JPH01205123A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPH01205123A
JPH01205123A JP63029910A JP2991088A JPH01205123A JP H01205123 A JPH01205123 A JP H01205123A JP 63029910 A JP63029910 A JP 63029910A JP 2991088 A JP2991088 A JP 2991088A JP H01205123 A JPH01205123 A JP H01205123A
Authority
JP
Japan
Prior art keywords
liquid crystal
oriented
molecules
substrate
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63029910A
Other languages
Japanese (ja)
Inventor
Susumu Sato
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63029910A priority Critical patent/JPH01205123A/en
Publication of JPH01205123A publication Critical patent/JPH01205123A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the axially-symmetrical molecule orienting characteristic of a liquid crystal element utilizable by orienting liquid crystal molecules in such a way that on one substrate of the liquid cell the molecules are oriented with their major axes arranged in one direction and on the other substrate the molecules are oriented with their major axes arranged concentrically or radially. CONSTITUTION:After performing treatment so that liquid crystal molecules can be oriented homogeneously in one direction on the substrate 1 on the incident side and molecules can be oriented concentrically on the substrate 2 on the other side, liquid crystal 4 is enclosed into the liquid crystal cell formed of the base plates 1 and 2 with a spacer in between. When a linearly polarizing plate 5 is placed on the incident side, with the polarizing direction being made coincident with the oriented direction of the liquid crystal molecules, the polarizing direction of the light passed through the liquid crystal cell becomes the oriented direction of the molecules on the light emitting side, namely, concentric. On the other hand, when the polarizing direction of the polarizing plate 5 is turned to the direction perpendicular to the major-axis direction of the homogeneously-oriented liquid crystal molecules on the incident-side base plate 1, a radially polarized output is obtained. Therefore, an axially- symmetrical (centrally-symmetrical), such as concentric, radial, etc., polarizing characteristic can be obtained with a simple constitution.

Description

【発明の詳細な説明】 [産業上の利用分計] 本発明は軸対称(中心対称)状の偏光並びに分子配向特
性を利用する液晶素子に関するものであり、液晶による
可変焦点レンズの液晶分子の配向特性の改善及び液晶表
示素子の視角依存性の改善に関するものである。
Detailed Description of the Invention [Industrial Applicability] The present invention relates to a liquid crystal element that utilizes axially symmetrical (centrosymmetric) polarization and molecular orientation characteristics, and the present invention relates to a liquid crystal element that utilizes axially symmetric (centrosymmetric) polarization and molecular orientation characteristics, and the present invention relates to a liquid crystal element that utilizes axially symmetric (centrosymmetric) polarization and molecular orientation characteristics. The present invention relates to improvements in alignment characteristics and viewing angle dependence of liquid crystal display elements.

[従来の技術] 2枚の透明電極を付けた基板の間に誘電異方性が正の電
界効果形液晶を入れ、液晶分子が基板に平行になるよう
に配向させた液晶セル(ホモジニアス配向液晶セル)に
しきい値以上の電圧を印加すると、液晶分子の双極子モ
ーメントに働く力により液晶分子は分子長軸を電界方向
にそろうようにその向きを変える。したがって、印加電
圧を大きくすると基板に平行に配向していた液晶分子を
基板に対して垂直方向に連続的にその向きを変えること
ができる。よって液晶分子の配向の方位に偏光した入射
光に対して液晶セルの見掛けの屈折率は異常光に対する
値から常光に対する値まで連続的に変化する。液晶層が
レンズのような形をしている液晶素子では、印加電圧に
より液晶分子の配向方向を制御して液晶セルの見掛けの
屈折率を変化させることにより、レンズの焦点距離を異
常光に対する値から常光に対する値まで連続的に変化で
きることは既に特開昭54−15854号公報等におい
て知られている。なお、垂直配向させた誘電異方性が負
の液晶を用いると印加電圧に対する焦点距離の変化が逆
になる。又、液晶レンズをフレネルレンズ構造とするこ
とにより液晶層の厚みを実効的に薄くして印加電圧に対
する応答・回復特性を改善する技術手段も、既に例えば
特開昭60−50510号公報などにより知られていし
かし、液晶分子を一方向に配向させる分子配向法では、
曲面状の基板に対する液晶分子の配向特性に場所的な不
均一性が生じることがあるという難点があり、液晶層を
フレネル構造とした場合には特に−様な分子配向特性を
得ることが難しかった。ところで、このような液晶によ
る焦点距離可変レンズにおける分子配向特性を改善する
ものとして、液晶セル内で液晶分子を軸対称(中心対称
)的なものすなわち同心円状又は放射状に配向させる技
術手段が既に特開昭61−138922号公報等におい
て知られている。
[Prior art] A liquid crystal cell (homogeneously aligned liquid crystal) in which a field-effect liquid crystal with positive dielectric anisotropy is placed between two substrates with transparent electrodes, and the liquid crystal molecules are aligned parallel to the substrates. When a voltage higher than a threshold voltage is applied to the cell (cell), the force acting on the dipole moment of the liquid crystal molecules causes the liquid crystal molecules to change their orientation so that their long axes align with the direction of the electric field. Therefore, when the applied voltage is increased, the orientation of the liquid crystal molecules, which were oriented parallel to the substrate, can be continuously changed to the direction perpendicular to the substrate. Therefore, the apparent refractive index of the liquid crystal cell for incident light polarized in the orientation direction of the liquid crystal molecules changes continuously from a value for extraordinary light to a value for ordinary light. In a liquid crystal element whose liquid crystal layer is shaped like a lens, the apparent refractive index of the liquid crystal cell is changed by controlling the alignment direction of liquid crystal molecules using an applied voltage, thereby changing the focal length of the lens to a value for extraordinary light. It is already known in Japanese Unexamined Patent Publication No. 15854/1983 that the value can be changed continuously from 1 to 1 to the value for ordinary light. Note that if a vertically aligned liquid crystal with negative dielectric anisotropy is used, the change in focal length with respect to the applied voltage will be reversed. In addition, technical means for effectively reducing the thickness of the liquid crystal layer and improving response and recovery characteristics to applied voltage by forming the liquid crystal lens into a Fresnel lens structure have already been known, for example, from Japanese Patent Laid-Open No. 60-50510. However, in the molecular alignment method that aligns liquid crystal molecules in one direction,
There is a problem in that the alignment characteristics of liquid crystal molecules on a curved substrate may be locally non-uniform, and it is particularly difficult to obtain -like molecular alignment characteristics when the liquid crystal layer has a Fresnel structure. . By the way, in order to improve the molecular orientation characteristics of such a variable focal length lens using liquid crystal, technical means for orienting liquid crystal molecules axially symmetrically (centrosymmetrically), that is, concentrically or radially, within a liquid crystal cell has already been proposed. This method is known from JP-A-61-138922.

一方、透明導電膜を付けた一方のガラス基板上に液晶分
子が一方向に並んで配向するようにし、他方の基板上で
はそれと直交するようにした液晶素子はTN(ツィステ
ッドネマティック、ねじれネマティック)液晶として知
られており、電圧印加によるそのねじれの解消効果を利
用して光の透過状態を切り換える表示素子として広く使
用されている。このTN液晶はある特定の方位に対して
視認性が悪化するという、いわゆる視角依存性がある。
On the other hand, a liquid crystal device in which liquid crystal molecules are aligned in one direction on one glass substrate with a transparent conductive film attached, and perpendicular to that on the other substrate is a TN (twisted nematic). It is known as a liquid crystal, and is widely used as a display element that switches the state of light transmission by utilizing the effect of untwisting the crystal by applying a voltage. This TN liquid crystal has a so-called viewing angle dependency, in which visibility deteriorates in a certain specific direction.

この視角依存性を改善するものとして、液晶分子を一方
の基板上で同心円状とし、他方の基板上では放射状とな
るような、すなわち液晶分子を軸対称(中心対称)的に
配向させてTN液晶と同様の透過状態の切り換え効果を
示す表示素子があり、電子通信学会技術研究報告EID
−86−14(昭和61年12月10日)において公表
されている。この軸対称く中心対称)状配向液晶セルで
は、どの方位からこの表示素子を見ても素子の一部分を
除いて視認性がすぐれているので、表示素子を回りから
取り囲んで見る場合等において特に有効である。
In order to improve this viewing angle dependence, the liquid crystal molecules are arranged concentrically on one substrate and radially on the other substrate, that is, the liquid crystal molecules are oriented axially symmetrically (centrosymmetrically). There is a display element that exhibits the same transparent state switching effect as in the IEICE technical research report EID.
-86-14 (December 10, 1986). This axially symmetric (centrosymmetric) aligned liquid crystal cell has excellent visibility no matter which direction the display element is viewed from, except for a portion of the element, so it is particularly effective when viewing the display element from all around. It is.

[発明が解決しようとする問題点] ところで、同心円状や放射状、又はこれらの組み合わせ
による分子配向特性を有する液晶レンズを単独で動作さ
せるためには、入射光として軸対称(中心対称)の偏光
を用いなければならない。
[Problems to be Solved by the Invention] Incidentally, in order to operate a liquid crystal lens having molecular orientation characteristics of concentric circles, radials, or a combination thereof, it is necessary to use axially symmetric (centrosymmetric) polarized light as the incident light. must be used.

すなわち、同心円状又は放射状の偏光特性を示す特殊な
偏光板が必要となる。このような特殊な偏光板を用いな
いで可変焦点レンズとするためには前記の特開昭61.
−138922号公報において開示されているように、
同心円状配向又は放射状配向の特性を有する2枚の液晶
によるレンズの間にTN液晶セルを挟み込んで重ね合わ
せた構造とするか、あるいは、同心円状に液晶分子が配
向している液晶セルと放射状に液晶分子が配向している
液晶セルとを重ね合わせた構造としなければならない。
That is, a special polarizing plate exhibiting concentric or radial polarization characteristics is required. In order to make a variable focus lens without using such a special polarizing plate, the above-mentioned Japanese Patent Laid-Open No. 61.
As disclosed in Publication No.-138922,
Either a TN liquid crystal cell is sandwiched between two liquid crystal lenses with concentric alignment or radial alignment characteristics, and the TN liquid crystal cell is stacked on top of the other. It must have a structure in which liquid crystal cells with oriented liquid crystal molecules are superimposed.

一方、同心円・放射状配向のTNセルにおいても、同様
に軸対称(中心対称)の偏光特性を有する偏光板が必要
であることは言うまでもない。
On the other hand, it goes without saying that a polarizing plate having axially symmetrical (centrosymmetric) polarization characteristics is also required in a concentrically or radially oriented TN cell.

しかし、ポリビニルアルコール等を用いた通常の一軸延
伸のポリマーフィルムとヨウ素等の2色性色素分子等と
を利用した偏光板で、このような軸対称(中心対称)特
性を持つ偏光板を作製することはきわめて困難である。
However, it is possible to create a polarizing plate with such axially symmetrical (centrosymmetric) characteristics by using a normal uniaxially stretched polymer film made of polyvinyl alcohol or the like and dichroic dye molecules such as iodine. This is extremely difficult.

ところで、一方向に摩擦した基板の上にメチレンブルー
の溶液をスピンナー法等により付けて、メチレンブルー
の分子を一方向に配向させた偏光板がある。基板を軸対
称(中心対称)状に摩擦することにより、メチレンブル
ー分子を軸対称(中心対称)状に配向させるようにして
も軸対称(中心対称)特性を持つ偏光を作る事はできる
。しかし、このような偏光板では偏光特性が劣り、又耐
久性や再現性等に問題があった。
By the way, there is a polarizing plate in which methylene blue molecules are oriented in one direction by applying a solution of methylene blue using a spinner method or the like onto a substrate that has been rubbed in one direction. By rubbing the substrate in an axially symmetrical (centrosymmetric) manner, it is possible to create polarized light with axially symmetrical (centrosymmetric) characteristics even if the methylene blue molecules are oriented in an axially symmetrical (centrosymmetric) manner. However, such a polarizing plate has poor polarization properties and has problems with durability, reproducibility, etc.

本発明は同心円状又は放射状の偏光特性を有する偏光素
子を構成し、軸対称の分子配向特性を利用することので
きる液晶素子を構成することを目的としている。
An object of the present invention is to construct a polarizing element having concentric or radial polarization characteristics, and to construct a liquid crystal element that can utilize an axially symmetrical molecular orientation characteristic.

本発明者は上述の難点に留意し、液晶分子の配向効果を
利用して、軸対称(中心対称)の偏光特性を有する偏光
板を構成する手段を案出し、分子配向特性のすぐれた液
晶レンズとする手段を案出して本発明を完成したもので
ある。
The inventors of the present invention have taken the above-mentioned difficulties into consideration, and have devised a means for constructing a polarizing plate having axially symmetric (centrosymmetric) polarization characteristics by utilizing the orientation effect of liquid crystal molecules, and have created a liquid crystal lens with excellent molecular orientation characteristics. The present invention was completed by devising a means for achieving this.

[問題点を解決するための手段] 軸対称(中心対称)状の偏光特性を有する液晶素子を構
成するために、2枚のガラス基板又はプラスチック基板
の間に液晶を封入した液晶セルにおいて、一方の基板上
では液晶分子の長袖方向を一方向にそろえて配向し、他
方の基板上では軸対称(中心対称)すなわち同心円状又
は放射状になるように配向させている。
[Means for solving the problem] In a liquid crystal cell in which liquid crystal is sealed between two glass substrates or plastic substrates, one On one substrate, the long sleeve directions of the liquid crystal molecules are aligned in one direction, and on the other substrate, they are aligned so as to be axially symmetric (centrosymmetric), that is, concentrically or radially.

又、電圧印加による液晶分子の配向効果を利用できるよ
うにするために、2枚の基板に透明導電膜を付けた構造
としている。そして、液晶セルを構成する基板の少なく
とも一方が曲面構造やフレネルレンズ構造であってもよ
く、両凸レンズ状又は両凹レンズ状とすることもできる
。又、直線偏光板と液晶セルの間にTN液晶セルを挟み
込んだ構成とすることもできる [作用] 液晶セルの中で入射光の進行方向に対して液晶分子の配
向方向が少しずつ変化している場合、例えば液晶分子が
液晶セル内で90度ねじれているTN液晶セルでは、そ
のラセンねじれのピッチは液晶セルの厚みの4倍すなわ
ち10〜20ミクロンもあり光の波長に比べてずつと長
いので、液晶分子の長軸方向に偏光した入射光の偏光方
向は液晶分子の長軸方向に沿って変化しながら液晶セル
の中を進行する(長軸方向に垂直に偏光している場合も
同様である)。したがって、液晶分子の長軸方向を一方
向にそろえて配向している基板を通って入射した光は液
晶層を通って軸対称(中心対称)状に配向している他方
の基板から出るときには軸対称(中心対称)状の偏光に
なっている。すなわち、液晶分子の長軸方向を一方向に
配向したホモジニアス配向と軸対称(中心対称)配向の
基板を組み合わせることで軸対称(中心対称)状の偏光
を得ることができる。曲面構造をした一方の基板上で液
晶分子が軸対称(中心対称)配向している液晶レンズを
構成すると、曲面上の壁面に沿って−様な分子配向状態
を得ることができる。
Furthermore, in order to make use of the alignment effect of liquid crystal molecules caused by voltage application, a structure is adopted in which transparent conductive films are attached to two substrates. At least one of the substrates constituting the liquid crystal cell may have a curved structure or a Fresnel lens structure, and may also have a biconvex lens shape or a biconcave lens shape. It is also possible to have a configuration in which a TN liquid crystal cell is sandwiched between a linear polarizing plate and a liquid crystal cell. [Function] The alignment direction of liquid crystal molecules changes little by little with respect to the traveling direction of incident light in the liquid crystal cell. For example, in a TN liquid crystal cell in which the liquid crystal molecules are twisted 90 degrees within the liquid crystal cell, the pitch of the helical twist is four times the thickness of the liquid crystal cell, or 10 to 20 microns, which is much longer than the wavelength of light. Therefore, the polarization direction of the incident light polarized in the direction of the long axis of the liquid crystal molecules travels through the liquid crystal cell while changing along the direction of the long axes of the liquid crystal molecules (the same is true when the light is polarized perpendicular to the long axis direction). ). Therefore, when light enters through a substrate whose long axes of liquid crystal molecules are oriented in one direction, it passes through the liquid crystal layer and exits from the other substrate whose long axes are oriented in an axially symmetrical (centrosymmetric) manner. The polarized light is symmetrical (centrosymmetric). That is, by combining a homogeneous alignment in which the long axis direction of liquid crystal molecules is oriented in one direction and a substrate with an axially symmetrical (centrosymmetric) alignment, it is possible to obtain axially symmetrical (centrosymmetric) polarized light. When a liquid crystal lens is constructed in which liquid crystal molecules are oriented axially symmetrically (centrosymmetrically) on one substrate having a curved surface structure, a −-like molecular orientation state can be obtained along the wall surface on the curved surface.

[実施例] 第1図に示すように、入射側の基板1で液晶分子が一方
向に(ホモジニアス)配向となり、他方の基板2では同
心円状に配向するような処理を行い、数ミクロン以上の
、例えば10ミクロン程度の厚みの電気的に絶縁性を有
するスペーサ3を挟んで液晶4を封入する。第2図は液
晶素子の斜視図を示したものである。なお、第1図及び
第2図において、スペーサ3の厚みすなわち液晶層の厚
みは基板2及び基板3の厚みに比べて相対的に大きく示
しである。入射側に直線偏光板5を置き、その偏光方向
を液晶分子の配向方向に一致するようにする。スペーサ
3の厚みすなわち液晶層の厚みは可視光線の波長に比べ
てずっと大きいので、入射光の偏光方向は液晶分子の配
向方向に沿って変化する。したがって、液晶セルを通り
抜けた光の偏光方向は出射側の分子の配向方向すなわち
同心円状となる。
[Example] As shown in Fig. 1, liquid crystal molecules are oriented in one direction (homogeneous) on the substrate 1 on the incident side, and concentrically oriented on the other substrate 2. For example, a liquid crystal 4 is sealed with an electrically insulating spacer 3 having a thickness of about 10 microns in between. FIG. 2 shows a perspective view of the liquid crystal element. Note that in FIGS. 1 and 2, the thickness of the spacer 3, that is, the thickness of the liquid crystal layer, is shown relatively larger than the thicknesses of the substrates 2 and 3. A linear polarizing plate 5 is placed on the incident side, and its polarization direction is made to match the alignment direction of liquid crystal molecules. Since the thickness of the spacer 3, that is, the thickness of the liquid crystal layer, is much larger than the wavelength of visible light, the polarization direction of the incident light changes along the alignment direction of the liquid crystal molecules. Therefore, the polarization direction of the light that has passed through the liquid crystal cell becomes the orientation direction of molecules on the output side, that is, concentric circles.

一方、直線偏光板5の偏光方向を入射側基板1における
ホモジニアス配向の液晶分子の長袖方向に垂直な方向に
向けると、同心円状の偏光方向が90度回転するため、
放射状の偏光出力が得られる。第3図に示すように、直
線偏光板5と液晶セルの間にTN液晶セル6を挟み、T
N液晶セル6に電源7及びスイッチ8により数ボルト程
度の電圧を加えることにより第1図に示したような偏光
状態をホモジニアス配向の液晶分子の配向方向に対して
平行と垂直方向の間でそれぞれ切り換えることができる
ので、同心円状及び放射状各々の偏光特性の切り換えを
行うことができる。
On the other hand, if the polarization direction of the linear polarizing plate 5 is oriented perpendicular to the long sleeve direction of the homogeneously aligned liquid crystal molecules on the input side substrate 1, the concentric polarization direction is rotated by 90 degrees.
A radially polarized output is obtained. As shown in FIG. 3, a TN liquid crystal cell 6 is sandwiched between a linear polarizing plate 5 and a liquid crystal cell, and a T
By applying a voltage of several volts to the N liquid crystal cell 6 using the power supply 7 and the switch 8, the polarization state shown in FIG. Since the polarization characteristics can be switched, it is possible to switch between concentric and radial polarization characteristics.

なお、同心円状の分子配向法としては液晶セル基板を回
転させながら綿布やナイロン布等で摩擦する方法、同様
に基板を回転させながら真空斜方蒸着を行う方法等によ
り行うことができる。
The concentric molecular orientation method can be performed by rubbing the liquid crystal cell substrate with cotton cloth, nylon cloth, etc. while rotating it, or by performing vacuum oblique vapor deposition while rotating the substrate.

同様に光入射側基板で液晶分子をホモジニアス配向させ
、他方の基板で放射状の分子配向となるようにしても、
偏光板の偏光方向を分子の配向方向に一致させると放射
状の偏光が、又配向方向と垂直な方向に向けると同心円
状の偏光を得ることができる。放射状の分子配向法とし
ては同様に摩擦法や真空斜方蒸着法等により行う事がで
きる。
Similarly, even if the liquid crystal molecules are homogeneously aligned on the light incident side substrate and radially aligned on the other substrate,
If the polarizing direction of the polarizing plate matches the orientation direction of the molecules, radial polarized light can be obtained, and if the polarizing plate is directed in a direction perpendicular to the orientation direction, concentric polarized light can be obtained. As the radial molecular orientation method, a friction method, a vacuum oblique evaporation method, etc. can be similarly used.

透明導電膜を付けた2枚の基板と誘電異方性が正のネマ
ティック液晶を用いて液晶セルを作製すると、透明導電
膜間にしきい値以上の電圧を加えることにより、液晶分
子が基板に垂直になり入射光の偏光方向はそのままの状
態で液晶セルを通り抜ける。したがって、透過光は直線
偏光となり、軸対称(中心対称)偏光と直線偏光との切
り換えができる。
When a liquid crystal cell is fabricated using two substrates with transparent conductive films and a nematic liquid crystal with positive dielectric anisotropy, by applying a voltage higher than a threshold between the transparent conductive films, the liquid crystal molecules become perpendicular to the substrates. The incident light passes through the liquid crystal cell with its polarization direction unchanged. Therefore, the transmitted light becomes linearly polarized light, and it is possible to switch between axially symmetric (centrosymmetric) polarized light and linearly polarized light.

透明導電膜を付けた基板の少なくとも一方の基板の液晶
に接する内面を曲面構造やフレネルレンズ構造として液
晶層をレンズ状の構造とすることにより、可変焦点の液
晶レンズを構成することができる。又、例えば曲面構造
の基板を軸対称(中心対称)配向とすると、液晶分子が
曲面状の基板に沿って一様に配向するため、高品質の液
晶レンズとすることができる。
A variable focus liquid crystal lens can be constructed by forming the liquid crystal layer into a lens-like structure by forming the inner surface of at least one of the substrates having a transparent conductive film in contact with the liquid crystal with a curved surface structure or a Fresnel lens structure. Furthermore, for example, if a substrate with a curved surface structure is oriented axially symmetrically (centrosymmetrically), the liquid crystal molecules are uniformly aligned along the curved substrate, so that a high-quality liquid crystal lens can be obtained.

具体的な例として、誘電異方性が正のネマティック液晶
であるシアノペンチルビフェニル(CPB)及び焦点距
離が−7,6cmである凹レンズ形のフレネルレンズを
用い、数ボルト程度の電圧を印加することにより、焦点
距離を15cmから80cm程度まで可変でき、応答速
度が1秒程度で、光学的特性のすぐれた可変焦点レンズ
を構成することができる。なお、誘電異方性が正である
他の液晶を使用することもできる。
As a specific example, a voltage of several volts is applied using cyanopentylbiphenyl (CPB), a nematic liquid crystal with positive dielectric anisotropy, and a concave Fresnel lens with a focal length of -7.6 cm. Accordingly, it is possible to construct a variable focus lens with excellent optical characteristics, which can vary the focal length from about 15 cm to about 80 cm, has a response speed of about 1 second, and has excellent optical characteristics. Note that other liquid crystals having positive dielectric anisotropy can also be used.

さらに、出射側基板の分子配向を渦巻き状としたり、又
は軸対称(中心対称)状でない複雑な形状とするなど、
種々の形態の偏光分布特性を構成することも容易にでき
る。
Furthermore, it is possible to make the molecular orientation of the output side substrate spiral, or to have a complicated shape that is not axially symmetric (centrosymmetric).
It is also possible to easily configure polarization distribution characteristics in various forms.

[発明の効果] 以上のように、本発明は簡単な構成により同心円状や放
射状のような軸対称く中心対称)状の偏光特性を得るこ
とができ、液晶セルに数ボルト程度の低電圧を印加する
ことにより、軸対称(中心対称)状偏光と直線偏光間の
切り換えを行うことができる。又、TN液晶セルと組み
合わせることで同心円状偏光と放射状偏光との間の偏光
状態の切り換えを行うこともできる。さらに、液晶層を
レンズ状やフレネルレンズ状の曲面構造とすることによ
り、分子配向特性のすぐれた可変焦点液晶レンズとする
ことができるという卓越した効果を発する。
[Effects of the Invention] As described above, the present invention can obtain concentric or radial axially symmetric (centrosymmetric) polarization characteristics with a simple configuration, and can apply a low voltage of about several volts to a liquid crystal cell. By applying this voltage, it is possible to switch between axially symmetric (centrosymmetric) polarized light and linearly polarized light. Furthermore, by combining it with a TN liquid crystal cell, it is also possible to switch the polarization state between concentrically polarized light and radially polarized light. Furthermore, by forming the liquid crystal layer into a lens-like or Fresnel lens-like curved surface structure, a variable focus liquid crystal lens with excellent molecular orientation characteristics can be obtained, which is an outstanding effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の詳細な説明するためのもので第1図はホ
モジニアス配向と同心円状配向の基板により構成された
液晶セルによる同心円状の偏光特性を得る液晶素子の構
成図であり、第2図はその斜視図であり、図で矢印は偏
光方向及び液晶分子の配向方向を示す。第3図は直線偏
光板と液晶セルの間にTN液晶セルを挟んだ場合である
。 1・・・ホモジニアス配向の基板 2・・・同心円状配向の基板 3・・・スペーサ 4・・・液晶 5・・・直線偏光板 6・・・TN液晶セル フ・・・電源 8・・・スイッチ
The drawings are for explaining the present invention in detail, and FIG. 1 is a diagram showing the configuration of a liquid crystal element that obtains concentric polarization characteristics by a liquid crystal cell constructed of substrates with homogeneous orientation and concentric orientation, and FIG. is a perspective view thereof, in which arrows indicate the polarization direction and the alignment direction of liquid crystal molecules. FIG. 3 shows a case where a TN liquid crystal cell is sandwiched between a linear polarizing plate and a liquid crystal cell. 1... Homogeneously aligned substrate 2... Concentrically aligned substrate 3... Spacer 4... Liquid crystal 5... Linear polarizing plate 6... TN liquid crystal self... Power supply 8... Switch

Claims (6)

【特許請求の範囲】[Claims] (1)2枚のガラス基板又はプラスチック基板の間に液
晶を封入した液晶セル及び直線偏光板とから成り、前記
液晶セルの一方の基板上では液晶分子の長軸方向を一方
向にそろえて配向し、他方の基板上では軸対称(中心対
称)すなわち同心円状又は放射状になるように配向した
ことを特徴とする液晶素子。
(1) Consists of a liquid crystal cell with liquid crystal sealed between two glass or plastic substrates and a linear polarizing plate, and on one of the substrates of the liquid crystal cell, the long axes of liquid crystal molecules are aligned in one direction. A liquid crystal element characterized in that the liquid crystal element is oriented so as to be axially symmetric (centrosymmetric), that is, concentrically or radially, on the other substrate.
(2)液晶セルを構成する前記ガラス基板又はプラスチ
ック基板に導電性被膜が形成されている特許請求の範囲
第1項記載の液晶素子。
(2) The liquid crystal element according to claim 1, wherein a conductive film is formed on the glass substrate or plastic substrate constituting the liquid crystal cell.
(3)液晶セルを構成する基板の少なくとも一方が、液
晶に接する内面が曲面構造となっている特許請求の範囲
第1項及び第2項記載の液晶素子。
(3) The liquid crystal element according to claims 1 and 2, wherein at least one of the substrates constituting the liquid crystal cell has a curved inner surface in contact with the liquid crystal.
(4)液晶セルを構成する基板の少なくとも一方が、フ
レネルレンズ構造となっている特許請求の範囲第1項及
び第2項記載の液晶素子。
(4) The liquid crystal element according to claims 1 and 2, wherein at least one of the substrates constituting the liquid crystal cell has a Fresnel lens structure.
(5)液晶セルを構成する基板の少なくとも一方が、両
凸レンズ状又は両凹レンズ状となつている特許請求の範
囲第1項及び第2項記載の液晶素子。
(5) The liquid crystal element according to claims 1 and 2, wherein at least one of the substrates constituting the liquid crystal cell has a biconvex lens shape or a biconcave lens shape.
(6)液晶セルと直線偏光板の間にTN液晶セルを挟み
込んで構成されている特許請求の範囲第1項記載の液晶
素子。
(6) The liquid crystal element according to claim 1, which is constructed by sandwiching a TN liquid crystal cell between a liquid crystal cell and a linear polarizing plate.
JP63029910A 1988-02-10 1988-02-10 Liquid crystal element Pending JPH01205123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029910A JPH01205123A (en) 1988-02-10 1988-02-10 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029910A JPH01205123A (en) 1988-02-10 1988-02-10 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPH01205123A true JPH01205123A (en) 1989-08-17

Family

ID=12289147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029910A Pending JPH01205123A (en) 1988-02-10 1988-02-10 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPH01205123A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419257A2 (en) * 1989-09-22 1991-03-27 Matsushita Electric Industrial Co., Ltd. Optical head apparatus incorporating a polarizing element
WO2004086108A1 (en) * 2003-03-27 2004-10-07 Infm Istituto Nazionale Per La Fisica Della Materia A polarizing filter with a radial linear output polarisation, particularly for photographic lenses
WO2007006983A1 (en) * 2005-07-07 2007-01-18 Thomson Licensing Polarizer and corresponding projector
WO2008071822A1 (en) * 2006-12-15 2008-06-19 Universidad De Zaragoza Polarisation converter and focusing device based on said converter
JP2013539061A (en) * 2010-07-19 2013-10-17 オリバ ジョビン イボン エス. アー. エス. Bi-directional cylindrically symmetric polarization converter and Cartesian-cylindrical polarization conversion method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142317A (en) * 1979-04-23 1980-11-06 Mitsubishi Electric Corp Liquid crystal arraying method
JPS6050510A (en) * 1983-08-30 1985-03-20 Susumu Sato Liquid crystal lens of variable focal distance
JPS61138922A (en) * 1984-12-11 1986-06-26 Jiesu:Kk Variable focus liquid crystal lens
JPS62123426A (en) * 1985-11-22 1987-06-04 Jiesu:Kk Method for orienting liquid crystal molecules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142317A (en) * 1979-04-23 1980-11-06 Mitsubishi Electric Corp Liquid crystal arraying method
JPS6050510A (en) * 1983-08-30 1985-03-20 Susumu Sato Liquid crystal lens of variable focal distance
JPS61138922A (en) * 1984-12-11 1986-06-26 Jiesu:Kk Variable focus liquid crystal lens
JPS62123426A (en) * 1985-11-22 1987-06-04 Jiesu:Kk Method for orienting liquid crystal molecules

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419257A2 (en) * 1989-09-22 1991-03-27 Matsushita Electric Industrial Co., Ltd. Optical head apparatus incorporating a polarizing element
US5142394A (en) * 1989-09-22 1992-08-25 Matsushita Electric Industrial Co., Ltd. Twisted nematic polarizing element with a concentric circle orientation surface and optical head device incorporating the same
WO2004086108A1 (en) * 2003-03-27 2004-10-07 Infm Istituto Nazionale Per La Fisica Della Materia A polarizing filter with a radial linear output polarisation, particularly for photographic lenses
WO2007006983A1 (en) * 2005-07-07 2007-01-18 Thomson Licensing Polarizer and corresponding projector
WO2008071822A1 (en) * 2006-12-15 2008-06-19 Universidad De Zaragoza Polarisation converter and focusing device based on said converter
ES2302461A1 (en) * 2006-12-15 2008-07-01 Universidad De Zaragoza Polarisation converter and focusing device based on said converter
JP2013539061A (en) * 2010-07-19 2013-10-17 オリバ ジョビン イボン エス. アー. エス. Bi-directional cylindrically symmetric polarization converter and Cartesian-cylindrical polarization conversion method

Similar Documents

Publication Publication Date Title
US4190330A (en) Variable focus liquid crystal lens system
JP2612914B2 (en) Optical system with multiple liquid crystal elements
KR920009824B1 (en) Liquid crystal display device
JPH04153621A (en) Biaxial optical element and production thereof
JPH0534656A (en) Focal length variable liquid crystal lens
JPH01205123A (en) Liquid crystal element
US6429915B1 (en) Tilted polarizers for liquid crystal displays
JPH11133449A (en) Optical device
JPS5850339B2 (en) variable focal length lens
KR101866193B1 (en) Bi-focal gradient index lens and method for fabricating the lens
JPS61138922A (en) Variable focus liquid crystal lens
JPH048769B2 (en)
JPS6050510A (en) Liquid crystal lens of variable focal distance
JPH04345124A (en) Focal length variable liquid crystal lens
RU2707424C1 (en) Electrically controlled light polarizer based on light scattering anisotropy
JPH05297339A (en) Liquid crystal light refracting element
JPH0750284B2 (en) Optical path switch
JPH06222351A (en) Reflection type liquid crystal display device and its production
JPS6117120A (en) Liquid crystal lens varying focal length
JPH0513281B2 (en)
JPH10221688A (en) Reflection type liquid crystal display device
JPH11264967A (en) Liquid crystal display
JP3074805B2 (en) Display element
JPH0527214A (en) Liquid crystal lens with variable focal length
JPS62157008A (en) Variable focus liquid crystal lens