JPH01204922A - Curable resin and its preparation and application - Google Patents

Curable resin and its preparation and application

Info

Publication number
JPH01204922A
JPH01204922A JP3045588A JP3045588A JPH01204922A JP H01204922 A JPH01204922 A JP H01204922A JP 3045588 A JP3045588 A JP 3045588A JP 3045588 A JP3045588 A JP 3045588A JP H01204922 A JPH01204922 A JP H01204922A
Authority
JP
Japan
Prior art keywords
resin
groups
epichlorohydrin
equivalent ratio
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3045588A
Other languages
Japanese (ja)
Other versions
JP2568612B2 (en
Inventor
Toshiaki Haniyuda
羽入田 利明
Joji Shibata
柴田 譲治
Kazuo Otani
和男 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP63030455A priority Critical patent/JP2568612B2/en
Publication of JPH01204922A publication Critical patent/JPH01204922A/en
Application granted granted Critical
Publication of JP2568612B2 publication Critical patent/JP2568612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To attempt to prepare a base resin being easily curable, providing a coating film having excellent alkali resistance and being useful for preparing a circuit, by combining a novolak phenol resin with vinyl benzyl ether and epoxy groups at a specified equivalent ratio. CONSTITUTION:Vinyl benzyl groups are formed by dissolving a novolak phenol resin and chloromethylstyrene in a solvent and carrying out dehydrochlorination in the presence of an alkali at an equivalent ratio of chloromethylstyrene to phenolic hydroxyl groups of 0.2-0.9 and then epoxy groups are introduced by adding a large excess of epichlorohydrin and carrying out de hydrochlorination with remaining phenolic hydroxyl groups. In this case, the equivalent ratio of vinyl benzyl ether groups to epoxy groups is 90-20/10-80. The curable resin thus obtd. can be easily cured by means of an actinic radia tion such as an ultraviolet ray and heat.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、活性エネルギー線例えば紫外線等及び加熱に
よって容易に硬化し且つ得られる硬化塗膜が耐アルカリ
性に優れている新規な硬化性樹脂及びその製造方法並び
にその用途に関し、特に硬化性樹脂はプリント配線板の
導体回路形成のための塗料やインキ用のベースレジンと
して極めて有用なものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a novel curable resin that is easily cured by active energy rays such as ultraviolet rays and heating, and whose cured coating film has excellent alkali resistance. With regard to its manufacturing method and its uses, curable resins are particularly useful as base resins for paints and inks for forming conductor circuits on printed wiring boards.

[従来の技術] 近年、電子工業で用いられるプリント配線板は、その導
体回路の細密化、高精度化が年々進み、その対応として
銅張り積層板のエツチング、サブアディティブ法から、
単に積層板に無電解銅メツキを施して導体回路を作製す
るフルアデイティブ法や、その中間のサブアディティブ
法に移行している。
[Prior Art] In recent years, the conductor circuits of printed wiring boards used in the electronics industry have become increasingly finer and more precise.
There is a shift to full-additive methods, in which conductor circuits are created by simply applying electroless copper plating to laminates, and sub-additive methods in between.

アディティブ法は、無電解銅メツキ法を用いるため、そ
の銅析出には苛性ソーダ、ホルマリン、EDTA等の薬
品を用い、アルカリ液にて高温、長時間の反応を行う必
要がある。そのため通常の感光性フィルムではその条件
に耐えられない。−般には、焼付硬化型エポキシ樹脂の
塗料やインキによるスクリーン印刷手法に頼らざるを得
ないのが現状である。
Since the additive method uses an electroless copper plating method, it is necessary to use chemicals such as caustic soda, formalin, EDTA, etc. for copper precipitation, and to perform a reaction at high temperature and for a long time in an alkaline solution. Therefore, ordinary photosensitive films cannot withstand such conditions. - Generally, at present, we have no choice but to rely on screen printing methods using bake-curable epoxy resin paints or inks.

しかしながら、スクリーン印刷法はその手法から細密・
高精度回路作製には限界がある。従って、写真製版現像
のできる光硬化型樹脂で且つ耐アルカリ性で無電解銅メ
ツキ可能な硬化性樹脂の開発が極めて強く要求されてい
るが、現在使用されている光硬化型液状樹脂の塗料やイ
ンキ(スクリーン印刷法を含む)、非接触写真製版露光
硬化型や、接触写真製版露光硬化型の樹脂は、その光硬
化をアクリロイル基に依存しているため、その樹脂構造
では耐アルカリ性に劣るという欠点があった。他方、耐
アルカリ性に優れているエポキシ樹脂による紫外線硬化
も、光カチオン触媒を利用することにより可能であるが
、導体が経時的に腐食される欠点があった。
However, the screen printing method requires precision and
There are limits to high-precision circuit fabrication. Therefore, there is an extremely strong demand for the development of a photocurable resin that can be developed by photolithography, has alkali resistance, and is capable of electroless copper plating. (including screen printing methods), non-contact photolithography exposure-curing type resins, and contact photolithography exposure-curing type resins rely on acryloyl groups for photocuring, so their resin structure has the disadvantage of poor alkali resistance. was there. On the other hand, ultraviolet curing using an epoxy resin with excellent alkali resistance is also possible by using a photocationic catalyst, but it has the disadvantage that the conductor corrodes over time.

[発明が解決しようとする課題] 本発明は、かかる現状に鑑みて、光硬化型のアクリロイ
ル基含有樹脂の有する欠点即ち耐アルカリ性に劣るとい
う欠点が無く然も写真製版現像も可能な硬化性樹脂及び
その製造方法並びにその用途の提供を目的とするもので
ある。
[Problems to be Solved by the Invention] In view of the current situation, the present invention provides a curable resin that does not have the drawbacks of photocurable acryloyl group-containing resins, that is, poor alkali resistance, and is also capable of photolithographic development. The object of the present invention is to provide a method for manufacturing the same, and uses thereof.

[課題を解決するための手段] 本発明の前記目的の第1は、 クロロメチルスチレン及びエピクロロヒドリンを、ノボ
ラック型フェノール樹脂のヒドロキシ基に付加させて得
られる、ビニルベンジルエーテル基とエポキシ基との当
量比が90〜20/ 10〜80である変性ノボラック
型エポキシ樹脂を主体とする硬化性樹脂が、耐アルカリ
性、基材への密着性、熱安定性、機械的強度等の優れた
硬化物を与えることを見出し、本発明を完成することに
よって達成された。
[Means for Solving the Problems] The first object of the present invention is to obtain a vinyl benzyl ether group and an epoxy group obtained by adding chloromethylstyrene and epichlorohydrin to the hydroxy group of a novolac type phenol resin. A curable resin based on a modified novolac type epoxy resin with an equivalent ratio of 90 to 20/10 to 80 has excellent curing properties such as alkali resistance, adhesion to substrates, thermal stability, and mechanical strength. This was achieved by discovering that the present invention can provide an object and completing the present invention.

本発明の前記目的の第2は、 クロロメチルスチレンとノボラック型フェノール樹脂と
を、溶媒中、アルカリの存在下、フェノール性ヒドロキ
シ基に対するクロロメチルスチレンの反応割合を0.2
〜0.9(当量比)で反応させ、次いで大過剰量のエピ
クロロヒドリンを加えて残りのフェノール性ヒドロキシ
基と脱塩化水素反応させることによって、ビニルベンジ
ルエーテル基とエポキシ基との当量比が90〜20/ 
10〜80である変性ノボラック型エポキシ樹脂を主体
とする硬化性樹脂を効率よく製造することによって達成
された。
The second object of the present invention is to prepare chloromethylstyrene and a novolac type phenolic resin in a solvent in the presence of an alkali so that the reaction ratio of chloromethylstyrene to phenolic hydroxy group is 0.2.
The equivalent ratio of vinyl benzyl ether groups to epoxy groups was reduced by reacting at ~0.9 (equivalent ratio) and then adding a large excess of epichlorohydrin to cause a dehydrochlorination reaction with the remaining phenolic hydroxy groups. is 90~20/
This was achieved by efficiently producing a curable resin mainly composed of a modified novolac type epoxy resin having a molecular weight of 10 to 80.

更に、本発明の前記目的の第3は、 ビニルベンジルエーテル基とエポキシ基との当量比が9
0〜20/ to〜80である変性ノボラック型エポキ
シ樹脂を主体とする本発明の硬化性樹脂に、光重合開始
剤、エポキシ樹脂用硬化剤及び染顔料を配合して導体回
路形成用塗料又はインキを得ることによって達成された
Furthermore, the third object of the present invention is that the equivalent ratio of the vinyl benzyl ether group to the epoxy group is 9.
A coating or ink for forming conductor circuits is prepared by blending a photopolymerization initiator, a curing agent for epoxy resins, and dyes and pigments with the curable resin of the present invention, which is mainly a modified novolac type epoxy resin having a molecular weight of 0 to 20/to to 80. This was achieved by obtaining.

[作  用] 本発明の硬化性樹脂は、分子中に特定割合のビニルベン
ジルエーテル基とエポキシ基を有しているが、耐アルカ
リ性に劣る(メタ)アクリロイル基が存在しないため、
耐アルカリ性に優れており、またエポキシ基が存在する
ため基材への密着性が優れた硬化物を与える。
[Function] The curable resin of the present invention has a specific proportion of vinylbenzyl ether groups and epoxy groups in the molecule, but since there is no (meth)acryloyl group, which has poor alkali resistance,
It has excellent alkali resistance and provides a cured product with excellent adhesion to substrates due to the presence of epoxy groups.

また、本発明の硬化性樹脂は、分子中のビニル基が所有
する付加反応による架橋硬化機構と、分子中のエポキシ
基が所有する開環反応による架橋硬化機構の2つの硬化
機構を併有しているので、これらの硬化機構を適宜組合
わせて用いることによって、種々の硬化温度で硬化速度
を調節することができ、また高精度、高強度の硬化物を
容易に得ることができる利点がある。
In addition, the curable resin of the present invention has two curing mechanisms: a crosslinking curing mechanism due to an addition reaction possessed by the vinyl group in the molecule, and a crosslinking curing mechanism due to a ring opening reaction possessed by the epoxy group in the molecule. Therefore, by appropriately combining these curing mechanisms, it is possible to adjust the curing speed at various curing temperatures, and there is an advantage that a cured product with high precision and high strength can be easily obtained. .

例えば、本発明の硬化性樹脂は、実施例で詳細に示され
るが如く、基板上に塗布された後、ネガフィルムを通し
て光照射して露光部分を光硬化させると、ビニル基の付
加反応による硬化機構によって高精度なパターンを有す
る初期硬化物が形成され、次いで未露光の未硬化部分を
溶剤で洗滌除去した後、初期硬化物を加熱硬化させると
、エポキシ基の開環反応による強固な硬化物が形成され
るので、結局無電解銅メツキ処理にも耐えられるような
耐アルカリ性に優れた高精度のパターンを有する強固な
硬化物が容易に得られるという利点がある。従って、本
発明の硬化性樹脂は、アディティブ法における導体回路
形成用の塗料やインキのベースレジンとして最適である
For example, as will be shown in detail in the Examples, the curable resin of the present invention is applied onto a substrate and then irradiated with light through a negative film to photocure the exposed areas. An initial cured product with a highly precise pattern is formed by the mechanism, and after washing and removing the unexposed uncured parts with a solvent, the initial cured product is heated and cured to form a strong cured product due to the ring-opening reaction of the epoxy group. is formed, so there is an advantage that a strong cured product having a highly accurate pattern with excellent alkali resistance that can withstand electroless copper plating can be easily obtained. Therefore, the curable resin of the present invention is optimal as a base resin for paints and inks for forming conductor circuits in additive methods.

以下、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の硬化性樹脂は、分子中に特定割合のビニルベン
ジルエーテル基とエポキシ基を有する変性ノボラック型
エポキシ樹脂を主体とし、ノボポック型フェノール樹脂
のヒドロキシ基に、クロロメチルスチレン及びエピクロ
ロヒドリンを脱塩化水素反応させて得られる。その代表
例を模式的に示す。
The curable resin of the present invention is mainly composed of a modified novolac type epoxy resin having a specific proportion of vinylbenzyl ether groups and epoxy groups in the molecule, and chloromethylstyrene and epichlorohydrin are added to the hydroxyl groups of the novopoc type phenolic resin. Obtained by dehydrochlorination reaction. A representative example is schematically shown.

(以下余白) 式〔I〕及び式(11)において、R,R’ は水素、
メチル基又はハロゲンであり、m+n及びm’ +n’
 は2〜lOであり、m/n及びm’ /n′は90〜
20/10〜80の範囲にある、即ち樹脂中のビニルベ
ンジルエーテル基とエポキシ基との割合は90〜20/
10〜80である。前記エポキシ基の存在割合が10よ
り少量の場合、エポキシ基による硬化が充分に作用せず
基材への密着性が不充分となる。また、80より多量の
場合、ビニル基による光硬化性や現像性が充分でない欠
点がある。
(Left below) In formula [I] and formula (11), R and R' are hydrogen,
Methyl group or halogen, m+n and m'+n'
is 2~lO, m/n and m'/n' are 90~
The ratio of vinyl benzyl ether groups to epoxy groups in the resin is in the range of 20/10 to 80, i.e. the ratio of vinyl benzyl ether groups to epoxy groups in the resin is 90 to 20/
It is 10-80. If the ratio of the epoxy groups present is less than 10, curing by the epoxy groups will not be sufficiently effective, resulting in insufficient adhesion to the substrate. Moreover, when the amount is greater than 80, there is a drawback that the photocurability and developability due to the vinyl group are insufficient.

本発明の硬化性樹脂は、クロロメチルスチレンと過剰量
のエピクロロヒドリンの混合物とノボラック型フェノー
ル樹脂とを、溶媒中でアルカリで脱塩化水素した後、ベ
ンゼンにて抽出し、塩酸中和、水洗を繰り返すことによ
って合成することができる。しかし、エピクロロヒドリ
ンの反応性を考慮して、先づクロロメチルスチレンとノ
ボラック型フェノール樹脂とを、フェノール性ヒドロキ
シ基に対するクロロメチルスチレンの反応割合を0.2
〜0.9(当量比)で脱塩化水素反応させ、次いで大過
剰量例えばフェノール性ヒドロキシ基に対し5〜15(
当量比)倍のエピクロロヒドリンを脱塩化水素反応させ
る2段反応法を採用するのが好適である。
The curable resin of the present invention is obtained by dehydrochlorinating a mixture of chloromethylstyrene, an excess amount of epichlorohydrin, and a novolac type phenol resin with an alkali in a solvent, extracting with benzene, neutralizing with hydrochloric acid, It can be synthesized by repeated washing with water. However, in consideration of the reactivity of epichlorohydrin, first, chloromethylstyrene and novolac type phenol resin were mixed, and the reaction ratio of chloromethylstyrene to phenolic hydroxyl group was adjusted to 0.2.
The dehydrochlorination reaction is carried out at a ratio of ~0.9 (equivalent ratio), and then a large excess of e.g.
It is preferable to employ a two-stage reaction method in which twice as much epichlorohydrin (equivalent ratio) is subjected to a dehydrochlorination reaction.

クロロメチルスチレンとノボラック型フェノール樹脂と
の第1段反応は、重合楚止剤及びアルカリの存在下、ジ
メチルスルホオキシドの如き溶媒中で50〜100℃で
1〜3時間加熱して実施される。
The first reaction between chloromethylstyrene and novolac type phenolic resin is carried out by heating at 50 to 100° C. for 1 to 3 hours in a solvent such as dimethyl sulfoxide in the presence of a polymerization inhibitor and an alkali.

次いでエピクロロヒドリンを加え、100〜120℃に
昇温して水−エピクロロヒドリンを共沸させ、エピクロ
ロヒドリンのみを反応系にもどしながらアルカリを滴下
して、第2段の反応を実施する。
Next, epichlorohydrin is added, the temperature is raised to 100 to 120°C to azeotrope water-epichlorohydrin, and while returning only epichlorohydrin to the reaction system, alkali is added dropwise to carry out the second stage reaction. Implement.

反応の終点は、赤外分光分析及び化学分析によってフェ
ノール性ヒドロキシ基の消滅によって決定される。
The end point of the reaction is determined by the disappearance of the phenolic hydroxy group by infrared spectroscopy and chemical analysis.

本発明で使用されるノボラック型フェノール樹脂は、市
販のもので充分である。例えば、フェノール、クレゾー
ル、ビスフェノールA1ビスフエノールF等から合成さ
れたノボラック型フェノール樹脂が好適である。
Commercially available novolak phenolic resins used in the present invention are sufficient. For example, a novolac type phenol resin synthesized from phenol, cresol, bisphenol A1 bisphenol F, etc. is suitable.

本発明の硬化性樹脂は、光硬化及び加熱硬化が可能であ
り、その場合光重合開始剤及び硬化剤が使用される。
The curable resin of the present invention can be photocured and heat cured, in which case a photopolymerization initiator and a curing agent are used.

本発明で使用される光重合開始剤としては、ベンゾフェ
ノン、ヒドロキシイソブチルフェノン、アセトフェノン
、2,2−ジェトキシアセトフェノン、ベンゾイン、ベ
ンゾインエチルエーテル、ベンジル、ベンジルメチルケ
タール、ベンゾイルジフェニルホスフィンオキサイド、
エチルアントラキノン等のカルボニル化合物、チオキサ
ントン、クロルチオキサントン、アゾビスイソブチルニ
トリル等が代表例として挙げられる。その使用量は硬化
性樹脂100重量部当り0.2〜IO重量部、好ましく
は0.5〜7重量部である。
Examples of the photopolymerization initiator used in the present invention include benzophenone, hydroxyisobutylphenone, acetophenone, 2,2-jethoxyacetophenone, benzoin, benzoin ethyl ether, benzyl, benzyl methyl ketal, benzoyl diphenylphosphine oxide,
Representative examples include carbonyl compounds such as ethyl anthraquinone, thioxanthone, chlorothioxanthone, and azobisisobutylnitrile. The amount used is 0.2 to IO parts by weight, preferably 0.5 to 7 parts by weight, per 100 parts by weight of the curable resin.

本発明で用い得る硬化剤としては、エポキシ樹脂の硬化
剤として使用されているものである。それら硬化剤のな
かでも、アミン系硬化剤が耐アルカリ性を満足させる点
で好適である。例えば、ジアミノジフェニルメタン、ジ
アミノジフェニルスルホン、メタフェニレンジアミン等
の芳香族アミン、2−エチル−4−メチルイミダゾール
、2−メチルイミダゾール、1−ベンジル−2−メチル
イミダゾール等のイミダゾール化合物、ジシアンジアミ
ド、N、Nジアリルメラミン、メラミン、グアニジン、
フェニルグアニジン等の複素環化合物、トリスジメチル
アミノフェノール、トリメチルベンジルアミン等で代表
される第三級アミン等が高温硬化剤の代表例として挙げ
られる。勿論、キシレンジアミンの如き脂肪族アミン系
の低温硬化剤も、場合により、使用可能である。その使
用量は、エポキシ当量に見合う量を参考にして決定され
る。通常は、硬化性樹脂に対し1〜25重量%の範囲で
添加される。
The curing agent that can be used in the present invention is one that is used as a curing agent for epoxy resins. Among these curing agents, amine curing agents are preferred because they satisfy alkali resistance. For example, aromatic amines such as diaminodiphenylmethane, diaminodiphenylsulfone, metaphenylenediamine, imidazole compounds such as 2-ethyl-4-methylimidazole, 2-methylimidazole, 1-benzyl-2-methylimidazole, dicyandiamide, N,N diallylmelamine, melamine, guanidine,
Typical examples of high-temperature curing agents include heterocyclic compounds such as phenylguanidine, tertiary amines represented by trisdimethylaminophenol, trimethylbenzylamine, and the like. Of course, aliphatic amine-based low temperature curing agents such as xylene diamine can also be used in some cases. The amount to be used is determined with reference to the amount corresponding to the epoxy equivalent. It is usually added in an amount of 1 to 25% by weight based on the curable resin.

本発明の硬化性樹脂は、その組成を選ぶことによって接
着剤、絶縁材、塗料、複合構造材料等に広く利用するこ
とができる。殊に、軟化点70℃以上のフェノール、ク
レゾールノボラック型フェノール樹脂を用いると、光硬
化性、被塗面に対する密着性、耐熱性、電気特性、パタ
ーン形成性に優れた硬化物が得られ、接触写真製版露光
によるパターン化、即ち光露光によって光硬化させ、未
露光部を溶剤で洗い落し、120℃〜200℃で120
〜10分硬化させれば、無電解銅メツキ浴中での処理に
耐えるので、アディティブ法のベースレジンとして有用
である。また接触に換えて非接触写真製版によりパター
ン化することも可能である。
The curable resin of the present invention can be widely used in adhesives, insulating materials, paints, composite structural materials, etc. by selecting its composition. In particular, when phenol or cresol novolac type phenolic resins with a softening point of 70°C or higher are used, cured products with excellent photocurability, adhesion to the coated surface, heat resistance, electrical properties, and pattern forming properties can be obtained, and contact Patterning by photolithographic exposure, that is, photocuring by light exposure, washing off the unexposed areas with a solvent,
If it is cured for ~10 minutes, it can withstand treatment in an electroless copper plating bath, so it is useful as a base resin for additive methods. It is also possible to pattern by non-contact photolithography instead of contact.

なお、本発明の硬化性樹脂は、塗工性を上げるために、
有機溶剤に溶かし粘度を下げて使用することができる。
In addition, in order to improve the coating property of the curable resin of the present invention,
It can be used by dissolving it in an organic solvent to lower its viscosity.

また、本発明の硬化性樹脂においては、既知の他の単量
体、例えばスチレン、ビニルトルエン、アリルフェノー
ル、アリルオキシベンゼン、ジアリルフタレート、アク
リル酸エステル、メタクリル酸エステル、ビニルピロリ
ドン等を、又はエポキシアクリレート、アクリルウレタ
ン等のオリゴマーを、本発明の思想を逸脱しない範囲で
配合することは可能である。硬化の調整のためにハイド
ロキノン、ベンゾキノン、銅塩等を配合することや、ま
た硬化の促進のためにラジカル開始剤を配合できること
はいうまでもない。
In addition, in the curable resin of the present invention, other known monomers such as styrene, vinyltoluene, allylphenol, allyloxybenzene, diallylphthalate, acrylic ester, methacrylic ester, vinylpyrrolidone, etc., or epoxy It is possible to incorporate oligomers such as acrylates and acrylic urethanes without departing from the spirit of the present invention. Needless to say, hydroquinone, benzoquinone, copper salt, etc. can be added to adjust the curing, and a radical initiator can be added to accelerate the curing.

本発明の硬化性樹脂は、ニーダ−、ブレンダー、ロール
等によって、タルク、硫酸バリウム、シリカ粉末、ガラ
スピーズ、エアロシール等の充填剤やシリコーン油等の
消泡剤やレベリング剤、染顔料、強化繊維を調配合して
成形材料や複合材料として、また溶剤に溶かしてフェス
、塗料、接着剤として、また強化繊維であるガラス繊維
、カーボン繊維、芳香族ポリアミド繊維、炭化珪素繊維
、アルミナ繊維に含浸させ、プリプレグとして、またフ
ィラメントワインデングとして有益な成形材料、構造材
料とすることが可能である。
The curable resin of the present invention is processed by a kneader, blender, roll, etc., into fillers such as talc, barium sulfate, silica powder, glass peas, and Aeroseal, antifoaming agents and leveling agents such as silicone oil, dyes and pigments, and reinforcing agents. Fibers can be blended to be used as molding materials and composite materials, dissolved in solvents to be used in festivals, paints, and adhesives, and impregnated into reinforcing fibers such as glass fibers, carbon fibers, aromatic polyamide fibers, silicon carbide fibers, and alumina fibers. It can be used as a molding material or a structural material useful as a prepreg or as a filament winding.

[実 施 例] 次に本発明の詳細な説明するために参考例及び実施例を
示すが、これらをもって本発明の範囲を限定するもので
ない。なお、とくに断らない限り、例中の部及び%は重
量部/重量%である。
[Examples] Next, reference examples and examples are shown to explain the present invention in detail, but the scope of the present invention is not limited by these. In addition, unless otherwise specified, parts and percentages in the examples are parts by weight/% by weight.

参考例 1 フェノールノボラックビニルベンジルエー
テルグリシジルエーテル の合成 昭和高分子製フェノールノボラックBRG−55582
部(0,8当量)、水酸化ナトリウム16部(0,4当
量)をジメチルスルホキシド140部、水20部中に溶
解し、これに市販のクロロメチルスチレン62部(0,
4当量)、ハイドロキノン0.1部をジメチルスルホキ
シド40部に溶解したものを70℃で1時間かけて滴下
し、更に70℃で1.5時間反応を続けた。
Reference example 1 Synthesis of phenol novolac vinyl benzyl ether glycidyl ether Phenol novolak BRG-55582 manufactured by Showa Kobunshi Co., Ltd.
(0.8 eq.), 16 parts (0.4 eq.) of sodium hydroxide were dissolved in 140 parts of dimethyl sulfoxide and 20 parts of water, and 62 parts of commercially available chloromethylstyrene (0.4 eq.
4 equivalents) and 0.1 part of hydroquinone dissolved in 40 parts of dimethyl sulfoxide were added dropwise at 70°C over 1 hour, and the reaction was continued at 70°C for another 1.5 hours.

次に系内にエピクロロヒドリン555部(6,θ当量)
を加え115℃に昇温し、水−エピクロロヒドリンを共
沸させ、エピクロロヒドリンのみを系内にもどしながら
40%水酸化ナトリウム水溶液40部を115℃で2時
間かけて滴下し、滴下終了後も115℃で15分間撹拌
し、水分を完全に取り除いた。
Next, 555 parts of epichlorohydrin (6,θ equivalent) was added to the system.
was added, the temperature was raised to 115°C, water-epichlorohydrin was azeotroped, and while only epichlorohydrin was returned to the system, 40 parts of a 40% sodium hydroxide aqueous solution was added dropwise at 115°C over 2 hours. After the dropwise addition was completed, the mixture was stirred at 115° C. for 15 minutes to completely remove moisture.

過剰のエピクロロヒドリンは系内を125℃に昇温し蒸
留して大半を除いた後、大過剰の水を加え、撹拌後ベン
ゼンで油状物を抽出した。ベンゼン層は水層のpl+が
7になるまで水洗を繰返し、ベンゼン層を無水硫酸ソー
ダで乾燥した。ベンゼン、エピクロロヒドリン減圧除去
後の収率は96%(エピクロロヒドリンに対する収率)
でエポキシ当量は552であった。
After removing most of the excess epichlorohydrin by heating the system to 125° C. and distilling it, a large excess of water was added, and after stirring, the oil was extracted with benzene. The benzene layer was washed repeatedly with water until the pl+ of the aqueous layer reached 7, and the benzene layer was dried with anhydrous sodium sulfate. The yield after removing benzene and epichlorohydrin under reduced pressure is 96% (yield based on epichlorohydrin)
The epoxy equivalent was 552.

参考例 2 フェノールノボラックビニルベンジルエー
テルグリシジルエーテル の合成 昭和高分子製フェノールノボラックBRG−55983
,2部(0,8当ff1)、水酸化ナトリウム16部(
0,4当量)をジメチルスルホキシド140部、水20
部中に溶解し、これに市販のクロロメチルスチレン62
部(0,4当ff1) 、ハイドロキノン0.1部をジ
メチルスルホキシド40部に溶解したものを70℃で1
時間かけて滴下し、更に70℃で1.5時間反応を続け
た。次に系内にエピクロロヒドリン555部(6,0当
量)を加え115℃に昇温し、水−エピクロロヒドリン
を共沸させ、エピクロロヒドリンのみを系内にもどしな
がら40%水酸化ナトリウム水溶液40部を115℃で
2時間かけて滴下し、滴下終了後も115℃で15分間
撹拌し、水分を完全に取り除いた。過剰のエピクロロヒ
ドリンは系内を125℃に昇温し蒸留して大半を除いた
後、大過剰の水を加え、撹拌後ベンゼンで油状物を抽出
した。
Reference example 2 Synthesis of phenol novolac vinyl benzyl ether glycidyl ether Phenol novolak BRG-55983 manufactured by Showa Kobunshi Co., Ltd.
, 2 parts (0.8 parts ff1), 16 parts of sodium hydroxide (
0.4 equivalents) in 140 parts of dimethyl sulfoxide and 20 parts of water.
Commercially available chloromethylstyrene 62
part (0.4 parts ff1), 0.1 part of hydroquinone dissolved in 40 parts of dimethyl sulfoxide was heated to 1 part at 70°C.
The mixture was added dropwise over a period of time, and the reaction was further continued at 70°C for 1.5 hours. Next, 555 parts (6.0 equivalents) of epichlorohydrin was added to the system and the temperature was raised to 115°C, and the water-epichlorohydrin was azeotropically distilled. 40 parts of an aqueous sodium hydroxide solution was added dropwise at 115°C over 2 hours, and after the dropwise addition was completed, stirring was continued at 115°C for 15 minutes to completely remove moisture. After removing most of the excess epichlorohydrin by heating the system to 125° C. and distilling it, a large excess of water was added, and after stirring, the oil was extracted with benzene.

ベンゼン層は水層のpl+が7になるまで水洗を繰返し
ベンゼン層を無水硫酸ソーダで乾燥した。ベンゼン、エ
ピクロロヒドリン減圧除去後の収率は96%(エピクロ
ロヒドリンに対する収率)でエポキシ当量は560であ
った。
The benzene layer was washed repeatedly with water until the pl+ of the aqueous layer reached 7, and the benzene layer was dried with anhydrous sodium sulfate. The yield after removing benzene and epichlorohydrin under reduced pressure was 96% (yield based on epichlorohydrin), and the epoxy equivalent was 560.

参考例 3 クレゾールノボラックビニルベンジルエー
テルグリシジル エーテルの合成 昭和高分子製クレゾールノボラックCRG−95112
4部(0,8当量)、水酸化ナトリウム16部(0,4
当量)をジメチルスルホキシド180部、水20部中に
溶解し、これに市販のクロロメチルスチレン62部(0
,4当量)、ハイドロキノン0.1部をジメチルスルホ
キシド40部に溶解したものを70℃で1時間かけて滴
下し、更に70℃で1.5時間反応を続けた。
Reference example 3 Synthesis of cresol novolac vinyl benzyl ether glycidyl ether Cresol novolac CRG-95112 manufactured by Showa Kobunshi Co., Ltd.
4 parts (0,8 equivalents), 16 parts sodium hydroxide (0,4
equivalent) was dissolved in 180 parts of dimethyl sulfoxide and 20 parts of water, and 62 parts of commercially available chloromethylstyrene (0
.

次に系内にエピクロロヒドリン555部(6,0当量)
を加え115℃に昇温し、水−エピクロロヒドリンを共
沸させ、エピクロロヒドリンのみを系内にもどしながら
40%水酸化ナトリウム水溶液40部を115℃で2時
間かけて滴下し、滴下終了後も115℃で15分間撹拌
し、水分を完全に取り除いた。
Next, 555 parts (6.0 equivalents) of epichlorohydrin was added to the system.
was added, the temperature was raised to 115°C, water-epichlorohydrin was azeotroped, and while only epichlorohydrin was returned to the system, 40 parts of a 40% sodium hydroxide aqueous solution was added dropwise at 115°C over 2 hours. After the dropwise addition was completed, the mixture was stirred at 115° C. for 15 minutes to completely remove moisture.

過剰のエピクロロヒドリンは系内を125℃に昇温し蒸
留して大半を除いた後、大過剰の水を加え、撹拌後ベン
ゼンで油状物を抽出した。ベンゼン層は水層のpHが7
になるまで水洗を繰返し、ベンゼン層を無水硫酸ソーダ
で乾燥した。ベンゼン、エピクロロヒドリン減圧除去後
の収率は96%(エピクロロヒドリンに対する収率)で
エポキシ当量は598であった。
After removing most of the excess epichlorohydrin by heating the system to 125° C. and distilling it, a large excess of water was added, and after stirring, the oil was extracted with benzene. The pH of the benzene layer and the water layer is 7.
The benzene layer was dried with anhydrous sodium sulfate. The yield after removing benzene and epichlorohydrin under reduced pressure was 96% (yield based on epichlorohydrin), and the epoxy equivalent was 598.

参考例 4 ビスフェノールA系ノボラックビニルベン
ジルエーテルグリシジ ルエーテルの合成 昭和高分子製ビスフェノールA系ノボラックMCM−8
74122,4部(0,8当量)、水酸化ナトリウム1
6部(0,4当量)をジメチルスルホキシド140部、
水20部中に溶解し、これに市販のクロロメチルスチレ
ン62部(0,4当量)、ハイドロキノン0.1部をジ
メチルスルホキシド40部に溶解したものを70℃で1
時間かけて滴下し、更に70℃で1.5時間反応を続け
た。次に系内にエピクロロヒドリン555部(6,0当
量)を加え115℃に昇温し、水−エピクロロヒドリン
を共沸させ、エピクロロヒドリンのみを系内にもどしな
がら40%水酸化ナトリウム水溶液40部を115℃で
2時間かけて滴下し、滴下終了後も115℃で15分間
撹拌し、水分を完全に取り除いた。過剰のエピクロロヒ
ドリンは系内を125℃に昇温し蒸留して大半を除いた
後、大過剰の水を加え、撹拌後ベンゼンで油状物を抽出
した。ベンゼン層は水層のpHが7になるまで水洗を繰
返し、ベンゼン層を無水硫酸ソーダで乾燥した。
Reference example 4 Synthesis of bisphenol A-based novolak vinyl benzyl ether glycidyl ether Bisphenol A-based novolac MCM-8 manufactured by Showa Kobunshi Co., Ltd.
74122.4 parts (0.8 equivalents), sodium hydroxide 1
6 parts (0.4 equivalents) to 140 parts of dimethyl sulfoxide,
A mixture of 62 parts (0.4 equivalents) of commercially available chloromethylstyrene and 0.1 part of hydroquinone dissolved in 40 parts of dimethyl sulfoxide was added to 20 parts of water at 70°C.
The mixture was added dropwise over a period of time, and the reaction was further continued at 70°C for 1.5 hours. Next, 555 parts (6.0 equivalents) of epichlorohydrin was added to the system and the temperature was raised to 115°C, and the water-epichlorohydrin was azeotropically distilled. 40 parts of an aqueous sodium hydroxide solution was added dropwise at 115°C over 2 hours, and after the dropwise addition was completed, stirring was continued at 115°C for 15 minutes to completely remove moisture. After removing most of the excess epichlorohydrin by heating the system to 125° C. and distilling it, a large excess of water was added, and after stirring, the oil was extracted with benzene. The benzene layer was washed repeatedly with water until the pH of the aqueous layer became 7, and the benzene layer was dried with anhydrous sodium sulfate.

ベンゼン、エピクロロヒドリン減圧除去後の収率は96
%(エピクロロヒドリンに対する収率)でエポキシ当量
は681であった。
The yield after removing benzene and epichlorohydrin under reduced pressure is 96
The epoxy equivalent in % (yield based on epichlorohydrin) was 681.

実施例1〜4.比較例4〜5 参考例1〜4で製造したフェノールノボラックビニルベ
ンジルエーテルグリシジルエーテル、クレゾールノボラ
ックビニルベンジルエーテルグリシジルエーテル及びビ
スフェノールA系ノボラックビニルベンジルエーテルグ
リシジルエーテルをカルピトールアセテートにて70%
固型分とした。このものそれぞれLogに対して光硬化
剤である2、4.61−リメチルベンゾイルジフェニル
ホスフィンオキシドを、また硬化剤として2エチル4メ
チルイミダゾールを第1表の如く配合した。比較のため
に、フェノールノボラックビニルベンジルエーテル(P
NVBE)単独及びクレゾールノボラックエポキシ(C
NEP)単独についてもカルピトールアセテート溶剤に
て70%固型分としそれぞれlO[に対し同様に光開始
剤及び硬化剤を配合した。これらをエポキシ樹脂製ガラ
ス積層板上に約50μ塗布した後、塗布した後80℃で
30分間乾燥して粘着性を調べた。その後ネガフィルム
を通して光硬化光源である高圧水銀ランプ下(2kW出
力)で約8秒間露光した。未露光部を前記溶剤で洗い去
った後150℃で45分間加熱硬化させた。このものに
ついて密着性をゴバン目テスト及び耐アルカリ性確認の
ため10%苛性ソーダに70℃で24時間浸漬して耐ア
ルカリ性を調べた。
Examples 1-4. Comparative Examples 4 to 5 Phenol novolak vinyl benzyl ether glycidyl ether, cresol novolac vinyl benzyl ether glycidyl ether, and bisphenol A-based novolac vinyl benzyl ether glycidyl ether produced in Reference Examples 1 to 4 were mixed with carpitol acetate to 70%
It was treated as a solid component. 2,4.61-limethylbenzoyldiphenylphosphine oxide as a photo-curing agent and 2-ethyl-4-methylimidazole as a curing agent were blended as shown in Table 1 for each Log. For comparison, phenol novolak vinyl benzyl ether (P
NVBE) alone and cresol novolac epoxy (C
NEP) alone was adjusted to 70% solid content with carpitol acetate solvent, and a photoinitiator and a curing agent were similarly blended with 1O[, respectively. Approximately 50 μm of these were coated on an epoxy resin glass laminate plate, and after the coating was dried at 80° C. for 30 minutes, the tackiness was examined. Thereafter, the negative film was exposed to light for about 8 seconds under a high-pressure mercury lamp (2 kW output), which is a photocuring light source. After washing off the unexposed area with the solvent, it was cured by heating at 150° C. for 45 minutes. This product was tested for adhesion and alkali resistance by being immersed in 10% caustic soda at 70° C. for 24 hours to confirm alkali resistance.

結果を第1表に示す。The results are shown in Table 1.

(以下余白) [発明の効果コ 本発明による硬化性樹脂は、光硬化性及び加熱硬化性を
併有しているので、種々の硬化条件で使用可能であり、
その硬化物は被塗面に対する密着性、耐熱性、電気特性
に優れていると共に(メタ)アクリロイル基を所有して
いないため耐アルカリ性にも優れているから、接着剤、
絶縁材、塗料、インキ、複合構造材料等に広く利用する
ことができる。とくに、ビニルベンジルエーテル基の優
れた光硬化性を利用した光硬化及びエポキシ基の加熱硬
化を併用することによって、耐アルカリ性に優れた高精
度、高強度のパターンを形成することができるので、ア
ディティブ法による回路作製用のベースレジンとして極
めて有用である。
(The following is a blank space) [Effects of the Invention The curable resin according to the present invention has both photocurability and heat curability, so it can be used under various curing conditions,
The cured product has excellent adhesion to the surface to be coated, heat resistance, and electrical properties, and since it does not have a (meth)acryloyl group, it also has excellent alkali resistance.
It can be widely used in insulation materials, paints, inks, composite structural materials, etc. In particular, by combining photocuring that utilizes the excellent photocurability of vinylbenzyl ether groups and heat curing of epoxy groups, it is possible to form patterns with high precision and high strength that have excellent alkali resistance. It is extremely useful as a base resin for circuit fabrication by the method.

Claims (1)

【特許請求の範囲】 1)クロロメチルスチレン及びエピクロロヒドリンを、
ノボラック型フェノール樹脂のヒドロキシ基と脱塩化水
素反応させて得られる、ビニルベンジルエーテル基とエ
ポキシ基の当量比が90〜20/10〜80である変性
ノボラック型エポキシ樹脂を主体とする硬化性樹脂。 2)クロロメチルスチレンとノボラック型フェノール樹
脂とを、溶媒中、アルカリの存在下、フェノール性ヒド
ロキシ基に対するクロロメチルスチレンの反応割合を0
.2〜0.9(当量比)で脱塩化水素反応させ、次いで
大過剰量のエピクロロヒドリンを加えて残りのフェノー
ル性ヒドロキシ基と脱塩化水素反応させることを特徴と
する、ビニルベンジルエーテル基とエポキシ基との当量
比が90〜20/10〜80である変性ノボラック型エ
ポキシ樹脂を主体とする硬化性樹脂の製造方法。 3)ビニルベンジルエーテル基とエポキシ基との当量比
が90〜20/10〜80である変性ノボラック型エポ
キシ樹脂を主体とする硬化性樹脂に、光重合開始剤、エ
ポキシ樹脂用硬化剤及び染顔料を配合してなる導体回路
形成用塗料。 4)ビニルベンジルエーテル基とエポキシ基との当量比
が90〜20/10〜80である変性ノボラック型エポ
キシ樹脂を主体とする硬化性樹脂に、光重合開始剤、エ
ポキシ樹脂用硬化剤及び染顔料を配合してなる導体回路
形成用インキ。
[Claims] 1) Chloromethylstyrene and epichlorohydrin,
A curable resin mainly composed of a modified novolac-type epoxy resin having an equivalent ratio of vinylbenzyl ether groups to epoxy groups of 90-20/10-80, which is obtained by dehydrochlorination reaction with the hydroxyl group of a novolac-type phenol resin. 2) Chloromethylstyrene and novolac type phenolic resin are mixed in a solvent in the presence of an alkali, and the reaction ratio of chloromethylstyrene to phenolic hydroxy group is 0.
.. 2 to 0.9 (equivalent ratio), and then a large excess of epichlorohydrin is added to cause the dehydrochlorination reaction with the remaining phenolic hydroxy group. A method for producing a curable resin based on a modified novolac type epoxy resin having an equivalent ratio of 90 to 20/10 to 80. 3) A photopolymerization initiator, a curing agent for epoxy resin, and dyes and pigments are added to a curable resin mainly composed of a modified novolac type epoxy resin in which the equivalent ratio of vinyl benzyl ether groups to epoxy groups is 90 to 20/10 to 80. A paint for forming conductor circuits that is formulated with: 4) A photopolymerization initiator, a curing agent for epoxy resin, and dyes and pigments are added to a curable resin mainly composed of a modified novolac type epoxy resin in which the equivalent ratio of vinyl benzyl ether groups to epoxy groups is 90 to 20/10 to 80. An ink for forming conductor circuits containing the following.
JP63030455A 1988-02-10 1988-02-10 Curable resin, its production method and its use Expired - Lifetime JP2568612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030455A JP2568612B2 (en) 1988-02-10 1988-02-10 Curable resin, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030455A JP2568612B2 (en) 1988-02-10 1988-02-10 Curable resin, its production method and its use

Publications (2)

Publication Number Publication Date
JPH01204922A true JPH01204922A (en) 1989-08-17
JP2568612B2 JP2568612B2 (en) 1997-01-08

Family

ID=12304378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030455A Expired - Lifetime JP2568612B2 (en) 1988-02-10 1988-02-10 Curable resin, its production method and its use

Country Status (1)

Country Link
JP (1) JP2568612B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281618A (en) * 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Thermosetting resin composition
JP2009286949A (en) * 2008-05-30 2009-12-10 Dic Corp Curable resin composition, its cured product, new epoxy resin, and its production method
JP2010523357A (en) * 2007-03-30 2010-07-15 エアバス・オペレーションズ・ゲーエムベーハー Manufacturing method of structural parts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281618A (en) * 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Thermosetting resin composition
JP4599869B2 (en) * 2004-03-30 2010-12-15 住友ベークライト株式会社 Thermosetting resin composition
JP2010523357A (en) * 2007-03-30 2010-07-15 エアバス・オペレーションズ・ゲーエムベーハー Manufacturing method of structural parts
US8911580B2 (en) 2007-03-30 2014-12-16 Airbus Operations Gmbh Method for producing a structural component
JP2009286949A (en) * 2008-05-30 2009-12-10 Dic Corp Curable resin composition, its cured product, new epoxy resin, and its production method

Also Published As

Publication number Publication date
JP2568612B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP2877659B2 (en) Resist ink composition and cured product thereof
EP1229389A1 (en) Photosensitive resin composition, photosensitive element using the same, method for producing resist pattern, resist pattern and substrate having the resist pattern laminated thereon
KR101488138B1 (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
JPH09304929A (en) Photosensitive resin compound capable of alkali development
KR20150036042A (en) Alkali development type resin, and photosensitive resin composition using same
JP4554170B2 (en) UV curable alkali-soluble resin, UV curable resin for solder resist film and printed wiring board
JP2568612B2 (en) Curable resin, its production method and its use
JP4219641B2 (en) Alkali development type photosensitive resin composition
JP3156559B2 (en) Method for producing photosensitive resin and liquid photosensitive resin composition
JP2001013684A (en) Photosensitive resin composition and its cured body
CN115551914A (en) Epoxy acrylate resin, alkali-soluble resin, resin composition containing same, and cured product thereof
JPH02285354A (en) Photosensitive composition
JPS61272228A (en) Photo-setting resin composition
JP2001264977A (en) Photosensitive resin composition
JP2002138125A (en) Curable resin and photosensitive resin composition
JP2001329050A (en) Photo-cation curable resin composition and hardened product thereof
JPH01132616A (en) Curable resin and its production and use
JPH01110516A (en) Curable resin composition
JP2002138140A (en) Polyester resin and photosensitive resin composition using the same
CN1350660A (en) Photosensitive composition
JPH03253092A (en) Photosensitive thermosetting resin composition and forming method of solder resist pattern
JPH0466948A (en) Cation electrodeposition type negative etching resist composition
JP2000159858A (en) Energy ray-sensitive resin, composition thereof and cured product thereof
JPH03143911A (en) Photosensitive polymer composition
JP2002107919A (en) Photosensitive resin composition and hardened material of the same