JP2542987B2 - Dipole antenna - Google Patents

Dipole antenna

Info

Publication number
JP2542987B2
JP2542987B2 JP4105791A JP10579192A JP2542987B2 JP 2542987 B2 JP2542987 B2 JP 2542987B2 JP 4105791 A JP4105791 A JP 4105791A JP 10579192 A JP10579192 A JP 10579192A JP 2542987 B2 JP2542987 B2 JP 2542987B2
Authority
JP
Japan
Prior art keywords
dipole
dipole antenna
parasitic element
folded dipole
folded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4105791A
Other languages
Japanese (ja)
Other versions
JPH05283926A (en
Inventor
俊幸 高野
正敞 苅込
徹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dengyo Kosaku Co Ltd
Original Assignee
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dengyo Kosaku Co Ltd filed Critical Nihon Dengyo Kosaku Co Ltd
Priority to JP4105791A priority Critical patent/JP2542987B2/en
Publication of JPH05283926A publication Critical patent/JPH05283926A/en
Application granted granted Critical
Publication of JP2542987B2 publication Critical patent/JP2542987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば移動通信方式に
おける基地局用のダイポ−ルアンテナ、特に広帯域特性
又は複数周波数帯域共用特性が要求されるダイポ−ルア
ンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dipole antenna for a base station in, for example, a mobile communication system, and more particularly to a dipole antenna which is required to have a wide band characteristic or a plural frequency band sharing characteristic.

【0002】[0002]

【従来の技術】図10は、従来の広帯域ダイポ−ルアン
テナの一例の要部を示す図で、図10(a)は正面図、
図10(b)は側面図である。図10において、11及び
12はダイポ−ル素子、2は平衡線路より成る給電回路、
31は無給電素子である。図11もまた従来の広帯域ダイ
ポ−ルアンテナの一例の要部を示す図で、図11(a)
は正面図、図11(b)は側面図である。図11におい
て、32は無給電素子で、他の符号は図10と同様であ
る。
2. Description of the Related Art FIG. 10 is a view showing a main part of an example of a conventional wideband dipole antenna, and FIG.
FIG. 10B is a side view. In FIG. 10, 11 and
1 2 is a dipole element, 2 is a feeding circuit consisting of a balanced line,
3 1 is a parasitic element. FIG. 11 is also a diagram showing an essential part of an example of a conventional wideband dipole antenna, and FIG.
Is a front view, and FIG. 11 (b) is a side view. 11, 3 2 in parasitic elements, and other reference numerals are the same as in FIG. 10.

【0003】[0003]

【発明が解決しようとする課題】ダイポ−ルアンテナを
広帯域化する手法として、ダイポ−ル素子が筒状又は棒
状の導体より成る場合には、その直径を大にし、ダイポ
−ル素子が細長い板状の導体より成る場合には、その幅
を広くして、使用周波数の変化に対するリアクタンスの
変化を小さくすることによって広帯域化することが知ら
れている。このような手法によるときは、交差偏波成分
を生ずるおそれがあるため、或る程度以上にダイポ−ル
素子の直径又は幅を大にすることができず、したがっ
て、広帯域化には限界がある。図10に示した従来のダ
イポ−ルアンテナは、上記のような欠点を除くために、
ダイポ−ル素子11及び12と無給電素子31とを組合わせ、
両素子の対向間隔を変えることによってダイポ−ル素子
11及び12より成る共振回路と無給電素子31より成る共振
回路との間の相互インダクタンスを変化させて入力反射
特性の広帯域化を可能にしたものである。然しながら、
このダイポ−ルアンテナにおいては、図12に放射特性
を示すように、磁界面において指向性を有するために、
磁界面において無指向性である通常のダイポ−ルアンテ
ナの代りに使用することができない。図11に示した従
来のダイポ−ルアンテナは、図13に放射特性を示すよ
うに、磁界面においてほぼ無指向性ではあるが、2個の
無給電素子31及び32をダイポ−ル素子11及び12の左右に
適宜間隔を隔てて配設する必要があるため、図10に示
したダイポ−ルアンテナに比し部品数が多いばかりでな
く、全体が平面的ではなく立体的な構成となるから構造
製作が複雑困難となる。
As a method for widening the band of a dipole antenna, when the dipole element is made of a cylindrical or rod-shaped conductor, its diameter is increased and the dipole element is formed into an elongated plate shape. It is known that the band is widened by widening the width of the conductor to reduce the change of the reactance with respect to the change of the operating frequency. When such a method is used, there is a possibility that cross-polarized components may be generated, so that the diameter or width of the dipole element cannot be increased to a certain extent or more, and therefore there is a limit to widening the band. . The conventional dipole antenna shown in FIG. 10 has the following disadvantages in order to eliminate the above drawbacks.
Dipole - a combination of the Le element 1 1 and 1 2 and the parasitic element 3 1,
Dipole element by changing the facing distance of both elements
By changing the mutual inductance between the resonance circuit composed of 1 1 and 1 2 and the resonance circuit composed of the parasitic element 3 1, it is possible to widen the band of the input reflection characteristic. However,
Since this dipole antenna has directivity in the magnetic field plane as shown in the radiation characteristic in FIG. 12,
It cannot be used in place of a conventional dipole antenna that is omnidirectional in the field plane. The conventional dipole antenna shown in FIG. 11 is almost omnidirectional in the magnetic field plane, as shown in the radiation characteristic of FIG. 13, but has two parasitic elements 3 1 and 3 2 as the dipole element 1. it is necessary to arrange at a suitable interval to 1 and 1 2 of the right and left dipole shown in FIG. 10 - not only a large number of parts compared to Ruantena, the overall three-dimensional structure rather than planar Therefore, the structure manufacturing becomes complicated and difficult.

【0004】[0004]

【課題を解決するための手段】本発明は、ダイポ−ル素
子として折返しダイポ−ル素子を用い、この折返しダイ
ポ−ル素子によって囲まれる面内において、電界軸と平
行に直線状導体より成る無給電素子を設けることによっ
て、従来の欠点を除こうとするものである。
According to the present invention, a folded dipole element is used as a dipole element, and in a plane surrounded by the folded dipole element, a straight conductor is formed parallel to the electric field axis. By providing the power feeding element, the conventional drawbacks are to be eliminated.

【0005】[0005]

【実施例】図1は、本発明の一実施例の要部を示す図
で、図1(a)は正面図、図1(b)は側面図である。
図1において、1は折返しダイポ−ル素子で、図には丸
棒状の導体を折曲げて形成した場合を例示してあるが、
断面角形の棒状導体、断面円形又は角形の管状導体、細
長い板状の導体又は線状の導体を折曲げて形成してもよ
く、折曲げ部分を図示のように滑らかな曲線状に形成す
る代りに角形に形成してもよい。折返しダイポ−ル素子
1の長手方向、すなわち、電界軸方向の部分(以下、長
辺と略記する)の長さLは、使用周波数帯における中心
周波数に対応する波長の1/2 又はほぼ1/2 に形成し、こ
の折返しダイポ−ル素子1を複数の周波数帯域で共用す
る場合には、低い周波数帯における中心周波数に対応す
る波長の1/2 又はほぼ1/2 に形成する。2は平衡線路よ
り成る給電回路、3は無給電素子で、折返しダイポ−ル
素子1と同様に、断面が各種形状の導体で形成可能で、
折返しダイポ−ル素子1を形成する導体と無給電素子3
を形成する導体として同一断面形状の導体を用いる他、
例えば何れか一方を丸棒状の導体で形成し、他方を断面
角形の棒状導体で形成するように、各種断面形状の導体
の中から任意適宜の導体を選択組合わせて形成してもよ
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a main part of an embodiment of the present invention, FIG. 1 (a) is a front view and FIG. 1 (b) is a side view.
In FIG. 1, reference numeral 1 is a folded dipole element, and in the figure, a case where a round bar-shaped conductor is bent is formed.
It may be formed by bending a rod-shaped conductor having a rectangular cross-section, a tubular conductor having a circular or rectangular cross-section, an elongated plate-shaped conductor, or a linear conductor. Instead of forming the bent portion into a smooth curved line as shown in the figure. It may be formed in a rectangular shape. Folded dipole - longitudinal Le element 1, i.e., the electric field axial portion (hereinafter, abbreviated as long sides) length L of the wavelength corresponding to the center frequency in the used frequency band 1/2 or approximately 1 / formed in 2, the folded dipole - when sharing the Le device 1 in a plurality of frequency bands is formed in 1/2 or approximately 1/2 of the wavelength corresponding to the center frequency in the low frequency band. 2 is a feeding circuit composed of a balanced line, 3 is a parasitic element, and like the folded dipole element 1, a cross-section can be formed with conductors of various shapes,
A conductor forming the folded dipole element 1 and the parasitic element 3
In addition to using the conductor of the same cross-sectional shape as the conductor forming
For example, one of the conductors may be formed of a round rod and the other may be formed of a rod-shaped conductor having a rectangular cross section.

【0006】無給電素子3は、折返しダイポ−ル素子1
で囲まれた面内において、折返しダイポ−ル素子1の長
辺と平行に設けるが、折返しダイポ−ル素子1の長辺と
無給電素子3との間隔、無給電素子3を丸棒状の導体、
円形の管状導体又は線状導体で形成した場合にはその外
径、断面角形の棒状導体又は断面角形の管状導体で形成
した場合にはその横断面における一辺の長さ、細長い板
状の導体で形成した場合にはその幅及び無給電素子3の
軸長等は、所要の広帯域特性、複数周波数帯域共用特性
及び磁界面における指向性等に応じて適宜選定する。な
お、無給電素子3は折返しダイポ−ル素子1によって囲
まれる面内に設ける必要上、その軸長は、折返しダイポ
−ル素子1の長辺の長さ以下の範囲内で適宜選定するこ
ととなる。図には示していないが、無給電素子3を所要
位置に支持固定する手段としては、例えば誘電率の低い
絶縁体で形成した細長い棒状又は板状等の支持体を複数
個、折返しダイポ−ル素子1と無給電素子3との間に放
射状に設けるか、又はモ−ルド手法によって折返しダイ
ポ−ル素子1、無給電素子3及び両者間に介在させた誘
電率の低い絶縁体が一体となるように形成する。
The parasitic element 3 is a folded dipole element 1
It is provided in parallel with the long side of the folded dipole element 1 in the plane surrounded by, but the distance between the long side of the folded dipole element 1 and the parasitic element 3 and the parasitic element 3 are round bar-shaped conductors. ,
If it is formed of a circular tubular conductor or linear conductor, its outer diameter, and if it is formed of a rod conductor with a square cross section or a tubular conductor with a square cross section, the length of one side in its cross section, an elongated plate conductor When formed, the width thereof, the axial length of the parasitic element 3 and the like are appropriately selected according to the required wide band characteristics, characteristics for sharing a plurality of frequency bands, directivity on the magnetic field surface, and the like. Since the parasitic element 3 needs to be provided in the plane surrounded by the folded dipole element 1, its axial length is appropriately selected within the range of the length of the long side of the folded dipole element 1 or less. Become. Although not shown in the figure, as means for supporting and fixing the parasitic element 3 at a required position, for example, a plurality of elongated rod-shaped or plate-shaped supports formed of an insulator having a low dielectric constant and a folded dipole. The folded dipole element 1, the parasitic element 3 and the insulator having a low dielectric constant interposed between the element 1 and the parasitic element 3 may be provided radially or by a molding method. To form.

【0007】図2は、本発明ダイポ−ルアンテナの等価
回路図で、T−Tは高周波電源接続端子、LD、CD及びRD
は折返しダイポ−ル素子1の等価定数を形成する実効イ
ンダクタンス、実効静電容量及び実効抵抗で、これらに
よって直列共振回路が形成される。LP、CP及びRPは無給
電素子3の等価定数を形成する実効インダクタンス、実
効静電容量及び実効抵抗で、これらによって直列共振回
路が形成される。折返しダイポ−ル素子1側の共振回路
と無給電素子3側の共振回路とは、相互インダクタンス
によって結合され、複同調回路として作動する。折返し
ダイポ−ル素子1側及び無給電素子3側の各共振回路間
の結合度を変えるか、両共振回路の何れか一方又は双方
の共振周波数を適宜調整するか、又は両共振回路間の結
合度を変えると共に、共振回路の共振周波数を調整する
ことによって、広帯域特性又は複数周波数帯域共用特性
をもたせることができる。両共振回路間の結合度を調整
するには、折返しダイポ−ル素子1に囲まれた面内にお
いて無給電素子3の配設位置を変えて両素子の相互位置
関係を変えるか、両素子の形成導体の何れか一方又は双
方の太さを変えるか、又は両素子の相互位置関係を変え
ると共に、両素子の形成導体の太さを変えることによっ
て目的を達することができる。両共振回路の何れか一方
又は双方の共振周波数を調整するには、折返しダイポ−
ル素子1の長辺の長さ及び無給電素子3の長さの何れか
一方又は双方を変えるか、両素子の形成導体の何れか一
方又は双方の太さを変えるか、又は両素子の長さと形成
導体の太さの双方を変えることによって目的を達するこ
とができる。
FIG. 2 is an equivalent circuit diagram of the dipole antenna of the present invention, in which TT is a high frequency power source connecting terminal, L D , C D and R D.
Is an effective inductance, an effective capacitance, and an effective resistance that form an equivalent constant of the folded dipole element 1, and these form a series resonance circuit. L P , C P, and R P are an effective inductance, an effective capacitance, and an effective resistance that form an equivalent constant of the parasitic element 3, and these form a series resonance circuit. The resonance circuit on the side of the folded dipole element 1 and the resonance circuit on the side of the parasitic element 3 are coupled by mutual inductance and operate as a double tuning circuit. The degree of coupling between the resonance circuits on the folded dipole element 1 side and the parasitic element 3 side is changed, the resonance frequency of one or both of the resonance circuits is appropriately adjusted, or the coupling between the resonance circuits is performed. By changing the degree and adjusting the resonance frequency of the resonance circuit, it is possible to provide a wide band characteristic or a characteristic for sharing a plurality of frequency bands. In order to adjust the degree of coupling between both resonant circuits, the arrangement position of the parasitic element 3 in the plane surrounded by the folded dipole element 1 is changed to change the mutual positional relationship between the two elements, or The purpose can be achieved by changing the thickness of one or both of the forming conductors, or by changing the mutual positional relationship of both elements and changing the thickness of the forming conductors of both elements. To adjust the resonance frequency of either or both of the two resonance circuits, use the folded dipole
The length of the long side of the element 1 and / or the length of the parasitic element 3 or both, or the thickness of either or both of the forming conductors of both elements, or the length of both elements. The objective can be achieved by changing both the thickness and the thickness of the formed conductor.

【0008】図3は、上記調整によって広帯域特性をも
たせた本発明ダイポ−ルアンテナの広帯域特性の一例を
示す実測図で、横軸は周波数(MHz) 、縦軸はリタ−ンロ
ス(dB)で、電圧定在波比(VSWR)が1.5 以下となる比帯域
幅がほぼ20%で、広帯域化されていることを示してい
る。図4(横軸及び縦軸は図3と同じ)は、上記調整に
よって複数周波数帯域共用特性となした本発明ダイポ−
ルアンテナの特性の一例を示す実測図である。
FIG. 3 is an actual measurement diagram showing an example of the wide band characteristic of the dipole antenna of the present invention having the wide band characteristic by the above adjustment. The horizontal axis is the frequency (MHz) and the vertical axis is the return loss (dB). The ratio bandwidth where the voltage standing wave ratio (VSWR) is 1.5 or less is almost 20%, indicating that the bandwidth is wide. FIG. 4 (the horizontal axis and the vertical axis are the same as those in FIG. 3) shows the dipo of the present invention in which a plurality of frequency bands are shared by the above adjustment.
It is an actual measurement figure which shows an example of the characteristic of the antenna.

【0009】折返しダイポ−ル素子1の給電点側の長辺
における電流分布と、この長辺と無給電素子3を介して
対向する長辺における電流分布とは、ほぼ同一分布、す
なわち、同一向きでほぼ同じ大きさのベクトルで表され
る分布であること周知のとおりであるから、折返しダイ
ポ−ル素子1によって囲まれる空間内に無給電素子3を
設けても指向性を乱すおそれは少ない。然しながら、本
発明者等が試作品について実測した結果、無給電素子3
を折返しダイポ−ル素子1の給電点側に僅かに近付ける
ことによって、磁界面における指向性を完全に近い無指
向性とすることができた。これは折返しダイポ−ル素子
1における給電点側の長辺における電流分布と、この長
辺と無給電素子3を介して対向する長辺における電流分
布とが僅かではあるが異なることに因るものと思われ
る。
The current distribution in the long side on the feeding point side of the folded dipole element 1 and the current distribution in the long side facing the long side with the parasitic element 3 are substantially the same distribution, that is, the same direction. Since it is well known that the distributions are represented by vectors having substantially the same size, there is little possibility of disturbing the directivity even if the parasitic element 3 is provided in the space surrounded by the folded dipole element 1. However, as a result of the inventors actually measuring the prototype, the parasitic element 3
Was slightly closer to the feeding point side of the folded dipole element 1, it was possible to make the directivity on the magnetic field surface almost non-directional. This is because the current distribution in the long side on the feeding point side of the folded dipole element 1 is slightly different from the current distribution in the long side facing the long side with the parasitic element 3 interposed therebetween. I think that the.

【0010】図5ないし図7は、折返しダイポ−ル素子
1と無給電素子3との相互位置関係と磁界面における指
向性との関係を示す実測図で、図5は、無給電素子3を
折返しダイポ−ル素子1における対向長辺の間隔の1/2
の点を過る中央線から給電点と反対側に遠ざかる位置に
設けた場合、図6は、無給電素子3を折返しダイポ−ル
素子1における対向長辺の間隔の1/2 の点を過る中央線
上に設けた場合、図7は、無給電素子3を折返しダイポ
−ル素子1における対向長辺の間隔の1/2 の点を過る中
央線から給電点側に近い位置に設けた場合を各示したも
ので、何れも磁界面においてほぼ無指向性を呈している
が、特に図7の場合には完全に近い無指向性を呈してい
る。
FIGS. 5 to 7 are measurement diagrams showing the relationship between the mutual positional relationship between the folded dipole element 1 and the parasitic element 3 and the directivity in the magnetic field plane. FIG. folded dipole - the opposite long side of the interval in Le element 1 1/2
When provided with a point from the center line crosses a position away on the opposite side of the feeding point, Figure 6, folding the parasitic element 3 dipole - a point 1/2 opposing long sides of the interval in Le element 1 over that when provided on the center line, FIG. 7, dipole folded parasitic element 3 - provided in a position close to the feed point side from the center line crosses a point of 1/2 of the opposite long side of the interval in Le element 1 In each of the cases, almost all non-directionality is exhibited in the magnetic field surface, but particularly in the case of FIG. 7, nearly non-directionality is exhibited.

【0011】図8は、本発明の他の実施例を示す図で、
図8(a)は正面図、図8(b)は側面図である。図8
において、31は折返しダイポール素子、32は平衡線
路より成る給電回路、33は無給電素子で、これらは例
えばフォトエッチング法によるプリント配線と同様の手
法によって誘電体基板34の表面に設けてある。この実
施例においても、折返しダイポール素子31の長辺の長
さ、無給電素子33の長さ、折返しダイポール素子31
と無給電素子33の相互位置関係、折返しダイポール素
子31の折曲部分の形状を図示のように角張った形に形
成する代りに、滑らかに彎曲する形状に形成してもよい
こと等は前実施例と同様で、その等価回路及び放射特性
も前実施例と同様である。
FIG. 8 is a diagram showing another embodiment of the present invention.
FIG. 8A is a front view and FIG. 8B is a side view. FIG.
In the figure, 31 is a folded dipole element, 32 is a feeding circuit composed of a balanced line, 33 is a parasitic element, and these are provided on the surface of the dielectric substrate 34 by the same method as the printed wiring by the photoetching method. Also in this embodiment, the length of the long side of the folded dipole element 31, the length of the parasitic element 33, and the folded dipole element 31.
The mutual positional relationship between the parasitic element 33 and the parasitic element 33, and the shape of the bent portion of the folded dipole element 31 may be formed into a smoothly curved shape instead of being formed into an angular shape as shown in the drawing. Similar to the example, its equivalent circuit and radiation characteristics are also similar to those of the previous embodiment.

【0012】図9もまた本発明の他の実施例の要部を示
す図で、図9(a)は正面図、図9(b)は側面図であ
る。図9において4は反射器で、他の符号は図1と同様
である。この実施例においては、反射器4を設けた点が
図1に示した実施例と異なるのみで、他の構成及び作用
等は図1に示した実施例と同様である。図9には反射器
4として平面状の導体より成る反射器を用いた場合を例
示してあるが、この他、例えばコ−ナ型反射器、放物面
型反射器又は格子型反射器等を用いてもよい。
9 (a) and 9 (b) are also views showing the main part of another embodiment of the present invention. FIG. 9 (a) is a front view and FIG. 9 (b) is a side view. In FIG. 9, 4 is a reflector, and other reference numerals are the same as in FIG. This embodiment is different from the embodiment shown in FIG. 1 only in that a reflector 4 is provided, and other configurations and actions are similar to those of the embodiment shown in FIG. FIG. 9 exemplifies a case where a reflector made of a planar conductor is used as the reflector 4, but in addition to this, for example, a corner reflector, a parabolic reflector, a lattice reflector, or the like. May be used.

【0013】[0013]

【発明の効果】本発明ダイポ−ルアンテナは、良好な広
帯域特性又は複数周波数帯域共用特性を有し、又、折返
しダイポ−ル素子の形成する面内に無給電素子を設けて
あるので、構造が平面的で、全体を簡潔に構成すること
ができ、製作も容易である。特に、例えばフォトエッチ
ング法によるプリント配線手法によって誘電体基板の表
面に付着させた金属薄層によって、折返しダイポ−ル素
子、給電回路及び無給電素子を形成する場合には、同一
特性を有するダイポ−ルアンテナの量産を容易に行うこ
とが可能である。
Industrial Applicability The dipole antenna of the present invention has a good wide band characteristic or a characteristic for sharing a plurality of frequency bands, and a parasitic element is provided in the plane formed by the folded dipole element. It is flat, the whole structure can be simplified, and it is easy to manufacture. In particular, in the case of forming a folded dipole element, a feeding circuit and a parasitic element by a thin metal layer attached to the surface of a dielectric substrate by a printed wiring method such as photo-etching method, a dipole having the same characteristics is formed. It is possible to easily mass-produce the antenna.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部を示す図で、図1
(a)は正面図、図1(b)は側面図である。
FIG. 1 is a diagram showing a main part of an embodiment of the present invention.
1A is a front view, and FIG. 1B is a side view.

【図2】本発明ダイポ−ルアンテナの等価回路図であ
る。
FIG. 2 is an equivalent circuit diagram of the dipole antenna of the present invention.

【図3】本発明ダイポ−ルアンテナの広帯域特性の一例
を示す図である。
FIG. 3 is a diagram showing an example of wideband characteristics of the dipole antenna of the present invention.

【図4】本発明ダイポ−ルアンテナの複数周波数帯域共
用特性の一例を示す図である。
FIG. 4 is a diagram showing an example of a shared characteristic of a plurality of frequency bands of the dipole antenna of the present invention.

【図5】本発明ダイポ−ルアンテナの磁界面における指
向性の一例を示す図である。
FIG. 5 is a diagram showing an example of directivity in a magnetic field plane of the dipole antenna of the present invention.

【図6】本発明ダイポ−ルアンテナの磁界面における指
向性の一例を示す図である。
FIG. 6 is a diagram showing an example of directivity in a magnetic field plane of the dipole antenna of the present invention.

【図7】本発明ダイポ−ルアンテナの磁界面における指
向性の一例を示す図である。
FIG. 7 is a diagram showing an example of directivity in a magnetic field plane of the dipole antenna of the present invention.

【図8】本発明の他の実施例を示す図で、図8(a)は
正面図、図8(b)は側面図である。
FIG. 8 is a view showing another embodiment of the present invention, FIG. 8 (a) is a front view and FIG. 8 (b) is a side view.

【図9】本発明の他の実施例の要部を示す図で、図9
(a)は正面図、図9(b)は側面図である。
FIG. 9 is a diagram showing a main part of another embodiment of the present invention.
9A is a front view, and FIG. 9B is a side view.

【図10】従来のダイポ−ルアンテナの要部を示す図
で、図10(a)は正面図、図10(b)は側面図であ
る。
10A and 10B are views showing a main part of a conventional dipole antenna, in which FIG. 10A is a front view and FIG. 10B is a side view.

【図11】従来のダイポ−ルアンテナの要部を示す図
で、図11(a)は正面図、図11(b)は側面図であ
る。
FIG. 11 is a view showing a main part of a conventional dipole antenna, FIG. 11 (a) is a front view and FIG. 11 (b) is a side view.

【図12】従来のダイポ−ルアンテナの磁界面における
指向性の一例を示す図でである。
FIG. 12 is a diagram showing an example of directivity in a magnetic field plane of a conventional dipole antenna.

【図13】従来のダイポ−ルアンテナの磁界面における
指向性の一例を示す図でである。
FIG. 13 is a diagram showing an example of directivity in a magnetic field plane of a conventional dipole antenna.

【符号の説明】[Explanation of symbols]

1 折返しダイポ−ル素子 2 給電回路 3 無給電素子 T 高周波電源接続端子 LD 実効インダクタンス CD 実効静電容量 RD 実効抵抗 LP 実効インダクタンス CP 実効静電容量 RP 実効抵抗 31 折返しダイポ−ル素子 32 給電回路 33 無給電素子 34 誘電体基板 4 反射器 11 ダイポ−ル素子 12 ダイポ−ル素子 31 無給電素子 32 無給電素子1 Folded dipole element 2 Feed circuit 3 Parasitic element T High frequency power supply connection terminal L D Effective inductance C D Effective capacitance R D Effective resistance L P Effective inductance C P Effective capacitance R P Effective resistance 31 Folded dipole Element 32 feeding circuit 33 parasitic element 34 dielectric substrate 4 reflector 1 1 dipole element 1 2 dipole element 3 1 parasitic element 3 2 parasitic element

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】折返しダイポール素子と、 前記折返しダイポール素子によって囲まれる面内におい
て、電界軸と平行に設けた直線錠導体より成る無給電素
子とを備えたことを特徴とするダイポールアンテナ。
1. A dipole antenna comprising: a folded dipole element; and a parasitic element made of a linear lock conductor provided in parallel with an electric field axis in a plane surrounded by the folded dipole element.
【請求項2】無給電素子を、 折返しダイポール素子によって囲まれる面内において、
その中央より給電点寄りの個所に設けた請求項1に記載
のダイポールアンテナ。
2. A parasitic element in a plane surrounded by a folded dipole element,
The dipole antenna according to claim 1, wherein the dipole antenna is provided at a position closer to the feeding point than the center thereof.
【請求項3】誘電体基板の表面に付着させた金属薄層よ
り成る折返しダイポール素子と、 前記誘電体基板の表面に付着させた金属薄層より成り、
前記折返しダイポール素子によって囲まれる面内におい
て、電界軸と平行に設けた直線状無給電素子とを備えた
ことを特徴とするダイポールアンテナ。
3. A folded dipole element comprising a thin metal layer attached to the surface of a dielectric substrate, and a thin metal layer attached to the surface of the dielectric substrate.
A dipole antenna comprising: a linear parasitic element provided parallel to an electric field axis in a plane surrounded by the folded dipole element.
【請求項4】無給電素子を、 折返しダイポール素子によって囲まれる面内において、
その中央より給電点寄りの個所に設けた請求項3に記載
のダイポールアンテナ。
4. A parasitic element in a plane surrounded by a folded dipole element,
The dipole antenna according to claim 3, wherein the dipole antenna is provided at a position closer to the feeding point than the center thereof.
JP4105791A 1992-03-31 1992-03-31 Dipole antenna Expired - Fee Related JP2542987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4105791A JP2542987B2 (en) 1992-03-31 1992-03-31 Dipole antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4105791A JP2542987B2 (en) 1992-03-31 1992-03-31 Dipole antenna

Publications (2)

Publication Number Publication Date
JPH05283926A JPH05283926A (en) 1993-10-29
JP2542987B2 true JP2542987B2 (en) 1996-10-09

Family

ID=14416961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4105791A Expired - Fee Related JP2542987B2 (en) 1992-03-31 1992-03-31 Dipole antenna

Country Status (1)

Country Link
JP (1) JP2542987B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624917B2 (en) * 1995-05-10 2005-03-02 カシオ計算機株式会社 Antenna for portable wireless device and portable wireless device
JPH09199922A (en) * 1996-01-12 1997-07-31 Kyocera Corp Antenna system
US5835070A (en) * 1996-09-27 1998-11-10 Ericsson Inc. Retractable antenna
US7292200B2 (en) * 2004-09-23 2007-11-06 Mobile Mark, Inc. Parasitically coupled folded dipole multi-band antenna
JP2008160314A (en) 2006-12-21 2008-07-10 Fujitsu Ltd Antenna unit and radio communication equipment
AU2008246607B2 (en) 2007-04-27 2011-07-07 Nec Corporation Sector antenna
WO2008152731A1 (en) * 2007-06-15 2008-12-18 Pioneer Corporation Dipole antenna
JP2012019310A (en) * 2010-07-07 2012-01-26 Mitsubishi Cable Ind Ltd Planar antenna
JP5079106B2 (en) * 2011-01-13 2012-11-21 富士通テン株式会社 Omnidirectional antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129708U (en) * 1984-02-09 1985-08-30 日本アンテナ株式会社 antenna
JPS62191207U (en) * 1986-05-26 1987-12-05

Also Published As

Publication number Publication date
JPH05283926A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
KR100283459B1 (en) 2-frequency resonant antenna device
EP0631343B1 (en) Microstrip patch antenna array
US5990848A (en) Combined structure of a helical antenna and a dielectric plate
JP3085524B2 (en) Dipole antenna with reflector
KR100893738B1 (en) Surface-mounted antenna and communications apparatus comprising same
JP3340271B2 (en) Omnidirectional antenna
US6680712B2 (en) Antenna having a conductive case with an opening
JP2011041318A (en) Broadband multi-dipole antenna with frequency-independent radiation characteristics
JP3980172B2 (en) Broadband antenna
GB2424765A (en) Dipole antenna with an impedance matching arrangement
JP4188549B2 (en) antenna
US6005522A (en) Antenna device with two radiating elements having an adjustable phase difference between the radiating elements
JP2542987B2 (en) Dipole antenna
US5986614A (en) Antenna device
JP3114836B2 (en) Printed dipole antenna
JPH07303005A (en) Antenna system for vehicle
JP2525545Y2 (en) Broadband microstrip antenna
JP4112136B2 (en) Multi-frequency antenna
JP4516246B2 (en) antenna
JP2005117490A (en) Compact antenna and multi-frequency shared antenna
KR20180003515A (en) Compact, wideband log-periodic dipole array antenna
JP3804878B2 (en) Dual-polarized antenna
JP2011087241A (en) Antenna, and array antenna
JP3185856B2 (en) Dual-frequency resonant antenna device
US6466169B1 (en) Planar serpentine slot antenna

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960416

LAPS Cancellation because of no payment of annual fees