JPH01203956A - Sensor for gas detection by exothermic catalytic reaction - Google Patents

Sensor for gas detection by exothermic catalytic reaction

Info

Publication number
JPH01203956A
JPH01203956A JP31605188A JP31605188A JPH01203956A JP H01203956 A JPH01203956 A JP H01203956A JP 31605188 A JP31605188 A JP 31605188A JP 31605188 A JP31605188 A JP 31605188A JP H01203956 A JPH01203956 A JP H01203956A
Authority
JP
Japan
Prior art keywords
layer
catalyst layer
semiconductor device
catalyst
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31605188A
Other languages
Japanese (ja)
Inventor
Franz Nuscheler
フランツ、ヌシエラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH01203956A publication Critical patent/JPH01203956A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE: To prolong the service life of a catalyst layer by providing an inactiva tion layer on the surface of a semiconductor device and providing a catalyst layer thereon thereby avoiding diffusion of H<+> to a semiconductor in measuring a gas containing hydrogen. CONSTITUTION: A semiconductor device 1 is suspended in the cavity 31 of a substrate 3 by means of an inactivation layer 2 of SiO2 , for example. It is insulated thermally and electrically and stable mechanically. The inactivation layer 2 is followed by a catalyst layer 4 and touches the semiconductor device 1 in a hole 7. The catalyst layer 4 is conductive and composed of palladium, for example, by 100-150mm thick. Since the catalyst layer 4 touches the semiconductor device 1 only in the region of hole 7, diffusion of H<+> from the catalyst to semiconductor is substantially impossible. Furthermore, a stripe-shaped catalyst layer 4 may be employed so that the cross-section does not increase even if the thickness is increased. According to the structure, diffusion of H<+> to semiconductor is avoided at the time of measuring a gas containing hydrogen and the service life of catalyst layer is prolonged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、触媒層を備え熱絶縁して基板に収められた
半導体デバイスを含み、発熱触媒反応によりガスを検出
するセンサ装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sensor device that detects gas through an exothermic catalytic reaction, including a semiconductor device provided with a catalyst layer and housed in a thermally insulated substrate. .

〔従来の技術] 触媒表面でガスと例えば周囲空気中の酸素との発熱触媒
反応により発生した熱を記録することによりガスを検出
することは公知であり、またこの種のガス検出法に使用
されるセンサもいくつか公知である(例えばドイツ連邦
共和国特許出願公開第3519397号公報、英国の会
社イングリッシュ・エレクトリック・パルプ・カンパニ
ー(Ungush Electric Valve C
o、)のデーターシート、ジエントリー(S、 J、 
Gentry)およびジョーンズ(A、 Jones)
著「ジャーナル・オプ・アプライド・ケミカル・バイオ
テクノロジー(J、Appl、Ches+。
[Prior Art] It is known to detect gases by recording the heat generated by the exothermic catalytic reaction of the gas with, for example, oxygen in the surrounding air, at the surface of a catalyst, and the methods used for gas detection of this type are known. Some sensors are also known (eg German Patent Application No. 3519397, published by the British company English Electric Pulp Company (Ungush Electric Valve C).
o,) data sheet, dientry (S, J,
Gentry) and Jones (A, Jones)
Author: Journal of Applied Chemical Biotechnology (J, Appl, Ches+).

Biotechnol、)」1978.28.727、
ジエントリー(S、 J、 Gentry)およびジョ
ーンズ(T、 A。
Biotechnol, )” 1978.28.727,
Gentry (S, J, Gentry) and Jones (T, A.

Jones)著[センサース・アンド・アクチュエータ
ース(Sensors and Actuators)
 J 4 (1983)、581、ジエントリー(S、
 J、Gentry)およびワルシュ(P、 T、 W
alsh)著「センサース・アンド・アクチュエーター
ス(Sensors and Actuators) 
J5 (1984)、229その他参照)、これらのセ
ンサは総て同じ原理に基づいて構成されたもので、温度
測定に適した素子を含む、この素子の表面には触媒層が
あり、被検出ガスがその表面で触媒的に燃焼又は反応す
る。その際発生する熱がセンサ素子を加熱し、その温度
変化が信号変化を引き起こす。
Jones) [Sensors and Actuators]
J 4 (1983), 581, Dientry (S,
J, Gentry) and Walsh (P, T, W
“Sensors and Actuators” by Alsh)
J5 (1984), 229 et al.), these sensors are all constructed based on the same principle, including an element suitable for temperature measurement, on the surface of which there is a catalyst layer, and the gas to be detected is burns or reacts catalytically on its surface. The heat generated at this time heats the sensor element, and the temperature change causes a signal change.

これに適した触媒も多数公知である(例えばドイツ連邦
共和国特許出願公開第3519397号公報参照)、白
金触媒は水素の燃焼に適し、白金又は白金・ロジウム触
媒は200ないし250℃の温度で酸素供給のもとにN
H,からNoを作るのに適している。NOは100℃に
おいてAI。
A number of catalysts suitable for this purpose are also known (see, for example, German Patent Application No. 3519397). Platinum catalysts are suitable for hydrogen combustion, and platinum or platinum-rhodium catalysts supply oxygen at temperatures of 200 to 250°C. under N
It is suitable for making No from H,. NO is AI at 100°C.

0、−3iO□ −Gelの触媒に接して燃焼しNO□
になる。COは150℃以下の温度でパラジウム触媒に
接してC08に酸化される。触媒反応過程は触媒の基本
温度と触媒の種類に関係するが、一般に触媒反応は一定
の最低温度から始まる。
0, -3iO□ - Burns in contact with the Gel catalyst, producing NO□
become. CO is oxidized to CO8 in contact with a palladium catalyst at a temperature below 150°C. The catalytic reaction process is related to the base temperature of the catalyst and the type of catalyst, but generally the catalytic reaction starts at a certain minimum temperature.

半導体の強い温度依存性に基づき半導体をセンサとして
使用することが推賞される。触媒層を備えるダイオード
を二酸化シリコン又は窒化シリコンの薄い熱絶縁層を介
して基板に吊り下げ形にとりつけた構成はドイツ連邦共
和国特許出願公開第3519397号公報により公知で
ある。この触媒層はダイオードの区域を覆い絶縁層の上
に突き出している。触媒層は絶縁層に接触している部分
の外側で基板表面に接触する。ダイオードは周囲に対し
て充分に絶縁されて検出に必要な熱が周囲に放出されな
いようにしなければならないから、触媒層はできるだけ
薄くする必要がある。極めて薄い触媒層の場合その寿命
は半導体への拡散、境界層との合金化、触媒の僅かな消
耗又は表面酸化によって低下する。この構成の別の欠点
は、水素を含むガスを測定するとき半導体へのH°拡散
によりセンサ信号がネガティブの影響を受ける外に触媒
層が光過程処理の不可能な背面に置かれるためその構造
化が不可能であることである。
The use of semiconductors as sensors is encouraged due to their strong temperature dependence. A configuration in which a diode with a catalyst layer is mounted suspended on a substrate via a thin thermally insulating layer of silicon dioxide or silicon nitride is known from DE 35 19 397 A1. This catalyst layer covers the area of the diode and projects above the insulating layer. The catalyst layer contacts the substrate surface outside the portion that contacts the insulating layer. Since the diode must be sufficiently insulated from the surroundings so that the heat necessary for detection is not released into the surroundings, the catalyst layer must be as thin as possible. In the case of very thin catalyst layers, their lifetime is reduced by diffusion into the semiconductor, alloying with the boundary layer, slight wear of the catalyst or surface oxidation. Another disadvantage of this configuration is that when measuring hydrogen-containing gases, the sensor signal is negatively affected by H° diffusion into the semiconductor, and the catalyst layer is placed on the back side, which is impossible to photoprocess, due to its structure. It is impossible to

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明の目的は、水素を含むガスの測定に際して半導
体へのH0拡散が避けられ、又触媒層の寿命が従来のセ
ンサよりも長くなるセンサ装置を提供することである。
An object of the present invention is to provide a sensor device in which H0 diffusion into a semiconductor is avoided when measuring a gas containing hydrogen, and the lifetime of the catalyst layer is longer than that of conventional sensors.

(課題を解決するたの手段) この目的はこの発明により、触媒層を備え基板に熱絶縁
されて収められた半導体デバイスを含み発熱触媒反応に
よりガスを検出するセンサ装置に対して、半導体デバイ
スの表面に不活性化層を設け、この不活性化層の上に触
媒層を設けることによって達成される。
(Means for Solving the Problems) This invention provides a sensor device that detects gas by an exothermic catalytic reaction, which includes a semiconductor device having a catalyst layer and thermally insulated in a substrate. This is achieved by providing a passivation layer on the surface and providing a catalyst layer on the passivation layer.

〔作用効果〕[Effect]

不活性化層は半導体へのHoの拡散を阻止する。 The passivation layer prevents Ho from diffusing into the semiconductor.

触媒層はセンサ構造の表面に設けられているから、例え
ば光過程によって構造化される。触媒層は例えばストラ
イプ形にして層厚を大きくしても断面積は大きくならな
いようにすることができる。
Since the catalyst layer is provided on the surface of the sensor structure, it can be structured, for example, by a photoprocess. The catalyst layer can be shaped into stripes, for example, so that even if the layer thickness is increased, the cross-sectional area does not increase.

これによって触媒層をできるだけ薄くする必要は無くな
る。触媒層は所望の長寿命を通して機能を持続するよう
に厚くすることができる。
This eliminates the need to make the catalyst layer as thin as possible. The catalyst layer can be thick enough to continue functioning over a desired long life.

特許請求の範囲の請求項2によるセンサ装置はブレーナ
構成の総ての利点を保有する。特にゼオライト層を第2
の選択装置として触媒層の上に析出させることができる
。ゼオライト層はプレーナ構造の上だけに均等な厚さに
形成可能なものである。
The sensor device according to patent claim 2 retains all the advantages of the Brainer design. In particular, the zeolite layer is
can be deposited on the catalyst layer as a selection device. The zeolite layer can only be formed to a uniform thickness on the planar structure.

特許請求の範囲の請求項3によるセンサ装置は、金属層
が接触ならびに導体路として使用されることから触媒層
に対して非電動性材料も使用可能であるという利点を示
す。
The sensor device according to patent claim 3 has the advantage that non-electrolytic materials can also be used for the catalyst layer, since the metal layer is used as a contact and as a conductor path.

〔実施例〕〔Example〕

図面に示した実施例についてこの発明を更に詳細に説明
する。
The invention will be explained in more detail with reference to the embodiments shown in the drawings.

第1図のプレーナ形センサ装置は温度に感応する半導体
デバイス1を含む、この半導体デバイスは例えばダイオ
ード、薄膜抵抗又はトランジスタである。半導体デバイ
ス1は不活性化層2により基板3の空洞31内に吊り下
げられた形になっている。不活性化層2は例えばSin
、又はsi。
The planar sensor arrangement of FIG. 1 includes a temperature-sensitive semiconductor device 1, which is for example a diode, a thin film resistor or a transistor. The semiconductor device 1 is suspended within a cavity 31 of the substrate 3 by the passivation layer 2 . The passivation layer 2 is made of, for example, Sin
, or si.

N4から成り、熱ならびに電気絶縁性であり機械的に安
定である。不活性化層2は半導体デバイス1の基板3へ
のとりつけを確実にすると同時に基板から熱絶縁するも
のである。不活性化層2の厚さは約0.5μ鍋であって
基板3と半導体デバイスlを覆っている。半導体デバイ
ス1の上では不活性化層2に孔7がある。不活性化層2
の上には触媒Tri4が続き、孔7内で半導体デバイス
lに接触する。触媒層4は例えばパラジウム又は白金で
あって厚さは約lOOないし150nmである0層4の
触媒は導電性のものとする。これにより触媒層4は同時
に半導体デバイス1に対する接触ならびに導体路として
使用することができる。又触媒層4はセンサ構造の上面
に置かれるから光過程により任意の構造化が可能である
。従って触媒層4の厚さには何等の制限もない、触媒層
4は孔7の区域だけで半導体デバイス1、従って半導体
材料と接触するので触媒から半導体へのHoの拡散は実
質上不可能である。半導体デバイスlの背面には接触層
5が設けられる。この接触層は半導体デバイスlの背面
接触となる。接触層5は導電性であることが必要で例え
ばチタンが使用される。同時に半導体デバイス1と基板
3を結合するものであるから接触層5はできるだけ低い
熱伝導率を示さなければならない、チタンはこれらの条
件を良く満たしている。センサの動作中被検出ガスは矢
印8で示す方向で半導体デバイス1に作用する。
Made of N4, it is thermally and electrically insulating and mechanically stable. The passivation layer 2 ensures the attachment of the semiconductor device 1 to the substrate 3 and at the same time provides thermal insulation from the substrate. The passivation layer 2 has a thickness of about 0.5 μm and covers the substrate 3 and the semiconductor device l. Above the semiconductor device 1 there is a hole 7 in the passivation layer 2 . Passivation layer 2
A catalyst Tri4 follows on top of the catalyst Tri4 and contacts the semiconductor device l in the hole 7. The catalyst layer 4 is made of palladium or platinum, for example, and has a thickness of about 100 to 150 nm.The catalyst of the layer 4 is electrically conductive. Thereby, the catalyst layer 4 can be used simultaneously as a contact and as a conductor path for the semiconductor component 1. Furthermore, since the catalyst layer 4 is placed on the top surface of the sensor structure, it can be structured arbitrarily by optical processes. Therefore, there is no limit to the thickness of the catalyst layer 4; since the catalyst layer 4 is in contact with the semiconductor device 1 and thus with the semiconductor material only in the area of the holes 7, diffusion of Ho from the catalyst into the semiconductor is virtually impossible. be. A contact layer 5 is provided on the back side of the semiconductor device l. This contact layer becomes the back contact of the semiconductor device l. The contact layer 5 must be electrically conductive and is made of titanium, for example. At the same time, since it connects the semiconductor device 1 and the substrate 3, the contact layer 5 must exhibit as low a thermal conductivity as possible, and titanium satisfies these conditions well. During operation of the sensor, the gas to be detected acts on the semiconductor device 1 in the direction indicated by the arrow 8.

触媒層において被検出ガスは例えば周囲空気中の酸素と
触媒反応を起こし熱を放出する。この熱は半導体デバイ
ス1を加熱し、半導体デバイスの温度変化が記録される
。基板3に熱が流れ出して測定の精度が低下しないよう
にするため、半導体デバイス1は基板3からできるだけ
良好に熱絶縁する。
In the catalyst layer, the gas to be detected undergoes a catalytic reaction with, for example, oxygen in the surrounding air and releases heat. This heat heats the semiconductor device 1, and the temperature change of the semiconductor device is recorded. The semiconductor device 1 is thermally insulated from the substrate 3 as well as possible in order to prevent heat from flowing into the substrate 3 and reducing the accuracy of the measurements.

第2図にこの発明の別の実施例を示す、このセンサ装置
は第1図のセンサ装置と同じ構成であって、不活性化層
2から基板3の空洞31内に吊り下げられた形の半導体
デバイス1を含む、不活性化層2は半導体デバイスlを
基板3がら熱絶縁する。半導体デバイス1と基板3の背
面には例えばチタンの接触層5が設けられる。不活性化
層2は孔7を残して基板3と半導体デバイスlを覆う。
FIG. 2 shows another embodiment of the invention. This sensor device has the same construction as the sensor device of FIG. A passivation layer 2 containing the semiconductor device 1 thermally insulates the semiconductor device l from the substrate 3 . A contact layer 5 of titanium, for example, is provided on the back side of the semiconductor device 1 and the substrate 3. Passivation layer 2 covers substrate 3 and semiconductor device l leaving holes 7.

不活性化層2の上には金属層6が続く、この金属層は例
えばアルミニウムである。孔7の区域では金属層6が直
接半導体デバイスlに接している。
The passivation layer 2 is followed by a metal layer 6, which is for example aluminum. In the area of the hole 7, the metal layer 6 is in direct contact with the semiconductor component l.

金属層6の上には触媒層4が続く、この場合金属層6が
接触ならびに導体路として使用されるから触媒層4は被
導電性であってもよい、これによって触媒として使用さ
れる物質の種類が非導電性触媒の領域まで拡げられる。
A catalyst layer 4 follows the metal layer 6, which may be electrically conductive since the metal layer 6 is used as a contact and as a conductor path, so that the material used as a catalyst can be The range of types is expanded to include non-conductive catalysts.

第2図のセンサ装置の作用は第1図のものと同様である
The operation of the sensor device of FIG. 2 is similar to that of FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はこの発明の互いに異なる実施例を示す
。 1・・・温度感応半導体デバイス 2・・・不活性化層 3・・・基板 31・・・基板の空洞 4・・・触媒層 5・・・接触層 6・・・金属層
1 and 2 show different embodiments of the invention. 1... Temperature sensitive semiconductor device 2... Passivation layer 3... Substrate 31... Substrate cavity 4... Catalyst layer 5... Contact layer 6... Metal layer

Claims (1)

【特許請求の範囲】 1)触媒層を備え熱絶縁されて基板内に収められた半導
体デバイスを含み、発熱触媒反応によりガスを検出する
センサ装置において、半導体デバイス(1)の表面に不
活性化層(2)が設けられていること、不活性化層(2
)上に触媒層(4)が設けられていることを特徴とする
ガス検出用センサ装置。 2)不活性化層(2)に孔(7)があり、半導体デバイ
ス(1)への接触がこの孔を通して行われること、半導
体デバイスの背面接触用として触媒層(4)に対して電
気絶縁された接触層(5)が設けられていることを特徴
とする請求項1記載のセンサ装置。 3)プレーナ構成であることを特徴とする請求項1又は
2記載のセンサ装置。 4)触媒層(4)が導電性の触媒であること、触媒層(
4)が半導体デバイス(1)に接触していること、触媒
層(4)が半導体デバイス(1)の接触用として設けら
れていることを特徴とする請求項1ないし3の1つに記
載のセンサ装置。 5)触媒層(4)の下に金属層(6)が導体路として設
けられ、それにより触媒層(4)として非導電性の触媒
が使用可能であることを特徴とする請求項1ないし3の
1つに記載のセンサ装置。
[Claims] 1) In a sensor device that detects gas by an exothermic catalytic reaction, the sensor device includes a semiconductor device provided with a catalyst layer and thermally insulated and housed in a substrate, in which the surface of the semiconductor device (1) is inactivated. A layer (2) is provided, a passivation layer (2)
) A gas detection sensor device characterized in that a catalyst layer (4) is provided on top of the catalyst layer (4). 2) the passivation layer (2) has holes (7) through which the contact to the semiconductor device (1) is made, electrically insulating with respect to the catalyst layer (4) for back contact of the semiconductor device; 2. Sensor device according to claim 1, characterized in that a contact layer (5) is provided. 3) The sensor device according to claim 1 or 2, characterized in that it has a planar configuration. 4) The catalyst layer (4) is a conductive catalyst, and the catalyst layer (4) is a conductive catalyst.
4) is in contact with the semiconductor device (1), and the catalyst layer (4) is provided for contacting the semiconductor device (1). sensor device. 5) A metal layer (6) is provided below the catalyst layer (4) as a conductor path, so that a non-conductive catalyst can be used as the catalyst layer (4). The sensor device according to one of the above.
JP31605188A 1987-12-21 1988-12-14 Sensor for gas detection by exothermic catalytic reaction Pending JPH01203956A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3743399.7 1987-12-21
DE19873743399 DE3743399A1 (en) 1987-12-21 1987-12-21 Sensor for detecting gases by means of exothermic catalytic reactions

Publications (1)

Publication Number Publication Date
JPH01203956A true JPH01203956A (en) 1989-08-16

Family

ID=6343187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31605188A Pending JPH01203956A (en) 1987-12-21 1988-12-14 Sensor for gas detection by exothermic catalytic reaction

Country Status (2)

Country Link
JP (1) JPH01203956A (en)
DE (1) DE3743399A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593643A (en) * 2015-01-28 2015-05-06 厦门鑫雄辉金属制品有限公司 Die-casting aluminum alloy material formula and production process
JP2019128241A (en) * 2018-01-24 2019-08-01 Tdk株式会社 Gas sensor element

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610363A1 (en) * 1986-03-27 1987-10-01 Kernforschungsz Karlsruhe METHOD FOR CONTINUOUSLY MONITORING CONCENTRATIONS OF GASEOUS INGREDIENTS IN GAS MIXTURES, EXCEPT O (ARROW DOWN) 2 (ARROW DOWN)
GB8806695D0 (en) * 1988-03-21 1988-04-20 Sieger Ltd Catalytic gas detector
DE4007375C2 (en) * 1989-04-18 1998-05-07 Siemens Ag Sensor arrangement with a gas sensor and a catalyst for the detection of gaseous compounds
DE3932880A1 (en) * 1989-10-02 1991-04-11 Fraunhofer Ges Forschung CATALYTIC GAS SENSOR AND METHOD FOR PRODUCING THE SAME
DE4001048A1 (en) * 1990-01-16 1991-07-18 Draegerwerk Ag SENSOR FOR GAS MEASUREMENT WITH A CATALYST SENSOR ELEMENT
DE4008150A1 (en) * 1990-03-14 1991-09-19 Fraunhofer Ges Forschung CATALYTIC GAS SENSOR
DE4402117C2 (en) * 1994-01-25 1995-11-23 Siemens Matsushita Components High temperature gas sensor and method for its manufacture
US6649823B2 (en) 1999-05-04 2003-11-18 Neokismet, L.L.C. Gas specie electron-jump chemical energy converter
US7223914B2 (en) 1999-05-04 2007-05-29 Neokismet Llc Pulsed electron jump generator
US6114620A (en) 1999-05-04 2000-09-05 Neokismet, L.L.C. Pre-equilibrium chemical reaction energy converter
US7371962B2 (en) 1999-05-04 2008-05-13 Neokismet, Llc Diode energy converter for chemical kinetic electron energy transfer
OA12068A (en) * 1999-10-20 2006-05-03 Neokismet Llc Solid state surface catalysis reactor.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564474A (en) * 1968-06-04 1971-02-16 Nat Res Dev Electrically heatable elements
GB1536305A (en) * 1976-08-31 1978-12-20 Rosemount Eng Co Ltd Catalytic gas detector
JPS60253958A (en) * 1984-05-31 1985-12-14 Sharp Corp Sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593643A (en) * 2015-01-28 2015-05-06 厦门鑫雄辉金属制品有限公司 Die-casting aluminum alloy material formula and production process
JP2019128241A (en) * 2018-01-24 2019-08-01 Tdk株式会社 Gas sensor element

Also Published As

Publication number Publication date
DE3743399A1 (en) 1989-07-06

Similar Documents

Publication Publication Date Title
JPH01203956A (en) Sensor for gas detection by exothermic catalytic reaction
US6235243B1 (en) Gas sensor array for detecting individual gas constituents in a gas mixture
US4703555A (en) Method of making a catalytic-burning sensor
KR101504951B1 (en) Thermally Insulating Ceramic Substrates for Gas Sensors
JPS6323500B2 (en)
JPH0843340A (en) Micro-calorimeter based on high-sensitivity silicon and manufacture thereof
GB1396851A (en) Oxygen sensor with protective shield
JP2004530861A (en) Catalyst sensor
JP2009186292A (en) Gas sensor chip and gas sensor having the same
JPS584985B2 (en) gas detection element
WO1998008074A1 (en) Selective gas sensor
JPH10502428A (en) Automotive catalyst performance monitoring system
JP6243040B2 (en) Sensor for detecting oxidizable gas
JPH01203957A (en) Hanger construction for sensor having thermosensitive semiconductor device
JP4798961B2 (en) HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME
JPH1151893A (en) Contact combustion type gas sensor
JP2000515980A (en) Hybrid integrated circuit of gas sensor
JP2000275203A (en) Catalytic combustion type gas sensor
JPS63172948A (en) Gas sensor
JPS6137577B2 (en)
JP2006071362A (en) Combustible gas sensor
JP3400511B2 (en) Sensor for measuring components of air-fuel mixture and method of manufacturing the same
JPH01203955A (en) Sensor for gas detection by exothermic catalytic reaction
JPH0875691A (en) Gas sensor
JPH02190758A (en) Electrochemical element