JPH01205019A - Smelting reduction method - Google Patents
Smelting reduction methodInfo
- Publication number
- JPH01205019A JPH01205019A JP63028586A JP2858688A JPH01205019A JP H01205019 A JPH01205019 A JP H01205019A JP 63028586 A JP63028586 A JP 63028586A JP 2858688 A JP2858688 A JP 2858688A JP H01205019 A JPH01205019 A JP H01205019A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- furnace
- reduction
- smelting
- preheating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003723 Smelting Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000007789 gas Substances 0.000 claims abstract description 111
- 239000002184 metal Substances 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 45
- 239000002893 slag Substances 0.000 claims abstract description 44
- 238000007664 blowing Methods 0.000 claims abstract description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 19
- 238000002407 reforming Methods 0.000 claims abstract description 12
- 239000011261 inert gas Substances 0.000 claims abstract description 7
- 239000003575 carbonaceous material Substances 0.000 claims description 32
- 230000003647 oxidation Effects 0.000 claims description 16
- 238000007254 oxidation reaction Methods 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims 2
- 230000008018 melting Effects 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 78
- 229910052742 iron Inorganic materials 0.000 abstract description 39
- 238000002485 combustion reaction Methods 0.000 abstract description 32
- 230000001603 reducing effect Effects 0.000 abstract description 9
- 230000001590 oxidative effect Effects 0.000 abstract 2
- 238000006722 reduction reaction Methods 0.000 description 50
- 238000003756 stirring Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 238000005261 decarburization Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012256 powdered iron Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100243025 Arabidopsis thaliana PCO2 gene Proteins 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は炭材を燃料および還元材として用い、鉄鉱石
を転炉型製錬炉内において溶融状態で還元する溶融還元
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a smelting reduction method in which iron ore is reduced in a molten state in a converter-type smelting furnace using carbonaceous materials as fuel and reducing material.
[従来の技術]
溶融還元法は、高炉製銑法に代わるものであり、高炉製
銑法においては高炉の建設費が高く広大な敷地が必要で
あるという欠点を解消すべく、近年に至り開発されたも
のである。 従来の溶融還元法においては、鉄鉱石は製
錬炉からの排ガスで予備還元され、炭材、造滓剤ととも
に製錬炉内に装入され、また酸素ガスまたは傳拌用ガス
が前記製錬炉内に吹き込まれる。こうして炭材が、予め
装入されである溶銑に溶解されるとともに、炭材のCが
酸素ガスによって酸化される。このときの酸化熱によっ
て鉱石が溶融されるとともに、鉄鉱石が炭材中のCによ
って還元される。溶銑がら発生するCOガスは過剰に吹
き込まれる酸素ガスにより2次燃焼されてC02ガスに
なる。このco2ガスの顕熱は、溶銑上を覆っているス
ラグまたはフォーミング状の粒鉄に伝達され、次いで溶
銑に伝達される。こうして、鉄鉱石が還元されて溶銑が
製造されるが、製錬炉における還元工程を軽減するため
、製錬炉に装入される前の鉄鉱石の予備還元率を60%
乃至75%ととし、従って製錬炉の排出ガスは還元性の
高い低酸化度のガスを多量に使用している。(例えば特
公昭61−43406 )[発明が解決しようとする課
題]
しかしながら、製錬炉における還元工程を軽減するため
、製錬炉に装入される前の鉄鉱石の予備還元率を30%
以上にする場合には、製錬炉の排出ガスの酸化度[(H
20+CO2)/(H2+H20+CO+CO2)以下
、これを単にODと略記する]を下げる必要がある。こ
うすると前記排ガス量は必然的に増加することになり(
例えば特公昭6l−43406) 、これは当然製造コ
ストの増大につながる。また、高い予備還元率を得るた
めには上記の通りODの低い排出ガスを必要とし、かつ
鉄鉱石の予備還元炉内の滞留時間を長くすることになっ
て、予備還元された鉄鉱石のgA錬内への装入と製造さ
れる溶銑の出湯サイクルとのバランスをとることが難し
い。このことは必然的に製錬炉の自由度を大きく制限す
る。また、鉄鉱石の還元処理速度を向上させ、装入炭材
の単位重量当たりの鉄鉱石還元量を増大させるため、炉
内のCOガスを2次燃焼させ、その熱を利用するという
方法が考えられ、従来でも炉上部壁から2次燃焼用02
ガスを吹き込む方法がとられている。しかし従来では2
次燃焼比をあげると排ガス温度は上昇するものの、排ガ
ス顕熱を溶湯へ伝達する技術がなく、この結果、着熱効
率が低下し、高温排ガスを排出せざるをえない。そして
このような高温排ガスは炉内壁耐火物を激しく損耗させ
るという大きな問題があり、このため排ガスの酸化度は
あまり上げられないというのが一般的な考え方であった
。[Conventional technology] The smelting reduction method is an alternative to the blast furnace pig iron making method, and has been developed in recent years to overcome the drawbacks of the blast furnace iron making method, such as the high cost of constructing a blast furnace and the need for a large area. It is what was done. In the conventional smelting reduction method, iron ore is pre-reduced with exhaust gas from a smelting furnace and charged into the smelting furnace together with carbonaceous material and slag-forming agent, and oxygen gas or stirring gas is added to the smelting furnace. It is blown into the furnace. In this way, the carbonaceous material is dissolved in the previously charged hot metal, and the carbon in the carbonaceous material is oxidized by the oxygen gas. The ore is melted by the heat of oxidation at this time, and the iron ore is reduced by C in the carbonaceous material. The CO gas generated from the molten pig iron is secondary combusted by the oxygen gas injected in excess and becomes CO2 gas. The sensible heat of this CO2 gas is transferred to the slag or forming iron granules covering the hot metal, and then to the hot metal. In this way, iron ore is reduced to produce hot metal, but in order to reduce the reduction process in the smelting furnace, the preliminary reduction rate of the iron ore before being charged into the smelting furnace is reduced to 60%.
Therefore, the exhaust gas from the smelting furnace uses a large amount of highly reducing gas with a low oxidation degree. (For example, Japanese Patent Publication No. 61-43406) [Problem to be solved by the invention] However, in order to reduce the reduction process in the smelting furnace, the preliminary reduction rate of iron ore before being charged into the smelting furnace is reduced to 30%.
or higher, the oxidation degree of the exhaust gas from the smelting furnace [(H
20+CO2)/(H2+H20+CO+CO2), hereinafter simply abbreviated as OD]. This will inevitably increase the amount of exhaust gas (
For example, Japanese Patent Publication No. 61-43406), this naturally leads to an increase in manufacturing costs. In addition, in order to obtain a high pre-reduction rate, exhaust gas with a low OD is required as described above, and the residence time of the iron ore in the pre-reduction furnace is lengthened, resulting in gA of the pre-reduced iron ore. It is difficult to balance the charging cycle of the hot metal into the furnace and the tapping cycle of the produced hot metal. This inevitably greatly limits the flexibility of the smelting furnace. In addition, in order to improve the reduction processing speed of iron ore and increase the amount of iron ore reduced per unit weight of charged coal material, a method of secondary combustion of CO gas in the furnace and use of the heat has been considered. 02 for secondary combustion from the upper wall of the furnace.
A method of blowing gas is used. However, conventionally 2
Although the exhaust gas temperature increases when the secondary combustion ratio is increased, there is no technology to transfer the sensible heat of the exhaust gas to the molten metal, and as a result, the heat transfer efficiency decreases and high-temperature exhaust gas must be discharged. There is a major problem in that such high-temperature exhaust gas severely wears out the refractories on the furnace inner wall, and the general idea has been that the degree of oxidation of the exhaust gas cannot be increased very much for this reason.
本発明により、後に詳記するように、製錬炉内の鉄鉱石
の還元反応及び2次燃焼を促進することにより排ガスの
酸化度を上げることに成功したが、一方、酸化度が高く
なった排ガスは、予熱予備還元炉に導入された場合、実
用的に十分高い還元率で鉄鉱石を還元することが出来な
い虞がある。As described in detail later, the present invention succeeded in increasing the degree of oxidation of exhaust gas by promoting the reduction reaction and secondary combustion of iron ore in the smelting furnace. When the exhaust gas is introduced into the preheating pre-reduction furnace, there is a possibility that the iron ore cannot be reduced at a sufficiently high reduction rate for practical use.
この発明はかかる事情に鑑みてなされたものであって、
溶銑またはスラグへの着熱効率を高めて、かつ、高い予
熱予備還元率の得られる、操業性の良好な生産性の高い
溶融還元法を提供しようするものである。This invention was made in view of such circumstances, and
It is an object of the present invention to provide a smelting reduction method with good operability and high productivity, which increases the efficiency of heat transfer to hot metal or slag and provides a high preheating prereduction rate.
[課題を解決するための手段及び作用]製錬炉内の着熱
効率を高め、鉄鉱石の還元反応を促進させるという上記
の問題について、本発明者等は溶融還元のメカニスム及
びこれに対応した具体的な手段について検討を重ねたも
のであり、この結果、次のような事実を見出した。[Means and effects for solving the problem] Regarding the above-mentioned problem of increasing the heat transfer efficiency in the smelting furnace and promoting the reduction reaction of iron ore, the present inventors have developed a mechanism of smelting reduction and a specific example corresponding thereto. As a result, the following facts were discovered.
■上述したように、従来では着熱効率向上に対る技術的
限界や耐火物の損耗の面で2次燃焼比を大きく上げられ
ないというのが基本的な考え方であるが、2次燃焼を主
にスラグ中で生じさせるように酸素を吹き込み、かつス
ラグを強攪拌することにより、高2次燃焼を確保しつつ
着熱効率を効果的に高めることが出来る。このような高
2次燃3fF、、高着熱効率により、スラグ及びスラグ
中の鉄鉱石の温度が高くなり、
Fe203 +3C−2Fe+3CO
で表される9−(溶湯中のC)による鉄鉱石の還元速度
を効果的に高めることが出来る。■As mentioned above, the basic idea in the past was that it was not possible to significantly increase the secondary combustion ratio due to technical limitations in improving heat transfer efficiency and the wear and tear of refractories. By blowing oxygen into the slag and stirring the slag strongly, heat transfer efficiency can be effectively increased while ensuring high secondary combustion. Due to such high secondary combustion 3fF, high heat transfer efficiency, the temperature of the slag and the iron ore in the slag becomes high, and the reduction rate of the iron ore by 9- (C in the molten metal) expressed as Fe203 +3C-2Fe+3CO increases. can be effectively increased.
■従来法では、還元処理の一時期または全9期間、酸素
の底吹きを行っている例があるが、このような酸素の底
吹きは2次燃焼に有害である。即ち、酸素を底吹きする
と溶湯中で大量のCOガスを生じさせて溶湯を強攪拌し
、この結果、溶湯スプラッシュが2次燃焼域に達し、こ
の溶湯スプラッシュに含まれるCが酸素と反応すること
により2次燃焼が阻害される。したがって還元期間の一
部または全部を問わず、酸素を底吹きすることは避ける
必要がある。(2) In conventional methods, there are examples in which bottom blowing of oxygen is carried out during one period or all nine periods of reduction treatment, but such bottom blowing of oxygen is harmful to secondary combustion. That is, when oxygen is blown from the bottom, a large amount of CO gas is generated in the molten metal and the molten metal is strongly stirred.As a result, the molten metal splash reaches the secondary combustion zone, and the C contained in this molten metal splash reacts with oxygen. This inhibits secondary combustion. Therefore, it is necessary to avoid bottom-blowing oxygen during part or all of the reduction period.
本発明は、このような知見にもとづき、次のような条件
を規定し、これにより高い処理速度での31元処理を可
能ならしめたものである。Based on this knowledge, the present invention defines the following conditions, thereby making it possible to perform 31-element processing at high processing speed.
(イ)攪拌ガスの底吹きと横吹きの組み合わせにより、
溶湯をスラグ中の鉄鉱石の存在する領域に債権的に拡散
させ、溶湯中のCによる鉄鉱石の還元作用を促進させる
。(b) By combining bottom blowing and side blowing of stirring gas,
The molten metal is diffused in a region where the iron ore in the slag is present, and the reduction action of the iron ore by C in the molten metal is promoted.
(ロ)所定レベル以上の酸化度が得られるよう、脱炭用
酸素とは別に2次燃焼用酸素のの吹き込みを行う。そし
て、この2次燃焼用酸素を上吹きランスからスラグ中に
吹き込んで2次燃焼領域をスラグ中に形成させ、且つ横
吹きガスによりスラグを強攪拌し、2次燃焼により生じ
た熱を鉄鉱石に着熱させる。(b) Oxygen for secondary combustion is blown separately from oxygen for decarburization so as to obtain an oxidation degree of a predetermined level or higher. Then, this secondary combustion oxygen is blown into the slag from the top blowing lance to form a secondary combustion region in the slag, and the slag is strongly agitated by the side blowing gas, and the heat generated by the secondary combustion is transferred to the iron ore. heat it up.
(ハ)溶湯中Cによる還元作用及び上吹き酸素による2
次燃焼が阻害されないようにするため、横吹きガス及び
底吹きガスはCOまたは不活性ガスとし、酸素は使わな
い。(c) 2 due to reduction action by C in the molten metal and top-blown oxygen
In order to prevent the subsequent combustion from being inhibited, CO or an inert gas is used as the side-blown gas and bottom-blown gas, and oxygen is not used.
これに加えて本発明による溶融還元法は前記予熱予備還
元炉内に設けられた羽口からガス改質材として粉状の炭
材または水蒸気を吹き込み、炉内の発生ガスを改質して
、高い予備還元率を得ることが出来、同時に顕然の大き
なガスを回収することが出来る。なお、製錬炉内のガス
温度は400°C乃至1300°Cとされるが、前記温
度が400℃未満では、排ガスが予熱予備還元炉に導入
されるまでの温度降下を考えると予熱の効果を期待する
ことが出来ないばかりでなく、後述のタールトラブルが
発生する虞があり、また、1300℃を超えると設備の
耐火性の問題が生じる。すなわち、この発明による溶融
還元法は、予熱予備還元炉により予熱、予備還元された
鉱石を炭材および造滓剤とともに製錬炉に装入し、底吹
き羽口及び横吹き羽口から不活性ガスCOまたはプロセ
スガスを吹き込む溶融還元法であって、
(1)先端がスラグ層の上面付近乃至下面付近のレベル
にある上吹き酸素ランスより脱炭用酸素および二次燃焼
用酸素を吹き込み、
(2)前記横吹き羽口からのガス流れの少なくとも一部
が前記底吹き羽口から吹き込まれたガスにより盛上がっ
た溶湯部分に当たるようにし、(3)前記製錬炉内ガス
の酸化度
[= (H20+COz)/(H2+H20+CO+C
O2)]を0.5乃至1.0その温度を400℃乃至1
200℃とし、(4)前記予熱予備還元炉にガス改質材
を装入して、予熱予備還元炉に導入された前記ガスを改
質して、その酸化度を0.5未満とする、ことを特徴と
する。In addition, the smelting reduction method according to the present invention injects powdered carbonaceous material or steam as a gas reforming material through the tuyere provided in the preheating pre-reduction furnace to reform the gas generated in the furnace. A high preliminary reduction rate can be obtained, and at the same time a significant amount of gas can be recovered. Note that the gas temperature in the smelting furnace is 400°C to 1300°C, but if the temperature is less than 400°C, the effect of preheating will be poor considering the temperature drop until the exhaust gas is introduced into the preheating pre-reduction furnace. Not only cannot be expected, but there is a risk of the tar trouble described below occurring, and if the temperature exceeds 1300°C, problems will arise with the fire resistance of the equipment. That is, in the smelting reduction method according to the present invention, ore that has been preheated and prereduced in a preheating and prereducing furnace is charged into a smelting furnace together with carbonaceous material and a slag-forming agent, and the ore is inertly removed from the bottom blowing tuyere and the side blowing tuyere. This is a smelting reduction method in which gas CO or process gas is blown into the slag layer. 2) At least a part of the gas flow from the side blowing tuyere hits the molten metal portion raised by the gas blown from the bottom blowing tuyere, and (3) the oxidation degree of the gas in the smelting furnace [= (H20+COz)/(H2+H20+CO+C
O2)] from 0.5 to 1.0 and the temperature from 400℃ to 1.
200° C., and (4) charging a gas reforming material into the preheating pre-reduction furnace to reform the gas introduced into the preheating pre-reduction furnace so that its degree of oxidation is less than 0.5. It is characterized by
[実施例] 本発明の実施例を添付の図面を参照しながら説明する。[Example] Embodiments of the invention will be described with reference to the accompanying drawings.
第1図は本発明の溶融還元法に用いられるプロセスの説
明図である。製錬炉10内には鉄浴11及びスラグ層1
2が形成され、副原料である炭材及び造滓剤が装入され
る第1のシュート13が前記製錬炉の上部に設けられて
おり、上吹き酸素ランス21が炉内に鉛直に挿入される
。前記ランスには脱炭用酸素(DCO2)、2次燃焼用
酸素(P CO2)をそれぞれ噴出するノズル22゜2
3が設けられ、また、製錬炉の側壁または炉底にはそれ
ぞれ不活性ガス、COまたはプロセスガスを攪拌用ガス
として吹き込む横吹き羽口25、底吹き羽口26が設け
られている。製錬炉lOの上方には原料である鉄鉱石、
副原料である炭材及び造滓剤等がよく知られた通常の原
料供給装置(WJ明のため特に図示せず〉もしくは後に
説明する予熱予備還元炉30から自然落下により製錬炉
に装入される第2のシュート14及び製錬炉からの排ガ
スが排出される排ガス用導管15が設けられている。ま
た、前記排ガスが導入されてこれを高温のまま除塵する
除塵器31と、この除塵器からの排ガスが導入されて鉄
鉱石を予熱す・る予熱予備還元炉30と、この排ガスを
受けてこれに含まれる鉄鉱石の微粒を除去する分離装W
35と、が設けられている。前記予熱予備還元炉30の
上部には、ここに導入された排ガスを改質する改質材の
装入口29が設けられている。前記分離装置35から分
離された鉄鉱石の細粒または粉体を、Ar、N2等のキ
ャリアガスとともに混合し、かつ加圧して横吹き羽口2
5、底吹き羽口26から吹き込むため、混合、圧送の手
段として加圧装置27が設けられている。以上のように
構成された溶融還元装置を用いる溶融還元法について説
明する。原料である鉄鉱石は上記供給装置から予熱予備
還元炉30に入り、ここで予熱された後、第2のシュー
ト14から重力落下により製錬炉10に装入される。炭
材及び造滓剤は第1のシュート13から重力落下により
製錬炉10に装入される。製錬炉10内では溶湯による
鉄浴11とスラグ層12が形成され、ここで発生したガ
スは後に詳述する炉内反応によりその酸化度は高くされ
る。このガスは、排ガス用導管15から除塵器31を経
て予熱予備還元炉30に入るが、予熱予備還元炉30の
上部に設けられた装入口29から装入される改質材と混
合されて改質される。この場合、改質材が炭材で、これ
が塊状または粒状であるときは重力落下により装入され
る。また、これが粉状であるときはキャリアーガスとと
もに装入する方法が、粉状の炭材がよく分散されて、予
熱予備還元炉内のガスの酸化度ODを下げるために効果
的である。改質材に水蒸気を使用する場合は重味または
粉状の炭材とともに装入される。また、装入炭材による
タールトラブルを避けるため、炭材装入口29付近の温
度は300°C以上であることが必要で、炭材銘柄によ
っては500 ’C以上必要な場合がある。 1200
℃を超えると予熱予備還元炉の耐熱性による問題が生じ
る。上記タールトラブルを避けるため、石炭を乾溜して
揮発分をなくしたチャーを使用することも考えられるが
、この方法は炭材原単位及び発生ガス量の増大、チャー
製造のための設備費増、または回収ガス顕熱の過剰を招
き、望ましい方法ではない、上記のように炉内反応によ
り酸化度の高くなった炉内ガスは前記改質により予熱予
備還元炉内で酸化度は0.5未満に低下され、鉄鉱石は
ここで効率よく予熱、予備還元される。この鉄鉱石は第
2のシュート14から製錬炉に導入され、一方、排ガス
は分離装置35に入りここで細粒もしくは粉状の鉄鉱石
が分離された後、通常の排ガス処理装置を経て排出され
るか、もしくはプロセスガスとして羽口25.26から
吹き込まれる攪拌用ガスとして、または粉体吹き込みの
キャリアーガスとして用いられる。さらにこの排ガスは
ガス導管15に導入されて製錬炉からの排ガスに混合さ
れ、除塵装置31に導入されるガスの温度調節に使用す
ることも可能である。前記分離装置35で分離された細
粒もしくは粉状の鉄鉱石は単味もしくは粉炭材と混合さ
れて加圧装置27に送られ、ここでキャリアガスと混合
された後、加圧されて羽口25または羽口26から製錬
炉に吹き込まれる0次いで、製錬炉内へのガス吹き込み
と炉内反応との関係について、第2図乃至第6図を参照
しながら詳しく説明する。第2図は第1図における吹き
込みガスの挙動を模式的に示したものである。還元処理
中は、その初期から終期に至るまで上吹きランス21、
横吹き羽口25及び底吹き羽口26からガスの吹き込み
が行われる0羽口25.26からのガス吹き込みは、両
者の協働作用により溶湯をスラグ中に拡散させ、還元速
度を飛躍的に高める効果をもたらす、前述したように、
本発明者等はスラグ層12の鉄鉱石の還元は、大部分溶
湯中のCを還元物質として進行するという事実を解明し
、これに基づき溶湯を強攪拌してスラグN(鉄鉱石が浮
遊する領域)中に積極的に拡散させて還元速度を高めよ
うというものである。FIG. 1 is an explanatory diagram of the process used in the melt reduction method of the present invention. Inside the smelting furnace 10 there is an iron bath 11 and a slag layer 1.
A first chute 13 is provided at the top of the smelting furnace, and a first chute 13 is provided at the top of the smelting furnace, and a top-blowing oxygen lance 21 is inserted vertically into the furnace. be done. The lance has a nozzle 22°2 that spouts oxygen for decarburization (DCO2) and oxygen for secondary combustion (PCO2), respectively.
Further, a side blowing tuyere 25 and a bottom blowing tuyere 26 are provided on the side wall or the bottom of the smelting furnace, respectively, for blowing inert gas, CO, or process gas as a stirring gas. Above the smelting furnace IO is the raw material iron ore,
The auxiliary raw materials, such as carbonaceous materials and slag-forming agents, are charged into the smelting furnace by falling naturally from a well-known ordinary raw material supply device (not particularly shown for WJ Ming) or from a preheating pre-reduction furnace 30, which will be explained later. A second chute 14 is provided to discharge the exhaust gas from the smelting furnace, and a flue gas conduit 15 is provided to discharge the flue gas from the smelting furnace. A preheating pre-reducing furnace 30 into which exhaust gas from the furnace is introduced to preheat the iron ore, and a separation device W which receives this exhaust gas and removes fine particles of iron ore contained therein.
35 are provided. A charging port 29 for reforming material is provided in the upper part of the preheating pre-reducing furnace 30 to reform the exhaust gas introduced therein. The iron ore fine grains or powder separated from the separator 35 are mixed with a carrier gas such as Ar or N2, and are pressurized to form the side blowing tuyere 2.
5. In order to blow from the bottom blowing tuyere 26, a pressurizing device 27 is provided as a mixing and pressure feeding means. A melt reduction method using the melt reduction apparatus configured as described above will be explained. Iron ore, which is a raw material, enters the preheating pre-reducing furnace 30 from the above-mentioned supply device, is preheated here, and then is charged into the smelting furnace 10 by falling by gravity from the second chute 14. The carbon material and the slag forming agent are charged into the smelting furnace 10 by falling by gravity from the first chute 13 . In the smelting furnace 10, an iron bath 11 made of molten metal and a slag layer 12 are formed, and the degree of oxidation of the gas generated here is increased by an in-furnace reaction which will be described in detail later. This gas enters the preheating pre-reduction furnace 30 from the exhaust gas conduit 15 through the dust remover 31, but is mixed with the reforming material charged from the charging port 29 provided at the upper part of the preheating pre-reduction furnace 30 and reformed. questioned. In this case, if the modifying material is carbonaceous material and it is in the form of lumps or granules, it is charged by falling by gravity. In addition, when the carbonaceous material is in powder form, a method of charging it together with a carrier gas is effective because the powdery carbonaceous material is well dispersed and the oxidation degree OD of the gas in the preheating pre-reduction furnace is lowered. When steam is used as a reforming material, it is charged together with heavy or powdered carbon material. In addition, in order to avoid tar problems due to the charged carbon material, the temperature near the carbon material charging port 29 must be 300°C or higher, and depending on the brand of carbon material, the temperature may be 500'C or higher. 1200
If the temperature exceeds ℃, problems arise due to the heat resistance of the preheating pre-reduction furnace. In order to avoid the above-mentioned tar trouble, it may be possible to use char obtained by dry distilling coal to remove its volatile content, but this method increases the carbon material consumption rate and the amount of gas generated, increases the equipment cost for char production, Alternatively, this is not a desirable method because it causes excessive sensible heat in the recovered gas.As mentioned above, the in-furnace gas which has a high oxidation degree due to the in-furnace reaction has an oxidation degree of less than 0.5 in the preheating pre-reduction furnace due to the reforming. The iron ore is efficiently preheated and pre-reduced here. This iron ore is introduced into the smelting furnace through the second chute 14, while the exhaust gas enters the separator 35 where fine or powdered iron ore is separated and then discharged through a normal exhaust gas treatment device. Alternatively, it can be used as a process gas, as a stirring gas blown in through the tuyere 25, 26, or as a carrier gas for powder blowing. Furthermore, this exhaust gas is introduced into the gas conduit 15 and mixed with the exhaust gas from the smelting furnace, and can also be used to adjust the temperature of the gas introduced into the dust removal device 31. The fine grained or powdered iron ore separated by the separator 35 is mixed with plain or powdered coal material and sent to the pressurizer 27, where it is mixed with a carrier gas and then pressurized to form a tuyere. Next, the relationship between the gas blown into the smelting furnace from the tuyere 25 or the tuyere 26 and the reaction within the furnace will be explained in detail with reference to FIGS. 2 to 6. FIG. 2 schematically shows the behavior of the blown gas in FIG. 1. During the reduction process, from the initial stage to the final stage, the top blow lance 21,
Gas is blown into the 0 tuyeres 25 and 26 through the side blowing tuyere 25 and the bottom blowing tuyere 26, and the molten metal is diffused into the slag by the cooperative action of the two, dramatically increasing the reduction rate. As mentioned above, it has the effect of increasing
The present inventors have elucidated the fact that the reduction of iron ore in the slag layer 12 proceeds mostly with C in the molten metal as the reducing substance, and based on this, the molten metal is strongly stirred and the slag N (iron ore is suspended) The idea is to actively diffuse it into the surrounding area) to increase the rate of reduction.
、このため本発明は、底吹き羽口26から攪拌ガスを供
給して溶湯面に隆起部(A)を形成し、同時に、横吹き
羽口25からガス流の少なくとも一部が上記溶湯隆起部
(A>に当たるようにして攪拌ガスを供給するものであ
り、この横吹きガスにより溶湯隆起部(A)の溶湯がス
ラグ中に飛散することになる。スラグの見掛は比重は通
常0.1〜0.5であり、一方鉄鉱石の嵩比重は1〜3
であり、従ってスラグ中の鉄鉱石は、スラグ下部領域に
集中して浮遊している。上記のように溶湯隆起部を横吹
きガスで飛散させると、この飛散溶湯は、鉄鉱石が存在
するスラグ層12の下部領域に拡散し、この拡散溶湯中
のCが鉄鉱石を還元し、高い還元速度が得られる。Therefore, in the present invention, stirring gas is supplied from the bottom blowing tuyere 26 to form the raised portion (A) on the molten metal surface, and at the same time, at least a part of the gas flow from the side blowing tuyere 25 is directed to the raised portion of the molten metal. (A>), and this side-blown gas scatters the molten metal in the molten metal protrusion (A) into the slag.The apparent specific gravity of the slag is usually 0.1. ~0.5, while the bulk specific gravity of iron ore is 1-3
Therefore, the iron ore in the slag is concentrated and suspended in the lower region of the slag. When the molten metal protrusions are scattered by side-blown gas as described above, the scattered molten metal diffuses into the lower region of the slag layer 12 where iron ore exists, and the carbon in this diffused molten metal reduces the iron ore, resulting in high The rate of reduction is obtained.
このような効果を得るためには横吹きガスが製錬炉の上
下方向及び水平方向において成るべく正確に上記溶湯隆
起部(A)に当たるようにすることが好ましく、水平方
向においては第3図(a)、及び(b)に示すような位
置関係で羽口25.26を設けることが好ましい。In order to obtain such an effect, it is preferable that the side-blown gas hits the molten metal protrusion (A) as accurately as possible in the vertical and horizontal directions of the smelting furnace. It is preferable to provide the tuyeres 25, 26 in the positional relationship shown in a) and (b).
また、底吹き及び横吹きとも比較的多量のガスを吹き込
み、強攪拌を行う必要があることは言うまでもないが、
その吹き込みガス量は溶湯量、溶湯深さ等に応じて決定
される。横吹きガスは、上述したような溶湯の拡散作用
に加え、2次燃焼領域が形成されるスラグの攪拌作用を
も行うものでありこれについては後述する。本発明で使
用される横吹きガス及び底吹きガスは、不活性ガス(N
2 、Ar等)、COまたはプロセスガスに限定され、
02は使用されない。In addition, it goes without saying that both bottom blowing and side blowing require blowing a relatively large amount of gas and strong stirring.
The amount of blown gas is determined depending on the amount of molten metal, the depth of molten metal, etc. In addition to the above-mentioned molten metal diffusion effect, the side-blown gas also has the effect of stirring the slag in which the secondary combustion region is formed, which will be described later. The side-blown gas and bottom-blown gas used in the present invention are inert gas (N
2, Ar, etc.), CO or process gas,
02 is not used.
これは次のような理由による。先ず、横吹きガスに酸素
を用いると、鉄鉱石還元のために飛散させた溶湯中のC
による還元作用を阻害してしまうという基本的な問題が
ある。加えて酸素を使用した場合、耐火物の温度が上昇
し、耐火物の損耗という問題を生じる。また、底吹きガ
スに酸素を用いると、上述したように溶湯中で大量のC
Oガスを生じさせて溶湯を強攪拌し過ぎ、この結果、溶
湯のスプラッシュが2次燃焼領域(第2図参照)に達し
、溶湯中Cが後述する2次燃焼用酸素と反応して2次燃
焼が阻害されてしまう。加えて、酸素を使用すると底吹
き羽口なと耐火物の温度が上がり過ぎるため冷却ガス(
C3H8)を添加する必要があり、これも底吹きガス量
を増大させ、強攪拌→溶湯スプラッシュの発生を過大に
助長することになる。第4図は、N2底吹きを行う本発
明と、N2に代えo2吹き込みを行った比較例について
、設定したOD[=PCO□/(DCO2+鉱石中02
+炭材中02+原料付着水十炭材中02+(1/2)炭
材中水素)]
に対する実際に実測したODを調べたた結果を示すもの
で、02底吹きに
より2次燃焼が阻害されていることが示されている。な
お、攪拌ガスであるCOやN2.Ar等の不活性ガスは
、単独または混合して使用することが出来る。This is due to the following reasons. First, when oxygen is used as side blowing gas, C in the molten metal scattered to reduce iron ore is
The basic problem is that it inhibits the reducing action of In addition, when oxygen is used, the temperature of the refractory increases, causing the problem of wear and tear of the refractory. In addition, when oxygen is used as the bottom blowing gas, a large amount of C is generated in the molten metal as mentioned above.
O gas is generated and the molten metal is stirred too strongly, and as a result, the splash of the molten metal reaches the secondary combustion region (see Figure 2), and the C in the molten metal reacts with the oxygen for secondary combustion described later, resulting in secondary combustion. Combustion will be inhibited. In addition, when oxygen is used, the temperature of bottom-blown tuyeres and refractories rises too much, so cooling gas (
It is necessary to add C3H8), which also increases the amount of bottom-blown gas and excessively promotes the occurrence of strong stirring→molten metal splash. Figure 4 shows the set OD[=PCO□/(DCO2+02
+ 02 in carbon material + water adhering to the raw material + 02 in carbon material + (1/2) hydrogen in carbon material)] This shows the results of actually measuring OD for 02 + water adhering to the raw material + (1/2) hydrogen in carbon material), and shows that secondary combustion is inhibited by bottom blowing in 02. It has been shown that Note that stirring gas such as CO and N2. Inert gases such as Ar can be used alone or in combination.
本発明では、2次燃焼領域を主としてスラグ内に形成さ
せつつ高2次燃焼を実現させるものであり、このように
2次燃焼領域をスラグ内に形成しかつ横吹きガスによっ
てスラグを強攪拌することにより、高2次燃焼を確保し
つつ高い着熱効率を得ることが出来る。したがって、上
記2次燃焼用酸素は、主としてスラグ内に2次燃焼領域
が形成されるようスラグ中に吹き込まれることが必要で
ある。具体的には上吹きランスの高さがスラグや溶湯レ
ベルに対し適度なレベルに設定されることが必要である
。すなわち、上吹きランス21はそのノズル孔高さをス
ラグ面上方あるいはスラグ面下とすることができるが、
その高さが高過ぎると2次燃焼領域がスラグ内に形成さ
れなくなって、着熱効率が低下するという問題があり、
またランス高さが低過ぎると2次燃焼領域が適正に形成
されなくなる。第5図はランス先端のスラグ面()オー
ミンクレベル)からの高さと着熱効率との関係を示すも
ので、ランス高さがスラグ面にたいして高過ぎると良好
な着熱効率が得られなくなることが示されている。また
、第6図は横吹きガス量と着熱効率との関係との関係を
示すもので、横吹きガスを大量に吹き込み、スラグ層を
強攪拌することにより良好な着熱効率が得られることが
解る。第5図、第6図を得たときの操業条件は容量50
tの製錬炉で、溶銑の生成速度は28t/hrである0
本発明では高着熱効率が得られるなめ、ODを上記のよ
うに高くすることにより高い還元速度が得られるが、こ
れに加え、ODを上げることにより炭材(主としてコー
クス)の添加量を低く抑えることが出来、この結果、炭
材の原単位の低減を図ることができるとともに、溶湯中
のP成分の殆どが炭材により持ち込まれることがら、溶
湯中のPの低減を図ることができる。また、ODが高く
なると、気化脱硫現象が活発になり、溶湯中のSも低下
する。このような観点からも本発明ではODは0.5以
上とする。ODの上限は1,0であるが、ODは大きい
程望ましい、上記のようにして、ODが高くされた、す
なわち低カロリーとされたガスを予熱予備還元炉30の
上部に設けられた羽口29から炭材を装入して、予熱予
備還元炉内のガスを改質して、このガスのODを0.5
未満とし、鉄鉱石を効率よく予備還元することができる
。In the present invention, high secondary combustion is realized while forming the secondary combustion region mainly within the slag.In this way, the secondary combustion region is formed within the slag and the slag is strongly agitated by the side-blown gas. By doing so, it is possible to obtain high heat transfer efficiency while ensuring high secondary combustion. Therefore, the secondary combustion oxygen needs to be blown into the slag so that a secondary combustion region is primarily formed within the slag. Specifically, the height of the top blowing lance must be set at an appropriate level relative to the slag and molten metal levels. That is, the nozzle hole height of the top blowing lance 21 can be set above the slag surface or below the slag surface.
If the height is too high, there is a problem that a secondary combustion region is not formed in the slag and the heat transfer efficiency decreases.
Furthermore, if the lance height is too low, the secondary combustion region will not be formed properly. Figure 5 shows the relationship between the height of the lance tip from the slag surface (ohmink level) and heat transfer efficiency, and shows that if the lance height is too high relative to the slag surface, good heat transfer efficiency cannot be obtained. has been done. In addition, Figure 6 shows the relationship between the amount of side-blown gas and heat transfer efficiency, and it can be seen that good heat transfer efficiency can be obtained by blowing a large amount of side-blown gas and stirring the slag layer strongly. . The operating conditions when Figures 5 and 6 were obtained were a capacity of 50
t smelting furnace, the production rate of hot metal is 28 t/hr.
In the present invention, a high heat transfer efficiency can be obtained, so a high reduction rate can be obtained by increasing the OD as described above, but in addition to this, by increasing the OD, the amount of carbon material (mainly coke) added can be kept low. As a result, it is possible to reduce the unit consumption of carbonaceous material, and since most of the P component in the molten metal is brought in by the carbonaceous material, it is possible to reduce the amount of P in the molten metal. Furthermore, when the OD increases, the vaporization desulfurization phenomenon becomes active, and S in the molten metal also decreases. Also from this point of view, in the present invention, the OD is set to 0.5 or more. The upper limit of OD is 1.0, but the higher the OD, the more desirable it is.As described above, the gas with a high OD, that is, low calorie, is passed through the tuyere provided at the upper part of the preheating pre-reduction furnace 30. Charcoal material is charged from No. 29, the gas in the preheating pre-reduction furnace is reformed, and the OD of this gas is reduced to 0.5.
iron ore can be efficiently pre-reduced.
次に本実施例にもとづく具体的数値を第1表に挙げる。Next, specific numerical values based on this example are listed in Table 1.
この表は前記第5図、第6図を得たときと同様の操業条
件で得られたもので、排ガスを改質した場合と、しない
場合について比較したものである。この表に示されてい
るように、ガス改質を実施した場合には、実施しない場
合に比べて排ガスのODは低くなり、その温度は低下し
ていることがわかる。This table was obtained under the same operating conditions as in FIGS. 5 and 6, and compares cases where the exhaust gas was reformed and cases where the exhaust gas was not reformed. As shown in this table, it can be seen that when gas reforming is carried out, the OD of the exhaust gas is lower and the temperature thereof is lower than when it is not carried out.
第 1 表
[発明の効果]
本発明によれば、上吹き酸素ランスの脱炭用、2次燃焼
用の酸素ノズルから、直接、スラグ層に酸素を吹きこみ
、また、製錬炉の炉壁及び炉底に設けた羽口からガス吹
き込みを行って強攪拌し、製錬炉の発生ガスの酸化度を
0.5乃至1.0に調整して前記ガスの温度を400℃
乃至1300℃とし、さらに予熱予備還元炉に水蒸気ま
たは炭材を装入するので、溶融還元装置の着熱効率、鉄
生産性を向上させ、かつ、高い予備還元率を得ることが
出来、また予熱予備還元炉へ供給されるガスの酸化度は
製錬炉の操業状況とは独立に調整可能となるので、製錬
炉の操業の自由度は大幅に向上する。Table 1 [Effects of the Invention] According to the present invention, oxygen is blown directly into the slag layer from the oxygen nozzle for decarburization and secondary combustion of the top-blowing oxygen lance, and the furnace wall of the smelting furnace is Then, gas is blown into the tuyere provided at the bottom of the furnace for strong stirring, the degree of oxidation of the gas generated in the smelting furnace is adjusted to 0.5 to 1.0, and the temperature of the gas is brought to 400°C.
By charging the preheating pre-reduction furnace with steam or carbonaceous material, it is possible to improve the heat transfer efficiency and iron productivity of the smelting reduction equipment and obtain a high pre-reduction rate. Since the degree of oxidation of the gas supplied to the reduction furnace can be adjusted independently of the operational status of the smelting furnace, the degree of freedom in the operation of the smelting furnace is greatly improved.
第1図は本発明の溶融還元法に用いられる溶融還元装置
のプロセスの説明図、第2図は第1図における製錬炉内
のガス流れを示す模式図、第3図は横吹き羽口と底吹き
羽口との位置関係を示す説明図、第4図は設定ODに対
する実測ODを示すグラフ図、第5図はランス高さと着
熱効率の関係を示すグラフ図、第6図は横吹きガス量と
着熱効率との関係を示すグラフ図である。
10・・・製錬炉、11・・・鉄浴、12・・・スラグ
層、13・・・第1のシュート、14・・・第2のシュ
ート、15・・・ガス導管、21・・・酸素ランス、2
2.23・・・ノズル、25.26・・・羽口、27・
・・加圧装置、29・・・装入口、30・・・予熱子a
還元炉、31・・・除塵器、35・・・分離装置、41
・・・切り替え弁、42・・・閉止弁。Fig. 1 is an explanatory diagram of the process of the smelting reduction apparatus used in the smelting reduction method of the present invention, Fig. 2 is a schematic diagram showing the gas flow in the smelting furnace in Fig. 1, and Fig. 3 is a side blowing tuyere. Fig. 4 is a graph showing the measured OD against the set OD, Fig. 5 is a graph showing the relationship between lance height and heat transfer efficiency, and Fig. 6 is a graph showing the relationship between the lance height and the heat transfer efficiency. FIG. 3 is a graph diagram showing the relationship between gas amount and heat transfer efficiency. DESCRIPTION OF SYMBOLS 10... Smelting furnace, 11... Iron bath, 12... Slag layer, 13... First chute, 14... Second chute, 15... Gas conduit, 21...・Oxygen lance, 2
2.23... Nozzle, 25.26... Tuyere, 27.
... Pressure device, 29 ... Charging port, 30 ... Preheater a
Reduction furnace, 31... Dust remover, 35... Separation device, 41
...Switching valve, 42...Closing valve.
Claims (1)
炭材および造滓剤とともに、製錬炉に装入し、底吹き羽
口及び横吹き羽口から不活性ガス、COまたはプロセス
ガスを吹き込む溶融還元法であって、 (1)先端がスラグ層の上面付近乃至下面付近のレベル
にある上吹き酸素ランスより脱炭用酸素および二次燃焼
用酸素を吹き込み、 (2)前記横吹き羽口からのガス流れの少なくとも一部
が前記底吹き羽口から吹き込まれたガスにより盛上がっ
た溶湯部分に当たるようにし、(3)前記製錬炉内ガス
の酸化度 [=(H_2O+CO_2)/(H_2+H_2O+C
O+CO_2)]を0.5乃至1.0その温度を400
℃乃至1300℃とし、(4)前記予熱予備還元炉にガ
ス改質材を装入して、予熱予備還元炉に導入された前記
ガスを改質して、その酸化度を0.5未満とする、 ことを特徴とする溶融還元法。 2)前記予熱予備還元炉に装入するガス改質材が塊状ま
たは粒状の炭材であることを特徴とする請求項1に記載
の溶融還元法。 3)前記予熱予備還元炉に装入するガス改質材が粉状の
炭材であることを特徴とする請求項1または2に記載の
溶融還元法。 4)前記予熱予備還元炉に装入するガス改質材が炭材で
あり、予熱予備還元炉に設けられた炭材装入口付近の温
度を300℃乃至1200℃とすることを特徴とする請
求項1乃至3のいずれかに記載の溶融還元法。 5)前記炭材装入口またはその付近に設けられたノズル
から酸素含有ガス、不活性ガスまたはプロセスガスを前
記炭材の供給時に吹き込むことを特徴とする請求項1乃
至4のいずれかに記載の溶融還元法。[Scope of Claims] 1) The ore that has been preheated and prereduced in the preheating prereduction furnace is charged into the smelting furnace together with carbon material and slag forming agent, and inert gas is poured from the bottom blowing tuyeres and side blowing tuyeres. This is a smelting reduction method in which , CO, or a process gas is blown into the slag layer. 2) At least a part of the gas flow from the side blowing tuyere hits the molten metal portion raised by the gas blown from the bottom blowing tuyere, and (3) the oxidation degree of the gas in the smelting furnace [= (H_2O+CO_2)/(H_2+H_2O+C
O+CO_2)] from 0.5 to 1.0 and the temperature to 400
℃ to 1300℃, and (4) charge a gas reforming material into the preheating pre-reduction furnace to reform the gas introduced into the preheating pre-reduction furnace so that its degree of oxidation is less than 0.5. A melt reduction method characterized by the following. 2) The smelting reduction method according to claim 1, wherein the gas reforming material charged into the preheating pre-reduction furnace is lumpy or granular carbonaceous material. 3) The smelting reduction method according to claim 1 or 2, wherein the gas reforming material charged into the preheating pre-reduction furnace is a powdered carbonaceous material. 4) A claim characterized in that the gas reforming material charged into the preheating preliminary reduction furnace is carbonaceous material, and the temperature near the carbonaceous material charging port provided in the preheating preliminary reduction furnace is 300°C to 1200°C. The melting reduction method according to any one of Items 1 to 3. 5) An oxygen-containing gas, an inert gas, or a process gas is blown from a nozzle provided at or near the carbon material charging port when the carbon material is supplied. Melting reduction method.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2858688A JP2668913B2 (en) | 1988-02-09 | 1988-02-09 | Smelting reduction method |
AU24916/88A AU608091C (en) | 1987-11-30 | 1988-11-08 | Method for smelting reduction of iron ore and apparatus therefor |
CA000584123A CA1337241C (en) | 1987-11-30 | 1988-11-25 | Method for smelting reduction of iron ore and apparatus therefor |
AT88119803T ATE101655T1 (en) | 1987-11-30 | 1988-11-28 | METHOD AND DEVICE FOR SMELTING REDUCTION OF IRON ORES. |
DE3887838T DE3887838T2 (en) | 1987-11-30 | 1988-11-28 | Method and device for smelting reduction of iron ores. |
EP88119803A EP0318896B1 (en) | 1987-11-30 | 1988-11-28 | Method for smelting reduction of iron ore and apparatus therefor |
US07/276,612 US5000784A (en) | 1987-11-30 | 1988-11-28 | Method for smelting reduction of iron ore |
BR888806278A BR8806278A (en) | 1987-11-30 | 1988-11-29 | METHOD AND APPLIANCE FOR REDUCING AND SPINDLE OF IRON ORE |
CN 88108145 CN1019669B (en) | 1987-11-30 | 1988-11-29 | Process and apparatus for reduction of molten iron ore |
KR1019880015891A KR910006037B1 (en) | 1987-11-30 | 1988-11-30 | Method for smelting reduction of iron ore |
US07/520,785 US5065985A (en) | 1987-11-30 | 1990-05-08 | Method for smelting reduction of iron ore and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2858688A JP2668913B2 (en) | 1988-02-09 | 1988-02-09 | Smelting reduction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01205019A true JPH01205019A (en) | 1989-08-17 |
JP2668913B2 JP2668913B2 (en) | 1997-10-27 |
Family
ID=12252705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2858688A Expired - Lifetime JP2668913B2 (en) | 1987-11-30 | 1988-02-09 | Smelting reduction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2668913B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004057037A1 (en) * | 2002-12-23 | 2004-07-08 | Posco | An apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same |
WO2006011774A1 (en) * | 2004-07-30 | 2006-02-02 | Posco | Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same. |
US7662210B2 (en) | 2004-07-30 | 2010-02-16 | Posco | Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same |
-
1988
- 1988-02-09 JP JP2858688A patent/JP2668913B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004057037A1 (en) * | 2002-12-23 | 2004-07-08 | Posco | An apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same |
AU2003289517B2 (en) * | 2002-12-23 | 2008-10-09 | Posco | An apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same |
AU2003289517B8 (en) * | 2002-12-23 | 2008-11-20 | Posco | An apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same |
US7588625B2 (en) | 2002-12-23 | 2009-09-15 | Posco | Apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same |
WO2006011774A1 (en) * | 2004-07-30 | 2006-02-02 | Posco | Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same. |
AU2005265480B2 (en) * | 2004-07-30 | 2008-06-12 | Posco | Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same |
US7662210B2 (en) | 2004-07-30 | 2010-02-16 | Posco | Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2668913B2 (en) | 1997-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2304618C (en) | Direct smelting process for producing metals from metal oxides | |
CA1337241C (en) | Method for smelting reduction of iron ore and apparatus therefor | |
JP2735774B2 (en) | How to enhance reactions in metallurgical reactors | |
EP1087022B1 (en) | A direct smelting process | |
CA1336542C (en) | Method for smelting and reducing iron ores and apparatus therefor | |
US6602321B2 (en) | Direct smelting process | |
CA1336744C (en) | Method for smelting reduction of iron ore and apparatus therefor | |
CA2335753C (en) | A direct smelting process | |
JPH01205019A (en) | Smelting reduction method | |
EP0950117B1 (en) | A method for producing metals and metal alloys | |
JP2668912B2 (en) | Smelting reduction method | |
JPH0471965B2 (en) | ||
JPH01205017A (en) | Smelting reduction method | |
JPH01162711A (en) | Smelting reduction method | |
JPH01205016A (en) | Smelting reduction method and apparatus thereof | |
JPH01205018A (en) | Smelting reduction method | |
JPH01205014A (en) | Smelting reduction method and apparatus thereof | |
AU742806B2 (en) | Direct smelting process for producing metals from metal oxides | |
JPH01205015A (en) | Smelting reduction method and apparatus thereof | |
JP2638840B2 (en) | Smelting reduction method | |
JPH01104709A (en) | Smelting reduction method | |
JPH0196314A (en) | Smelting reduction method | |
JPH01104707A (en) | Smelting reduction method | |
JPH01195211A (en) | Method for melting and reducing iron oxide | |
JPH0379709A (en) | Slag bath type smelting reduction producing apparatus for molten ferrous alloy and method thereof |