional microstrip antenna according to claim 1 or 2, wherein the feed line is a balanced line provided on a dielectric substrate.
(17)給電線が同軸線路より成る特許請求の範囲第1
項又ほ第2項記載の無指向性マイクロストリップアンテ
ナ。
(17) Claim 1 in which the feeder line is a coaxial line
The omnidirectional microstrip antenna according to item 2.
(18)給電線が直列給電線より成る特許請求の範囲第
2項記載の無指向性マイクロストリップアンテナ。
(18) The omnidirectional microstrip antenna according to claim 2, wherein the feed line is a series feed line.
(19)給電線が並列給電線より成る特許請求の範囲第
2項記載の無指向性マイクロストリップアンテナ。
(19) The omnidirectional microstrip antenna according to claim 2, wherein the feed line is a parallel feed line.
JP63031090A 1988-02-13 1988-02-13 Omnidirectional microstrip antenna Expired - Lifetime JPH0666578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031090A JPH0666578B2 (en) 1988-02-13 1988-02-13 Omnidirectional microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031090A JPH0666578B2 (en) 1988-02-13 1988-02-13 Omnidirectional microstrip antenna

Publications (2)

Publication Number Publication Date
JPH01206705A true JPH01206705A (en) 1989-08-18
JPH0666578B2 JPH0666578B2 (en) 1994-08-24

Family

ID=12321708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031090A Expired - Lifetime JPH0666578B2 (en) 1988-02-13 1988-02-13 Omnidirectional microstrip antenna

Country Status (1)

Country Link
JP (1) JPH0666578B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299165A (en) * 2006-04-28 2007-11-15 Univ Waseda Communication method and communication system for supporting road traffic
JP3188489U (en) * 2010-11-16 2014-01-30 広東盛路通信科技股▲ふん▼有限公司Guangdong Shenglu Telecommunication Tech.Co.,Ltd. High performance broadband, dual frequency omnidirectional antenna
JP3188799U (en) * 2010-11-16 2014-02-13 広東盛路通信科技股▲ふん▼有限公司Guangdong Shenglu Telecommunication Tech.Co.,Ltd. Combined small diameter dual frequency omnidirectional antenna
EP4160823A1 (en) 2021-10-04 2023-04-05 Mirach SAS di Annamaria Saveri & C. Collinear antenna array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181303A (en) * 1982-04-09 1983-10-24 Oki Electric Ind Co Ltd Non-directional antenna
JPS6248105A (en) * 1985-08-27 1987-03-02 Matsushita Electric Works Ltd Microstrip line antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181303A (en) * 1982-04-09 1983-10-24 Oki Electric Ind Co Ltd Non-directional antenna
JPS6248105A (en) * 1985-08-27 1987-03-02 Matsushita Electric Works Ltd Microstrip line antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299165A (en) * 2006-04-28 2007-11-15 Univ Waseda Communication method and communication system for supporting road traffic
JP3188489U (en) * 2010-11-16 2014-01-30 広東盛路通信科技股▲ふん▼有限公司Guangdong Shenglu Telecommunication Tech.Co.,Ltd. High performance broadband, dual frequency omnidirectional antenna
JP3188799U (en) * 2010-11-16 2014-02-13 広東盛路通信科技股▲ふん▼有限公司Guangdong Shenglu Telecommunication Tech.Co.,Ltd. Combined small diameter dual frequency omnidirectional antenna
EP4160823A1 (en) 2021-10-04 2023-04-05 Mirach SAS di Annamaria Saveri & C. Collinear antenna array
US11799212B2 (en) 2021-10-04 2023-10-24 Mirach Sas Di Annamaria Saveri & C. Collinear antenna array

Also Published As

Publication number Publication date
JPH0666578B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US4843403A (en) Broadband notch antenna
EP2178166B1 (en) Loop antenna including impedance tuning gap and associated methods
KR100893738B1 (en) Surface-mounted antenna and communications apparatus comprising same
EP0766343B1 (en) Broadband antenna using a semicircular radiator
US7804456B2 (en) Ultra wideband loop antenna
JP4263820B2 (en) Flat antenna for circular polarization
EP0688040A2 (en) Bidirectional printed antenna
US5914695A (en) Omnidirectional dipole antenna
Lin et al. High-directivity, compact, omnidirectional horizontally polarized antenna array
WO2003041217A2 (en) Multiband antenna formed of superimposed compressed loops
JP2001203521A (en) Flat microstrip patch antenna
US11050151B2 (en) Multi-band antenna
JP3030590B2 (en) Flat antenna
JP2542987B2 (en) Dipole antenna
JPH01206705A (en) Non-directional micro-strip antenna
JPS60217702A (en) Circularly polarized wave conical beam antenna
KR20030076039A (en) Microstrip patch antenna
Chair et al. Comparative study on the mutual coupling between different sized cylindrical dielectric resonators antennas and circular microstrip patch antennas
US11063357B2 (en) Dual-band antenna for global positioning system
US20030096637A1 (en) Loop antenna formed of multiple concentric irregular loops
Sheeja et al. Compact tri-band metamaterial antenna for wireless applications
Yan et al. Design and measurement of a differential fed tapered slot UWB antenna
JPH0983238A (en) Antenna system for multi-wave common use
Lu et al. Design of high gain planar dipole array antenna for WLAN application
Urata et al. Beam‐adjustable planar arrays composed of microstrip antennas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 14