JPH02190758A - Electrochemical element - Google Patents

Electrochemical element

Info

Publication number
JPH02190758A
JPH02190758A JP1010022A JP1002289A JPH02190758A JP H02190758 A JPH02190758 A JP H02190758A JP 1010022 A JP1010022 A JP 1010022A JP 1002289 A JP1002289 A JP 1002289A JP H02190758 A JPH02190758 A JP H02190758A
Authority
JP
Japan
Prior art keywords
electrode
porous
gas
solid electrolyte
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1010022A
Other languages
Japanese (ja)
Other versions
JP2851632B2 (en
Inventor
Kunihiko Nakagaki
邦彦 中垣
Kazuyoshi Shibata
和義 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1010022A priority Critical patent/JP2851632B2/en
Publication of JPH02190758A publication Critical patent/JPH02190758A/en
Application granted granted Critical
Publication of JP2851632B2 publication Critical patent/JP2851632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide both accuracy and responsiveness even in a low-temp. atmosphere by providing a porous body (porous catalyst carrier) on which a catalyst to put a gas to be measured in a nonequil. state into an equil. state separately from a porous protective layer. CONSTITUTION:Planar solid electrolytes 1 to 3 are laminated and integrated to form one planar solid electrolyte body. A measuring electrode 10 and a reference electrode 11 are provided on both surfaces of the electrolyte 1 in contact with the planar solid electrolyte body. A groove 5 for air introduction is provided in the central part of the electrolyte 2 in order to expose the electrode 11 to a reference gas, such as air. The porous protective layer 21 is provided on the electrode 10 and is laminated and integrated with the electrolyte 1 which constitutes a base plate. The porous catalyst carrier 22 having the effect of putting the nonequiv. gas into the equil. state is provided by being laminated and integrated with the electrolyte 3 on the opposite side of the protective layer 21. The electrode 10 and the electrode 11 are connected via a lead pattern or lead wires to a voltmeter 51, by which the electromotive force based on the difference in the partial pressures of the gases on the respective electrodes is measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として自動車等に使用される内燃機関や工業
炉等における燃焼装置等から排出される排気ガス中に含
まれる酸素量を測定するための酸素センサ素子に関し、
特に応答性と精度の両立を達した電気化学的素子に関す
るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is mainly used to measure the amount of oxygen contained in exhaust gas discharged from internal combustion engines used in automobiles, combustion equipment, etc. in industrial furnaces, etc. Regarding the oxygen sensor element of
In particular, it relates to electrochemical elements that achieve both responsiveness and precision.

(従来の技術) 従来から、例えば、板状の酸素イオン伝導性固体電解質
体を使った電気化学的素子としての酸素センサ素子は、
例えば特開昭60−36949号公報、特開昭55−1
25448号公報等で開示されている。
(Prior Art) Conventionally, for example, an oxygen sensor element as an electrochemical element using a plate-shaped oxygen ion conductive solid electrolyte body has been used.
For example, JP-A-60-36949, JP-A-55-1
This is disclosed in Japanese Patent No. 25448 and the like.

これらの酸素センサ素子の作動原理は、外側電極を被測
定ガスにさらし、内側電極を気密な固体電解質等によっ
て被測定ガスから遮断して、空気等のほぼ一定の酸素分
圧の基準ガスにさらし、内側電極と外側電極との濃度差
に基づ(起電力変化を利用するものであった。殊に、理
論空燃比点を境にして酸素分圧は大きく変化するため、
多くの場合理論空燃比検出手段として使用されていた。
The operating principle of these oxygen sensor elements is that the outer electrode is exposed to the gas to be measured, the inner electrode is isolated from the gas to be measured by an airtight solid electrolyte, etc., and is exposed to a reference gas such as air with a nearly constant oxygen partial pressure. , based on the concentration difference between the inner electrode and the outer electrode (using changes in electromotive force). In particular, since the oxygen partial pressure changes greatly after the stoichiometric air-fuel ratio point,
In many cases, it was used as a means of detecting the stoichiometric air-fuel ratio.

この種のセンサは、比較的広範囲の温度変化をする環境
で使用されることが多く、特に低温度雰囲気にあっては
、論理空燃比点を正確に検出することが困難になってい
た。
This type of sensor is often used in an environment where temperature changes over a relatively wide range, and it has been difficult to accurately detect the theoretical air-fuel ratio point, especially in a low temperature atmosphere.

また、実使用中では、時間の経過とともに電極表面の化
学的特性が変化し、それに伴ないセンサの空燃比制御の
ポイントが変化する問題もあった。
In addition, during actual use, the chemical characteristics of the electrode surface change with the passage of time, and the point of air-fuel ratio control of the sensor changes accordingly.

(発明が解決しようとする課題) この点を解消するため、例えば、特開昭54−4179
4号公報では、外側電極へ非平衡な被測定ガスが直接到
達する前に平衡ガス化させるために、外側電極の保護層
中に触媒を設け、低温度域におけるセンサの精度の悪化
を防止する方法が開示されている。
(Problem to be solved by the invention) In order to solve this problem, for example, Japanese Patent Laid-Open No. 54-4179
In Publication No. 4, a catalyst is provided in the protective layer of the outer electrode in order to convert the non-equilibrium gas to be measured into an equilibrium gas before it directly reaches the outer electrode, thereby preventing deterioration of sensor accuracy in a low temperature range. A method is disclosed.

しかしながら、上述した特開昭54−41794号公報
記載の方法では、被測定ガスが触媒層で一旦吸着された
あと外側電極に到達することになるため、低温度域にお
ける精度の向上はできても応答性が劣化するという問題
があった。
However, in the method described in JP-A-54-41794 mentioned above, the gas to be measured reaches the outer electrode after being adsorbed on the catalyst layer, so it is possible to improve accuracy in the low temperature range. There was a problem that responsiveness deteriorated.

本発明の目的は上述した課題を解消して、低温度雰囲気
下であっても精度と応答性とを両立させることができる
とともに、センサの空燃比制御ポイントの経時変化を少
なくすることができる電気化学的素子を従供しようとす
るものである。
The purpose of the present invention is to solve the above-mentioned problems and to provide an electric sensor that can achieve both accuracy and responsiveness even in a low-temperature atmosphere, and that can reduce changes over time in the air-fuel ratio control point of the sensor. It is intended to incorporate chemical elements.

(課題を解決するための手段) 本発明の電気化学的素子は、固体電解質体と、該固体電
解質体の表面に接して設けられていて被測定ガスにさら
される測定電極と、該測定電極上にあって被測定ガスが
直接該測定電極に接触することを防止する多孔質保護層
と、該固体電解質体の内部で該固体電解質体に接して設
けられていて基準ガスにさらされる参照電極と、該固体
電解質体の表面上であって該測定電極が設けられている
箇所を除く箇所に設けられていて非平衡状態にある被測
定ガスを平衡状態にする触媒を担持した多孔質体とから
なることを特徴とするものである。
(Means for Solving the Problems) The electrochemical element of the present invention includes a solid electrolyte body, a measurement electrode provided in contact with the surface of the solid electrolyte body and exposed to a gas to be measured, and a a porous protective layer that prevents the gas to be measured from directly contacting the measurement electrode, and a reference electrode provided inside the solid electrolyte body in contact with the solid electrolyte body and exposed to a reference gas. , a porous body supporting a catalyst that is provided on the surface of the solid electrolyte body except for the location where the measurement electrode is provided, and brings the gas to be measured in a non-equilibrium state into an equilibrium state. It is characterized by:

(作 用) 上述した構成において、本発明の触媒を担持した多孔質
体(以下、多孔質触媒担体と記す)は測定電極上に存在
しないため、測定電極内の被測定ガスの交換速度に対し
て何等の影響も与えないで測定電極近傍の雰囲気調整を
行うことができるので、応答性を悪化させる欠点がなく
なる。
(Function) In the above-mentioned configuration, since the porous body supporting the catalyst of the present invention (hereinafter referred to as porous catalyst carrier) is not present on the measurement electrode, the exchange rate of the gas to be measured in the measurement electrode is Since the atmosphere in the vicinity of the measurement electrode can be adjusted without any influence, the drawback of deteriorating response is eliminated.

また、多孔質触媒担体上では、非平衡状態にある被測定
ガスが平衡ガス化されるので、その際に生ずる反応熱に
よって測定電極近傍の温度が上昇するため、周囲雰囲気
温度が比較的低い場合であっても、素子自身の温度を高
く保つことができる。
In addition, on a porous catalyst carrier, the gas to be measured in a non-equilibrium state is converted into an equilibrium gas, and the temperature near the measurement electrode increases due to the reaction heat generated at that time. However, the temperature of the element itself can be kept high.

、以上により、低温度域での理論空燃比点を応答性を損
なわずに正確に検出することができる。
With the above, it is possible to accurately detect the stoichiometric air-fuel ratio point in a low temperature range without impairing responsiveness.

さらに、多量の触媒金属を担持することが可能なため、
多孔質触媒担体に担持される触媒の寿命が長くなる。そ
の結果、時間の経過に伴なう測定電極の触媒能の劣化を
長期にわたって補うことができ、センサの空燃比制御の
ポイントの経時変化がきわめて小さくなる。
Furthermore, since it is possible to support a large amount of catalytic metal,
The life of the catalyst supported on the porous catalyst carrier is increased. As a result, the deterioration of the catalytic ability of the measuring electrode over time can be compensated for over a long period of time, and the change over time of the air-fuel ratio control point of the sensor becomes extremely small.

なお、多孔質触媒担体は、基板となる固体電解と同様に
固体電解質として直接基板と多孔質触媒担体とが接する
ように配置すれば、多孔質触媒担体と、基板との熱膨張
特性の差が小さくなり、異種材料を使用する場合に比べ
て好ましいものとなる。さらに、ヒーター等の加熱手段
を配置しても良い。さらにまた、測定電極が配される側
と反対側の面に多孔質触媒担体を設けると好ましい。
In addition, if the porous catalyst carrier is placed as a solid electrolyte so that the substrate and the porous catalyst carrier are in direct contact with each other, the difference in thermal expansion characteristics between the porous catalyst carrier and the substrate will be reduced. This is preferable compared to using different materials. Furthermore, heating means such as a heater may be provided. Furthermore, it is preferable to provide a porous catalyst carrier on the side opposite to the side on which the measurement electrode is arranged.

(実施例) 第1図(a) 、 (b)は、本発明による電気化学的
素子の一例の構造を示す分解斜視図およびそのX−X′
にそった断面図である。第1図において、板状固体電解
質1,2.3は積層一体化されて、一つの板状固体電解
質体を形成している。板状固体電解質1の両面には、測
定電極10と参照電極11とが板状固体電解質体に接し
て設けられている。参照電極11を空気等の基準ガスに
さらすために、板状固体電解質2の中央部に空気導入用
の溝5が設けられている。測定電極10の上は、多孔質
な保護層21が設けられていて、基板となる板状固体電
解質lと積層一体化されている。
(Example) FIGS. 1(a) and 1(b) are exploded perspective views showing the structure of an example of an electrochemical device according to the present invention, and its X-X'
FIG. In FIG. 1, plate-shaped solid electrolytes 1, 2.3 are laminated and integrated to form one plate-shaped solid electrolyte body. A measurement electrode 10 and a reference electrode 11 are provided on both sides of the plate-shaped solid electrolyte body in contact with the plate-shaped solid electrolyte body. In order to expose the reference electrode 11 to a reference gas such as air, a groove 5 for introducing air is provided in the center of the plate-shaped solid electrolyte 2. A porous protective layer 21 is provided on the measuring electrode 10, and is laminated and integrated with a plate-shaped solid electrolyte l serving as a substrate.

板状固体電解質体の多孔質保護層21と反対の側には、
非平衡ガスを平衡状態にする作用を有する触媒を担持し
た多孔質体(多孔質触媒担体)22が、板状固体電解質
3と積層一体化されて設けられている。測定電極10と
参照電極11とは、リードパターンあるいはリード線を
介して電圧計51に接続されて、各々の電極上の気体分
圧の分圧差に基づく起電力を測定されることになる。
On the side opposite to the porous protective layer 21 of the plate-shaped solid electrolyte body,
A porous body (porous catalyst carrier) 22 supporting a catalyst having the function of bringing a non-equilibrium gas into an equilibrium state is provided in a laminated manner with the plate-shaped solid electrolyte 3 . The measurement electrode 10 and the reference electrode 11 are connected to a voltmeter 51 via a lead pattern or a lead wire, and the electromotive force based on the difference in gas partial pressure on each electrode is measured.

本発明の主要なポイントは多孔質触媒担体22を設けた
点であり、被測定ガスは通常非平衡な状態である場合が
多く、触媒担体22に到達した時点で平衡ガス化する。
The main point of the present invention is that the porous catalyst carrier 22 is provided, and the gas to be measured is often in a non-equilibrium state, and when it reaches the catalyst carrier 22, it becomes an equilibrium gas.

その際発生する反応熱によって、検出部(電極10.1
1部)を高温に保持することができる。
The reaction heat generated at that time causes the detection part (electrode 10.1
1 part) can be maintained at high temperatures.

また、通常本発明の電気化学的素子は、金属金具等によ
り組立体(図示せず)とされて実使用されるのであるが
、検出部分は金属保護カバー等で囲まれることになるの
で、触媒担体22で平衡化したガスが測定電極10側へ
も有効に影響することとなり、電極10に非平衡なガス
が作用することを効果的に防止することが可能となる。
Further, the electrochemical element of the present invention is normally used as an assembly (not shown) with metal fittings, etc., but since the detection part is surrounded by a metal protective cover etc., the catalytic The gas equilibrated on the carrier 22 also effectively affects the measurement electrode 10 side, making it possible to effectively prevent unbalanced gas from acting on the electrode 10.

このため、本発明の素子は、比較的低温度の被測定ガス
雰囲気中であっても検出精度良く作動するのである。ま
た、触媒担体22が保護層21と分離されているため、
触媒上で被測定ガスが吸着されても、測定電極10への
被測定ガスの到達を遅らせるという問題点も無いため、
応答性が犠牲にされることも無いのである。
Therefore, the element of the present invention operates with high detection accuracy even in a gas atmosphere to be measured at a relatively low temperature. Furthermore, since the catalyst carrier 22 is separated from the protective layer 21,
Even if the gas to be measured is adsorbed on the catalyst, there is no problem that the arrival of the gas to be measured to the measurement electrode 10 is delayed.
Responsiveness is not sacrificed either.

上述した第1図に示す本発明の電気化学的素子において
、板状固体電解質1,2.3はY、0.。
In the electrochemical device of the present invention shown in FIG. 1 described above, the plate-shaped solid electrolytes 1, 2.3 are Y, 0. .

M、0. Cab、 Y1g03等で安定化されたZr
O,、CeO。
M, 0. Zr stabilized with Cab, Y1g03, etc.
O,,CeO.

等公知の固体電解質で良い。Any known solid electrolyte may be used.

測定電極IO1参照電極11等はPt、 Rn、 Rh
、 Pd。
The measurement electrode IO1, reference electrode 11, etc. are Pt, Rn, Rh.
, Pd.

Ir等の白金族金属の1種またはそれらの合金で良い。One type of platinum group metal such as Ir or an alloy thereof may be used.

またZrO2,A l zO++ Mgo、 Sing
  等のセラミックスを上記白金族金属と混合したサー
メット電極とすれば高温耐久性で有利となる。
Also ZrO2, Al zO++ Mgo, Sing
A cermet electrode made of a ceramic mixed with the above-mentioned platinum group metal is advantageous in terms of high-temperature durability.

多孔質保護層21、多孔質触媒担体22は、ZrO□。The porous protective layer 21 and the porous catalyst carrier 22 are made of ZrO□.

^1203. MgO等のセラミックスで良いが、基板
を固体電解質体と同時焼成する際基板に比べて気孔率が
大きくなるセラミックスであれば何でも良い。例えば、
基板を部分安定化ジルコニア、多孔質体を完全安定化ジ
ルコニアとすれば、同時焼成の際熱膨張係数の差を極め
て小さくできるので好ましい。多孔質体の厚みは、10
μ11−1111111とするが、薄いほど気孔率を小
さく、厚ければ気孔率を大きくする等の調整をする。気
孔率は10%〜70%の開気孔を有していることが望ま
しい。
^1203. Any ceramic such as MgO may be used as long as it has a higher porosity than the substrate when the substrate is co-fired with the solid electrolyte body. for example,
It is preferable to use partially stabilized zirconia for the substrate and completely stabilized zirconia for the porous body because the difference in coefficient of thermal expansion can be made extremely small during simultaneous firing. The thickness of the porous body is 10
μ11-1111111, but adjustments are made such that the thinner the layer, the smaller the porosity, and the thicker the layer, the larger the porosity. It is desirable that the porosity is 10% to 70% open pores.

多孔質触媒担体22に担持する触媒は、白金族金属ある
いはLa5rCo03等のペロブスカイトが利用される
が、白金族金属同士の合金が最も好ましく、Pt/Rh
=”’/+〜10への比に調整したものが最も望ましい
。担持の方法は、焼付は法、イオン交換性等公知手法で
行うか、多孔質触媒担体をシート状に形成する際セラミ
ックと均一混合して固体電解質体と同時焼成して設けて
も良い。担持量は多孔質触媒担体重量に対し0.1%〜
30%程度とすることが望ましい。
The catalyst supported on the porous catalyst carrier 22 is a platinum group metal or a perovskite such as La5rCo03, but an alloy of platinum group metals is most preferable, and Pt/Rh
It is most desirable to adjust the ratio to ='''/+ to 10.The supporting method can be carried out by known methods such as baking method or ion exchange method, or by using ceramics when forming the porous catalyst carrier into a sheet shape. It may be provided by uniformly mixing and co-firing with the solid electrolyte body.The supported amount is 0.1% to 0.1% to the weight of the porous catalyst carrier.
It is desirable to set it to about 30%.

各部の形成方法は、公知の手法を利用すれば良く、板状
固体電解質1,2.3、多孔質体21.22等はドクタ
ーブレード法等のシート形成法で0.05〜1mmの厚
さに形成するが、電極10.11等の形成方法として適
しているスクリーン印刷法等を適宜応用して5μIIl
〜30μm程度の厚みで形成することになる。
Each part may be formed using a known method, and the plate-like solid electrolyte 1, 2.3, porous body 21, 22, etc. are formed by a sheet forming method such as a doctor blade method to a thickness of 0.05 to 1 mm. However, by appropriately applying a screen printing method, etc., which is suitable as a method for forming electrodes 10, 11, etc.,
It will be formed with a thickness of about 30 μm.

実際の例について説明すると、このような構造の素子を
用いたセンサを取付けた実車の排ガスは、λ=0.99
5に制御されていた。λは以下の式(1)にて算出する
To explain an actual example, the exhaust gas of an actual vehicle equipped with a sensor using an element with this structure is λ = 0.99.
It was controlled at 5. λ is calculated using the following formula (1).

ここで、A/F  :実測より求めた空燃比^+/F1
:理論空燃比 このセンサは、時間の経過に伴ない排ガスのλが0.9
92まで変化した。一方、従来の触媒担持をほどこさな
いセンサを取付けた場合の排ガスはλ=0.998に制
御されており、時間の経過に伴い排ガスのλは0.99
2まで変化した。本発明の電気化学的素子を用いること
によりセンサの空燃比制御の経時変化を従来の6/10
00から半分の3/1000まで小さくすることができ
た。
Here, A/F: Air-fuel ratio determined from actual measurements ^+/F1
: Theoretical air-fuel ratio This sensor detects that the exhaust gas λ is 0.9 over time.
It changed to 92. On the other hand, when a conventional sensor without catalyst support is installed, the exhaust gas is controlled to λ = 0.998, and as time passes, the exhaust gas λ becomes 0.99.
It changed to 2. By using the electrochemical element of the present invention, the time-dependent change in air-fuel ratio control of the sensor can be reduced to 6/10 compared to the conventional one.
We were able to reduce the size from 00 to 3/1000, which is half the size.

第2図は本発明の他の具体例を示す断面図である。第2
図において、第1図と同一の番号をつけた構成品につい
ては第1図と同様なので省略する。
FIG. 2 is a sectional view showing another specific example of the present invention. Second
In the figure, components with the same numbers as in FIG. 1 are the same as in FIG. 1, and therefore will be omitted.

第2図に示す実施例において、最も特徴的なのは金属7
1112である。金属層12の材質は、測定電極lOと
同様で良く、白金族金属単味あるいはこれらとセラミッ
クスとのサーメットとしである。金属層12と測定電極
IOとは電気良導体によって接続されてはおらず、従っ
て測定電極として作動することはほとんど無視できる。
In the embodiment shown in FIG. 2, the most characteristic feature is the metal 7.
It is 1112. The material of the metal layer 12 may be the same as that of the measurement electrode 1O, and may be a platinum group metal alone or a cermet of these and ceramics. The metal layer 12 and the measuring electrode IO are not connected by a good electrical conductor, so that their operation as a measuring electrode can be almost ignored.

多孔質触媒担体22を基板3と同様に固体電解質として
金属層12を固体電解質中に埋設させておくことが好ま
しい。また、金属層12を形成することによって多孔質
触媒担体22側で発生する反応熱が多くなるので好まし
い。
It is preferable that the porous catalyst carrier 22 be used as a solid electrolyte like the substrate 3, and the metal layer 12 be buried in the solid electrolyte. Further, forming the metal layer 12 is preferable because the reaction heat generated on the porous catalyst carrier 22 side increases.

第3図は本発明の更に他の具体例を示す断面図である。FIG. 3 is a sectional view showing still another specific example of the present invention.

第3図に示す実施例において、第1図に示す例と比較し
て異なる特徴は、溝5の省略と多孔質層23.24の追
加である。多孔質層23は多孔質保護層21と同様に測
定電極10を腐食性被測定ガスから保護する役割を持つ
。この様に保護層を2層構造とすることにより、種々の
特徴を持たせることが可能となる。保護層21の多孔度
を増大すると保護作用効果が減少するが、保護層23の
多孔度を減少方向で適切に調整すれば全体としては目詰
まりしにくく且つ保護効果も満足される保護層になる。
In the embodiment shown in FIG. 3, the different features compared to the example shown in FIG. 1 are the omission of the groove 5 and the addition of porous layers 23 and 24. Like the porous protective layer 21, the porous layer 23 has a role of protecting the measurement electrode 10 from corrosive gas to be measured. By making the protective layer have a two-layer structure in this way, it is possible to provide it with various characteristics. Increasing the porosity of the protective layer 21 reduces the protective effect, but if the porosity of the protective layer 23 is appropriately adjusted in a decreasing direction, the protective layer as a whole becomes less likely to be clogged and has a satisfactory protective effect. .

逆に保護層21の多孔度を減少させると、電極10の活
性が低下するが、保護層23の多孔度を大きめに調整す
れば、全体として保護効果を改良すると同時に電極の活
性を犠牲にしない優れた保護層とすることができる。
Conversely, reducing the porosity of the protective layer 21 will reduce the activity of the electrode 10, but adjusting the porosity of the protective layer 23 to a larger value will improve the overall protective effect without sacrificing the activity of the electrode. It can be an excellent protective layer.

もう一方の多孔質層24は、基準ガスを充填させておく
作用をする。電極10.11間には、外部電源62から
高抵抗体61を介して電圧が印加されており、例えば、
酸化物イオンが測定電極10側から参照電極ll側に移
動して、参照電極11をほぼ100%に近い酸素ガスの
雰囲気にさらすこととなる。高抵抗体61は素子内部あ
るいは素子表面に設けることが望ましいが、外部に別途
設けても良い。多孔質層23、24の材質は、多孔質体
21.22と同様のセラミックスであって通常はスクリ
ーン印刷法によって形成されるが、ドクターブレード法
等のシート形成法によって5μm〜1mm程度適宜形成
されることになる。
The other porous layer 24 serves to keep it filled with a reference gas. A voltage is applied between the electrodes 10 and 11 from an external power source 62 via a high resistance element 61, for example,
The oxide ions move from the measuring electrode 10 side to the reference electrode ll side, exposing the reference electrode 11 to an atmosphere of almost 100% oxygen gas. Although it is desirable to provide the high resistance element 61 inside the element or on the element surface, it may be provided separately outside. The material of the porous layers 23 and 24 is ceramic similar to that of the porous bodies 21 and 22, and is usually formed by a screen printing method, but may be appropriately formed to a thickness of about 5 μm to 1 mm by a sheet forming method such as a doctor blade method. That will happen.

第4図は本発明の更に他の具体例を示す断面図である。FIG. 4 is a sectional view showing still another specific example of the present invention.

第4図に示す実施例では、ヒーター15およびセラミッ
ク絶縁層25が設けである点に特徴がある。セラミック
絶縁M25に埋設されるヒーター15は、気密な固体電
解質2によって完全に被測定ガスから遮断される構成と
なっている。絶縁層25は固体電解質2と通常材質が異
なり、熱膨張特性の差に基づき発生する歪を回避するた
め多孔質とすることが望ましい。電源63は、電気化学
的素子が自動車センサ等に利用される場合はバッテリー
の電源がそのまま利用されることになる。
The embodiment shown in FIG. 4 is characterized in that a heater 15 and a ceramic insulating layer 25 are provided. The heater 15 embedded in the ceramic insulation M25 is completely isolated from the gas to be measured by the airtight solid electrolyte 2. The insulating layer 25 is usually made of a different material from the solid electrolyte 2, and is preferably porous in order to avoid distortion caused by the difference in thermal expansion characteristics. As the power source 63, when the electrochemical element is used in an automobile sensor or the like, a battery power source is used as is.

第5図は本発明の更に他の具体例を示す断面図であり、
第1図と同一部材には同一符号を付し、その説明を省略
する。第5図に示す実施例では、多孔質触媒担体22と
多孔質保護層21が同一の面に存在する例を示している
。この例でも、本発明の効果を同様に達成することがで
きる。なお、多孔質触媒担体22と多孔質保護層21は
長手方向に並置されていても幅方向に並置されていても
良い。
FIG. 5 is a sectional view showing still another specific example of the present invention,
The same members as in FIG. 1 are given the same reference numerals, and their explanations will be omitted. The embodiment shown in FIG. 5 shows an example in which the porous catalyst carrier 22 and the porous protective layer 21 are present on the same surface. In this example as well, the effects of the present invention can be similarly achieved. Note that the porous catalyst carrier 22 and the porous protective layer 21 may be juxtaposed in the longitudinal direction or in the width direction.

第6図は本発明の更に他の具体例を示す断面図であり、
第1図と同一部材には同一符号を付し、その説明を省略
する。第6図に示す実施例では、固体電解質lが筒状で
ある点が特徴であり、この有底円筒状の電気化学的素子
でも本発明を適用できるものである。
FIG. 6 is a sectional view showing still another specific example of the present invention,
The same members as in FIG. 1 are given the same reference numerals, and their explanations will be omitted. The embodiment shown in FIG. 6 is characterized in that the solid electrolyte I is cylindrical, and the present invention can also be applied to an electrochemical element having a cylindrical shape with a bottom.

(発明の効果) 以上の説明から明らかなように、本発明の電気化学的素
子によれば、非平衡状態にある被測定ガスを平衡状態に
する触媒を担持した多孔質体を、測定電極を保護する多
孔質保護層と別体に設けることにより、低温度雰囲気下
であっても精度と応答性を両立させることができるとと
もに、センサの空燃比制御ポイントの経時変化を少なく
することができる。
(Effects of the Invention) As is clear from the above description, according to the electrochemical device of the present invention, a porous body supporting a catalyst that brings a gas to be measured in a non-equilibrium state into an equilibrium state can be used as a measuring electrode. By providing it separately from the porous protective layer that protects it, it is possible to achieve both accuracy and responsiveness even in a low-temperature atmosphere, and it is also possible to reduce changes over time in the air-fuel ratio control point of the sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の電気化学的素子の
一例の構造を示す分解斜視図およびそのx−x’にそっ
た断面図、 第2図〜第6図はそれぞれ本発明の電気化学的素子の他
の例の構造を示す断面図である。
1(a) and 1(b) are exploded perspective views showing the structure of an example of the electrochemical device of the present invention and a sectional view taken along the line xx', and FIGS. FIG. 3 is a cross-sectional view showing the structure of another example of the electrochemical device of FIG.

Claims (1)

【特許請求の範囲】[Claims] 1. 固体電解質体と、該固体電解質体の表面に接して
設けられていて被測定ガスにさらされる測定電極と、該
測定電極上にあって被測定ガスが直接該測定電極に接触
することを防止する多孔質保護層と、該固体電解質体の
内部で該固体電解質体に接して設けられていて基準ガス
にさらされる参照電極と、該固体電解質体の表面上であ
って該測定電極が設けられている箇所を除く箇所に設け
られていて非平衡状態にある被測定ガスを平衡状態にす
る触媒を担持した多孔質体とからなることを特徴とする
電気化学的素子。
1. A solid electrolyte body, a measurement electrode provided in contact with the surface of the solid electrolyte body and exposed to a gas to be measured, and a measurement electrode located on the measurement electrode to prevent the gas to be measured from directly contacting the measurement electrode. a porous protective layer; a reference electrode provided inside the solid electrolyte body in contact with the solid electrolyte body and exposed to a reference gas; and a reference electrode provided on the surface of the solid electrolyte body and provided with the measurement electrode. 1. An electrochemical element comprising: a porous body supporting a catalyst for bringing a gas to be measured, which is in a non-equilibrium state, into an equilibrium state, the porous body being provided at a location other than a location where the gas is in a non-equilibrium state;
JP1010022A 1989-01-20 1989-01-20 Electrochemical element Expired - Lifetime JP2851632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010022A JP2851632B2 (en) 1989-01-20 1989-01-20 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010022A JP2851632B2 (en) 1989-01-20 1989-01-20 Electrochemical element

Publications (2)

Publication Number Publication Date
JPH02190758A true JPH02190758A (en) 1990-07-26
JP2851632B2 JP2851632B2 (en) 1999-01-27

Family

ID=11738774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010022A Expired - Lifetime JP2851632B2 (en) 1989-01-20 1989-01-20 Electrochemical element

Country Status (1)

Country Link
JP (1) JP2851632B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124723A (en) * 1999-10-26 2001-05-11 Ngk Spark Plug Co Ltd Oxygen sensor with heater and method for manufacturing the same
JP2011033506A (en) * 2009-08-03 2011-02-17 Yazaki Corp Redox determining sensor, oxygen sensor, redox determining method and method for measuring oxygen concentration of oxygen sensor
CN103257170A (en) * 2013-04-25 2013-08-21 苏州禾苏传感器科技有限公司 Portable tube-type wide domain oxygen sensor and manufacturing method thereof
CN103257162A (en) * 2013-04-25 2013-08-21 苏州禾苏传感器科技有限公司 Pipe-type wide-area oxygen sensor and manufacture method thereof
EP1101103B1 (en) * 1998-07-30 2015-09-09 Robert Bosch Gmbh Exhaust gas sensor in which the insulation layer separating the heater from the solid electrolyte is formed by sintering a material containing al2o3 charged with a pore forming material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040813A1 (en) 2010-09-15 2012-03-15 Robert Bosch Gmbh Sensor element for detecting a property of a gas in a sample gas space

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574455A (en) * 1978-11-21 1980-06-05 Thomson Csf Electrochemical sensor for determing relative density of reaction species in liquid mixture and system having said sensor for adjustment specially
JPS5853750A (en) * 1981-09-25 1983-03-30 Toshiba Corp Gas detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574455A (en) * 1978-11-21 1980-06-05 Thomson Csf Electrochemical sensor for determing relative density of reaction species in liquid mixture and system having said sensor for adjustment specially
JPS5853750A (en) * 1981-09-25 1983-03-30 Toshiba Corp Gas detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1101103B1 (en) * 1998-07-30 2015-09-09 Robert Bosch Gmbh Exhaust gas sensor in which the insulation layer separating the heater from the solid electrolyte is formed by sintering a material containing al2o3 charged with a pore forming material
JP2001124723A (en) * 1999-10-26 2001-05-11 Ngk Spark Plug Co Ltd Oxygen sensor with heater and method for manufacturing the same
JP2011033506A (en) * 2009-08-03 2011-02-17 Yazaki Corp Redox determining sensor, oxygen sensor, redox determining method and method for measuring oxygen concentration of oxygen sensor
CN103257170A (en) * 2013-04-25 2013-08-21 苏州禾苏传感器科技有限公司 Portable tube-type wide domain oxygen sensor and manufacturing method thereof
CN103257162A (en) * 2013-04-25 2013-08-21 苏州禾苏传感器科技有限公司 Pipe-type wide-area oxygen sensor and manufacture method thereof
CN103257162B (en) * 2013-04-25 2014-12-24 苏州禾苏传感器科技有限公司 Pipe-type wide-area oxygen sensor and manufacture method thereof

Also Published As

Publication number Publication date
JP2851632B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US4264425A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
US6787014B2 (en) Gas-detecting element and gas-detecting device comprising same
US4798693A (en) Method of manufacturing an electrochemical device
EP0310206B1 (en) Electrochemical device
US5763763A (en) Method and sensing device for measuring predetermined gas component in measurement gas
US4952903A (en) Ceramic heater having portions connecting heat-generating portion and lead portions
US4902400A (en) Gas sensing element
US6579436B2 (en) Gas sensor and method of producing the same
US6514397B2 (en) Gas sensor
JPH07508100A (en) Sensor device for detecting gas components and/or gas concentration of gas mixture
EP0294085B1 (en) Electrochemical elements
GB2054868A (en) Electrochemical measuring sensor for determining the oxygen content of gases
JP2002181769A (en) Oxygen sensor element and production method thereof
GB2052758A (en) Device for Detection of Air/Fuel Ratio From Oxygen Partial Pressure in Exhaust Gas
EP0896219B1 (en) Improved structure of oxygen sensing element
US20070114130A1 (en) Gas sensors and methods of manufacture
JP2851632B2 (en) Electrochemical element
US20020100697A1 (en) Gas sensor with uniform heating and method of making same
JPH0516543B2 (en)
JPS62222159A (en) Oxygen sensor
JPH087179B2 (en) Gas sensor
US6797138B1 (en) Gas senior design and method for forming the same
JP2514664B2 (en) Oxygen sensor
JPH09264872A (en) Gas sensor
JP3696494B2 (en) Nitrogen oxide sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11