JPH01203680A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01203680A
JPH01203680A JP63028115A JP2811588A JPH01203680A JP H01203680 A JPH01203680 A JP H01203680A JP 63028115 A JP63028115 A JP 63028115A JP 2811588 A JP2811588 A JP 2811588A JP H01203680 A JPH01203680 A JP H01203680A
Authority
JP
Japan
Prior art keywords
compressor
oil
operating frequency
compressors
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63028115A
Other languages
Japanese (ja)
Other versions
JP2664702B2 (en
Inventor
Manabu Kitamoto
学 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63028115A priority Critical patent/JP2664702B2/en
Priority to GB8902043A priority patent/GB2215866B/en
Priority to US07/305,906 priority patent/US4870831A/en
Priority to AU29572/89A priority patent/AU603279B2/en
Priority to KR1019890001487A priority patent/KR930008346B1/en
Publication of JPH01203680A publication Critical patent/JPH01203680A/en
Application granted granted Critical
Publication of JP2664702B2 publication Critical patent/JP2664702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To obtain an oil equalizing effect between each compressor without using an oil equalizer pipe of large bore by providing an oil equalizer pipe between both the compressors while operating both the compressors in almost the same operating frequency or with a difference of predetermined frequency while both the compressors are in simultaneous operation. CONSTITUTION:While two sets of compressors 1, 2 are in operation, oil equalizing operation is performed alternately repeating in every fixed period the first oil equalizing operation, which relatively on-off controls by every fixed time an operating frequency of the one compressor 1 of both the compressors 1, 2 as compared with an operating frequency of the compressor 2, during this time, holds its operating frequency to the fixed operating frequency, and the second oil equalizing operation which performs the first oil equalizing operation in a condition that both the compressors 1, 2 are replaced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は1台の室外ユニットと複数の室内ユニットと
を備えたマルチタイプの空気調和機の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an improvement of a multi-type air conditioner including one outdoor unit and a plurality of indoor units.

(従来の技術) 一般に、この種の空気調和機としては第7図に示すよう
なヒートポンプ式冷凍サイクルを備えたものがある。
(Prior Art) Generally, this type of air conditioner includes one equipped with a heat pump type refrigeration cycle as shown in FIG.

第7図において、Aは室外ユニット、Bは分岐ユニット
、C,D、Eは室内ユニットである。室外ユニットAは
2台の能力可変圧縮機1,2を備え、その圧縮機1.2
を逆止弁3,4をそれぞれ介して並列に接続している。
In FIG. 7, A is an outdoor unit, B is a branch unit, and C, D, and E are indoor units. The outdoor unit A is equipped with two variable capacity compressors 1 and 2.
are connected in parallel via check valves 3 and 4, respectively.

そして、圧縮機1゜2、四方弁5、室外熱交換器6、暖
房用膨張弁7と冷房サイクル形成用逆止弁8の並列体、
リキッドタンク9、電動式流量調整弁11,21,31
、冷房用膨張弁12,22.32と暖房サイクル形成用
逆止弁13.23.33の並列体、室内熱交換器14.
24.34、ガス側開閉弁(電磁開閉弁)15.25.
35、アキュームレータ10などを順次連通し、ヒート
ポンプ式冷凍サイクルを構成している。
A parallel body of a compressor 1°2, a four-way valve 5, an outdoor heat exchanger 6, a heating expansion valve 7 and a cooling cycle forming check valve 8,
Liquid tank 9, electric flow rate adjustment valve 11, 21, 31
, a parallel body of cooling expansion valves 12, 22.32 and heating cycle forming check valves 13.23.33, indoor heat exchanger 14.
24.34, Gas side on-off valve (electromagnetic on-off valve) 15.25.
35, the accumulator 10, etc. are successively connected to form a heat pump type refrigeration cycle.

なお、冷房用膨張弁12.22.32はそれぞれ感温筒
12a、22a、32aを有しており、これら感温筒を
室内熱交換器14,24.34のガス側冷媒配管にそれ
ぞれ取付けている。
Note that each of the cooling expansion valves 12, 22, and 32 has a temperature-sensing tube 12a, 22a, and 32a, and these temperature-sensing tubes are attached to the gas side refrigerant pipes of the indoor heat exchangers 14, 24, and 34, respectively. There is.

すなわち、室内熱交換器14.24.34を並列構成と
するとともに、冷房運転時は図示実線矢印の方向に冷媒
を流して冷房サイクルを形成し、暖房運転時は四方弁5
の切換作動により図示点線矢印の方向に冷媒を流して暖
房サイクルを形成するようにしている。
That is, the indoor heat exchangers 14, 24, and 34 are configured in parallel, and during cooling operation, the refrigerant flows in the direction of the solid arrow in the figure to form a cooling cycle, and during heating operation, the four-way valve 5
The switching operation causes the refrigerant to flow in the direction of the dotted arrow in the figure to form a heating cycle.

このような空気調和機においては、各室内ユニットの要
求能力を満足するべ(、圧縮機1.2の運転台数および
能力を制御するとともに、流量制御弁11.21.31
の開度をそれぞれ制御して各室内熱交換器への冷媒流量
を調節するようにしている。
In such an air conditioner, the required capacity of each indoor unit must be satisfied (in addition to controlling the number and capacity of the compressors 1.2 in operation, the flow rate control valves 11, 21, 31
The opening degree of each is controlled to adjust the flow rate of refrigerant to each indoor heat exchanger.

そして、膨張弁12.22.32により、冷媒流量の変
化にかかわらず各室内熱交換器における冷媒過熱度を一
定に維持し、安定かつ効率の良い運転を行なうようにし
ている。
The expansion valves 12, 22, and 32 maintain the refrigerant superheat degree in each indoor heat exchanger constant regardless of changes in the refrigerant flow rate, thereby ensuring stable and efficient operation.

したがって、たとえば冷房運転時、各室内ユニットの要
求能力が大きくなると、圧縮機1の能力が増大したり、
さらには圧縮機1に加えて圧縮機2も起動することにな
る。この状態から各室内ユニットの要求能力が小さくな
ると、圧縮機2の能力が低減したり、さらには圧縮機2
の運転が停止して圧縮機1のみの運転となる。
Therefore, for example, when the required capacity of each indoor unit increases during cooling operation, the capacity of the compressor 1 increases,
Furthermore, in addition to compressor 1, compressor 2 is also activated. If the required capacity of each indoor unit decreases from this state, the capacity of compressor 2 may decrease, or even the capacity of compressor 2 may decrease.
The operation of the compressor 1 is stopped and only the compressor 1 is operated.

しかしながら、このような空気調和機においては、圧縮
機1.2の吐油量と返油;が完全には一致しないため、
時間の経過とともに一方の圧縮機の潤滑油の量が増え、
他方の圧縮機の潤滑油の量が減り、両者間に油量のアン
バランスが生じて安定運転が困難になる。
However, in such an air conditioner, the amount of oil discharged from the compressor 1.2 and the amount of oil returned do not match completely;
As time passes, the amount of lubricating oil in one compressor increases,
The amount of lubricating oil in the other compressor decreases, creating an imbalance in the amount of oil between the two, making stable operation difficult.

しかも、潤滑油の油面レベルが限界油面レベル(運転可
能レベル)よりもドがった場合には、潤滑部への潤滑油
の供給が断たれ、圧縮機1.2が損傷してしまう。
Moreover, if the lubricating oil level drops below the limit oil level (operable level), the supply of lubricating oil to the lubricating parts will be cut off, and compressor 1.2 will be damaged. .

そこで、各圧縮機1,2における油量のアンバランスを
解消するべく、各圧縮機1.2間を均油管で連通し、油
;の多い方から少ない方へと潤滑油を移動させるように
したものがある。
Therefore, in order to eliminate the imbalance in the amount of oil in each compressor 1 and 2, an oil equalizing pipe is used to communicate between each compressor 1 and 2, and the lubricating oil is moved from the side with more oil to the side with less oil. There is something I did.

ただし、各圧縮機1.2の能力は完全に同じではないた
め、相対的に能力の大きい側の圧縮機は吸込管の圧力損
失が大きくなり、圧縮機ケース内圧力は逆に小さくなる
。この傾向は各圧縮機1゜2の容量が異なる場合に顕著
である。
However, since the capacity of each compressor 1.2 is not completely the same, the pressure loss of the suction pipe of the compressor with a relatively larger capacity is large, and the pressure inside the compressor case is conversely reduced. This tendency is remarkable when the capacity of each compressor 1.2 is different.

その結果、冷媒ガスはケース内圧力の高い側の圧縮機か
らケース内圧力の小さい側の圧縮機へと均油管を通して
移動し、それに伴って潤滑油も同方向に移動する。
As a result, the refrigerant gas moves from the compressor on the side where the case internal pressure is high to the compressor on the side where the case internal pressure is low through the oil equalizing pipe, and the lubricating oil also moves in the same direction.

そして、ケース内圧力の高い側の圧縮機における返油量
が吐油量よりも多いときには、均油管レベル以上の潤滑
油は均油管を通してケース内圧力の低い側の圧縮機に移
動し、各圧縮機内の油面レベルは均油管位置で等しくな
る。逆に、返油量が吐油量よりも少ないときには、ケー
ス内圧力の高い側の圧縮機内の油面レベルが時間の経過
とともに低下し、ついには限界油面レベル以下に下がっ
てしまう。なお、この場合、ケース内圧力の低い側の圧
縮機内の潤滑油は、各圧縮機のケース内圧力差により、
ケース内圧力の高い側の圧縮機への移動が阻止される。
When the amount of oil returned in the compressor on the side where the case internal pressure is higher is greater than the oil discharge amount, the lubricating oil above the level of the oil equalizing pipe moves through the oil equalizing pipe to the compressor on the side where the case internal pressure is lower, and each compression The oil level inside the machine becomes equal at the oil equalization pipe position. Conversely, when the amount of returned oil is smaller than the amount of oil discharged, the oil level in the compressor on the side where the case internal pressure is higher decreases over time and eventually falls below the critical oil level. In this case, the lubricating oil in the compressor on the side with lower case internal pressure is
Movement of the side with higher pressure inside the case to the compressor is prevented.

そこで、均油管の管路を大径にすることにより、各圧縮
機1,2内の油面レベルを均一化するとともに、各圧縮
機1,2のケース内圧力を均一化することが考えられて
いる。
Therefore, it is possible to equalize the oil level in each compressor 1, 2 and equalize the pressure inside the case of each compressor 1, 2 by increasing the diameter of the oil equalizing pipe. ing.

ところが、大径の均油管を用いると、一方の圧縮機に発
生する振動が均油管を介して他方の圧縮機に伝わり易く
なり、再圧縮機1,2の運転周波数域の組合わせによっ
ては共振等が発生し、圧縮機振動や圧縮機騒音を招く問
題があるとともに、均油管の破損につながるおそれもあ
った。
However, when a large-diameter oil equalizing pipe is used, vibrations generated in one compressor are easily transmitted to the other compressor via the oil equalizing pipe, and depending on the combination of operating frequency ranges of recompressors 1 and 2, resonance may occur. This causes problems such as compressor vibration and compressor noise, and there is also the risk of damage to the oil equalizing pipe.

(発明が解決しようとする課題) 各圧縮機1,2間を均油管で連通した場合には各圧縮機
1.2のケース内圧力差により、ケ−ス内圧力の高い側
の圧縮機からケース内圧力の小さい側の圧縮機へとケー
ス内の潤滑油が均油管を通して移動し、各圧縮機1.2
のケース内の油面レベルが不均一になる問題があるとと
もに、大径の均油管を用いて各圧縮機1.2内の油面レ
ベルの均一化および各圧縮機1,2のケース内圧力の均
一化を図るようにした場合には一方の圧縮機に発生する
振動が均油管を介して他方の圧縮機に伝わり品くなり、
再圧縮機1.2の運転周波数域の組合わせによっては共
振等が発生し、圧縮機振動や圧縮機騒音を招く問題があ
るとともに、均油管の破損につながるおそれもあった。
(Problem to be Solved by the Invention) When the compressors 1 and 2 are communicated with each other by an oil equalizing pipe, due to the pressure difference in the case of each compressor 1.2, the compressor with the higher pressure in the case The lubricating oil in the case moves to the compressor with lower case internal pressure through the oil equalizing pipe, and each compressor 1.2
There is a problem that the oil level in the case of the compressors 1 and 2 becomes uneven, and the oil level in each compressor 1.2 is made uniform by using a large diameter oil equalizing pipe, and the pressure in the case of each compressor 1 and 2 is improved. If you try to equalize the pressure, the vibrations generated in one compressor will be transmitted to the other compressor through the oil equalizing pipe, resulting in poor quality.
Depending on the combination of operating frequency ranges of the recompressors 1 and 2, resonance etc. may occur, leading to problems such as compressor vibration and compressor noise, and there is also a risk of damage to the oil equalizing pipe.

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、大径の均油管を用いることな
く各圧縮機間の均油効果を得ることができ、圧縮機振動
や圧縮機騒音を回避し、しかも均油管の十分な強度を確
保して信頼性を高めることができ、加えて一層の均油効
果の向上を図ることができる空気調和機を提供すること
にある。
This invention was made in view of the above circumstances,
The purpose of this is to achieve an oil equalizing effect between each compressor without using large diameter oil equalizing pipes, avoid compressor vibration and compressor noise, and ensure sufficient strength of the oil equalizing pipes. It is an object of the present invention to provide an air conditioner that can improve reliability and further improve oil equalization effect.

【発明の構成〕[Structure of the invention]

(課題を解決するための手段) 各圧縮機間に均油管を設けるとともに、再圧縮機の同時
運転中、再圧縮機を略同一の運転周波数で駆動する第1
の駆動状態と再圧縮機の運転周波数間に所定周波数の差
を持たせた状態で駆動する第2の駆動状態とを組合わせ
て再圧縮機の総合能力を制御する手段、始めに再圧縮機
を略同一の運転周波数で駆動し、その後、再圧縮機のう
ちの一方の運転周波数を他方に比べて相対的に一定時間
ずつ上下させ、他方の運転周波数を一定の運転周波数で
保持する第1の均油運転手段および再圧縮機を入替えた
状態で第1の均油運転を行なう第2の均油運転手段をそ
れぞれ設けたものである。
(Means for solving the problem) In addition to providing an oil equalizing pipe between each compressor, a first
and a second driving state in which the recompressor is driven with a predetermined frequency difference between the operating frequencies of the recompressor. The first recompressor is driven at substantially the same operating frequency, and then the operating frequency of one of the recompressors is raised or lowered by a fixed period of time relative to the other, and the operating frequency of the other is maintained at a constant operating frequency. A second oil equalizing operation means is provided for performing the first oil equalizing operation with the oil equalizing operation means and the recompressor replaced.

(作用) 再圧縮機の同時運転中、再圧縮機を略同一の運転周波数
で駆動する第1の駆動状態と再圧縮機の運転周波数間に
所定周波数の差を持たせた状態で駆動する第2の駆動状
態とを組合わせて制御することにより、再圧縮機の総合
能力の分解能を高めるとともに、均油運転時には始めに
再圧縮機を略同一の運転周波数で駆動し、その後、再圧
縮機のうちの一方の運転周波数を他方に比べて相対的に
一定時間ずつ上下させ、他方の運転周波数を一定の運転
周波数で保持することにより、再圧縮機が第2の駆動状
態のままの状態で均油運転が開始されることを防止し、
さらに第1の均油運転および第2の均油運転を一定周期
毎に繰返し、第1のおよび第2の均油運転時には再圧縮
機の運転周波数を相対的に上下させ、再圧縮機の圧縮機
ケース内の潤滑油を均油管を通して効率よく流通させる
ことにより、大径の均油管を用いることなく各圧縮機間
の均油効果を得るとともに、圧縮機振動や圧縮機騒音を
回避させるようにしたものである。
(Function) During simultaneous operation of the recompressors, a first driving state in which the recompressors are driven at substantially the same operating frequency and a second driving state in which the recompressors are driven with a predetermined frequency difference between the operating frequencies of the recompressors. By controlling the drive states in combination with the above two, the resolution of the overall capacity of the recompressor is increased, and during oil equalization operation, the recompressor is first driven at approximately the same operating frequency, and then the recompressor is driven at approximately the same operating frequency. By increasing or decreasing the operating frequency of one of the two for a fixed period of time relative to the other, and maintaining the operating frequency of the other at a constant operating frequency, the recompressor can be kept in the second operating state. Prevents oil equalization operation from starting,
Furthermore, the first oil equalizing operation and the second oil equalizing operation are repeated at regular intervals, and during the first and second oil equalizing operations, the operating frequency of the recompressor is relatively raised or lowered, and the recompressor compresses By efficiently distributing the lubricating oil inside the machine case through the oil equalizing pipe, we can achieve an oil equalizing effect between each compressor without using large diameter oil equalizing pipes, and also avoid compressor vibration and compressor noise. This is what I did.

(実施例) 以下、この発明の一実施例を第1図乃至第6図を参照し
て説明する。なお、第1図乃至第6図中で第7図と同一
部分には同一符号を付し、その説明は省略する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 6. 1 to 6 that are the same as those in FIG. 7 are designated by the same reference numerals, and their explanations will be omitted.

第1図に示すように、圧縮機1の冷媒吐出側配管にオイ
ルセパレータ41を設け、そのオイルセパレータ41か
ら圧縮機1の冷媒吸込側配管にかけてオイルバイパス管
42を設ける。
As shown in FIG. 1, an oil separator 41 is provided on the refrigerant discharge side piping of the compressor 1, and an oil bypass pipe 42 is provided from the oil separator 41 to the refrigerant suction side piping of the compressor 1.

さらに、圧縮機2の冷媒吐出側配管にオイルセパレータ
43を設け、そのオイルセパレータ43から圧縮機2の
冷媒吸込側配管にかけてオイルバイパス管44を設ける
Further, an oil separator 43 is provided on the refrigerant discharge side piping of the compressor 2, and an oil bypass pipe 44 is provided from the oil separator 43 to the refrigerant suction side piping of the compressor 2.

また、第2図に示すように圧縮機1.2のそれぞれケー
スを均油管45で連通する。この場合、圧縮機1.2は
同一面に設置する。なお、圧縮機1.2にはケース内に
溜められる潤滑油の最適な基準油面レベルおよび許容最
低限の限界油面レベルが予め定めてあり、その基準油面
レベルとほぼ同じ高さの位置に均油管45を取付ける。
Further, as shown in FIG. 2, the cases of the compressors 1.2 are communicated with each other through oil equalizing pipes 45. In this case, the compressors 1.2 are installed on the same plane. In addition, the optimal reference oil level and the minimum allowable limit oil level for the lubricating oil stored in the case of the compressor 1.2 are predetermined, and the position at approximately the same height as the reference oil level is determined in advance. Attach oil equalizing pipe 45 to.

一方、第3図は冷凍サイクルの制御回路を示すものであ
る。第3図中で、50は室外ユニットAに装着させた室
外制御部である。この室外制御部50はマイクロコンピ
ュータおよびその周辺回路などからなり、外部にインバ
ータ回路51.52を接続している。インバータ回路5
1.52は交流電源53の電圧を整流し、それを室外制
御部50の指令に応じたスイッチングによって所定周波
数の交流電圧に変換し、圧縮機モータIM。
On the other hand, FIG. 3 shows a control circuit for the refrigeration cycle. In FIG. 3, 50 is an outdoor control section attached to the outdoor unit A. This outdoor control section 50 is composed of a microcomputer and its peripheral circuits, and is connected to inverter circuits 51 and 52 externally. Inverter circuit 5
1.52 rectifies the voltage of the AC power supply 53, converts it into an AC voltage of a predetermined frequency by switching according to a command from the outdoor control unit 50, and drives the compressor motor IM.

2Mにそれぞれ駆動電力として供給するものモある。There is also one that supplies each of the 2M as driving power.

また、60は分岐ユニットBに装着させたマルチ制御部
である。このマルチ制御部60はマイクロコンピュータ
およびその周辺回路からなり、外部に流量調整弁11.
21.31および開閉弁15.25.35をそれぞれ接
続している。
Further, 60 is a multi-control unit attached to the branch unit B. This multi-control unit 60 consists of a microcomputer and its peripheral circuits, and externally includes flow rate regulating valves 11.
21.31 and on-off valves 15.25.35 are connected, respectively.

さらに、70,80.90は室内ユニットC9D、Hに
それぞれ装着させた室内制御部である。
Furthermore, 70, 80.90 are indoor control units attached to the indoor units C9D and H, respectively.

これら室内制御部70.80.90はマイクロコンピュ
ータおよびその周辺回路からなり、外部に運転操作部7
1,81.91および室内温度センサ72.82.92
をそれぞれ接続している。
These indoor control units 70, 80, and 90 consist of a microcomputer and its peripheral circuits, and are externally connected to the operation unit 7.
1,81.91 and indoor temperature sensor 72.82.92
are connected to each other.

そして、各室内制御部70.80.90は周波数設定信
号f1.f2.f3を要求能力としてマルチ制御部60
に転送するようになっている。マルチ制御部60は転送
されてくる周波数設定信号から各室内ユニットC,D、
Hの要求能力の総和を求め、それに対応する周波数設定
信号foを室外制御部50に転送するようになっている
Each indoor control unit 70, 80, 90 receives a frequency setting signal f1. f2. Multi-control unit 60 with f3 as required capacity
It is designed to be transferred to The multi-control unit 60 controls each indoor unit C, D,
The total required capacity of H is determined, and the corresponding frequency setting signal fo is transferred to the outdoor control section 50.

つぎに、上記構成の作用を説明する。Next, the operation of the above configuration will be explained.

いま、全ての室内ユニットで冷房運転を行なっているも
のとする。
It is assumed that all indoor units are currently performing cooling operation.

このとき、室内ユニットCの室内制御部70は、室内温
度センサ72の検知温度と運転操作部71で定められた
設定温度との差を演算し、その温度差に対応する周波数
設定信号f、を要求冷房能力としてマルチ制御部60に
転送する。同様に、室内ユニットD、Eの室内制御部8
0.90も、周波数設定信号f2.f3を要求冷房能力
としてマルチ制御部60に転送する。
At this time, the indoor control section 70 of the indoor unit C calculates the difference between the temperature detected by the indoor temperature sensor 72 and the set temperature determined by the operation operation section 71, and outputs a frequency setting signal f corresponding to the temperature difference. It is transferred to the multi-control unit 60 as the required cooling capacity. Similarly, the indoor control sections 8 of indoor units D and E
0.90 is also the frequency setting signal f2. f3 is transferred to the multi-control unit 60 as the required cooling capacity.

さらに、マルチ制御部60では転送されてくる周波数設
定fd号に基づいて各室内ユニットC,D。
Furthermore, the multi-control unit 60 controls each indoor unit C and D based on the frequency setting fd number transferred.

Eの要求冷房能力の総和を求める。そして、求めた総和
に対応する周波数設定信号foを室外制御部50に転送
する。この室外制御部50では転送されてくる周波数設
定信号f。に基づいて各室内ユニットc、D、Hの要求
冷房能力の総和を求め、その総和に応じて圧縮機1.2
の運転台数および運転周波数(インバータ回路51.5
2の出力周波数)Fを制御する。この場合、室外制御部
50では要求冷房能力の総和が大きくなるに従い圧縮I
llの1台運転から圧縮機1.2の2台運転に移行する
ようにしている。
Find the total required cooling capacity of E. Then, the frequency setting signal fo corresponding to the calculated sum is transferred to the outdoor control section 50. In this outdoor control section 50, the frequency setting signal f is transferred. The total required cooling capacity of each indoor unit c, D, and H is determined based on the total required cooling capacity, and compressor 1.2 is
Number of operating units and operating frequency (inverter circuit 51.5
2 output frequency) F is controlled. In this case, in the outdoor control unit 50, as the total required cooling capacity increases, the compression I
The operation is to shift from operating one compressor 1.1 to operating two compressors 1.2.

また、圧縮機1の運転中、吐出冷媒に含まれている潤滑
油のほとんどがオイルセパレータ41で回収され、オイ
ルバイパス管42を通して圧縮機1に戻される。同様に
、圧縮機2の運転中、吐出冷媒に含まれている潤滑油の
ほとんどがオイルセパレータ43で回収され、オイルバ
イパス管44を通して圧縮機2に戻される。なお、回収
されなかった冷媒は冷凍サイクルを一巡し、圧縮機1゜
2に戻る。
Furthermore, while the compressor 1 is operating, most of the lubricating oil contained in the discharged refrigerant is recovered by the oil separator 41 and returned to the compressor 1 through the oil bypass pipe 42. Similarly, during operation of the compressor 2, most of the lubricating oil contained in the discharged refrigerant is recovered by the oil separator 43 and returned to the compressor 2 through the oil bypass pipe 44. Note that the refrigerant that is not recovered goes through the refrigeration cycle and returns to the compressor 1.2.

一方、マルチ制御部60では各室内ユニットC1D、E
からの周波数設定信号に応じて冷媒流は調整弁11.2
1.31の開度を制御しており、各室内ユニットC,D
、Hの要求冷房能力に対応する最適な量の冷媒が各室内
熱交換器14,24゜34に流入する。また、膨張弁1
2.22.32により、各室内熱交換器14,24.3
4における冷媒過熱度が一定に制御される。
On the other hand, in the multi-control unit 60, each indoor unit C1D, E
The refrigerant flow is adjusted according to the frequency setting signal from the regulating valve 11.2.
It controls the opening degree of 1.31, and each indoor unit C, D
, H flows into each indoor heat exchanger 14, 24°34. In addition, expansion valve 1
According to 2.22.32, each indoor heat exchanger 14, 24.3
The degree of superheating of the refrigerant in No. 4 is controlled to be constant.

また、室外制御部50では圧縮機1.2の2台運転中、
再圧縮機1,2を略同一の運転周波数で駆動する第1の
駆動状態と再圧縮機1.2の運転周波数間に所定周波数
の差を持たせた状態で駆動する第2の駆動状態とを組合
わせて再圧縮機1゜2の総合能力を制御する。例えば、
いま一方の圧縮機1の運転周波数FaがFa、)、他方
の圧縮機2の運転周波数FbがFbO(FaO−Fb(
1)の状態でそれぞれ駆動されている(第1の駆動状態
)とすると、この状態で各室内ユニットC,D。
In addition, in the outdoor control unit 50, while the two compressors 1 and 2 are in operation,
A first driving state in which the recompressors 1 and 2 are driven at substantially the same operating frequency, and a second driving state in which the recompressors 1 and 2 are driven with a predetermined frequency difference between the operating frequencies. In combination, the overall capacity of recompressor 1.2 is controlled. for example,
Now, the operating frequency Fa of one compressor 1 is Fa, ), and the operating frequency Fb of the other compressor 2 is FbO (FaO-Fb(
Assuming that each of the indoor units C and D is driven in the state of 1) (first drive state), each of the indoor units C and D is in this state.

E側からの要求能力の総和が増大した場合にはまず、圧
縮機1の運転周波数FaをFa□+ΔFに上昇させ、圧
縮機2の運転周波数FbをFboに保持させた状態でそ
れぞれ駆動させる(第2の駆動状態)。次に、この状態
で所定時間駆動したのち、圧縮機2の運転周波数Fbを
Fbo+ΔFに上昇させ、圧縮機1の運転周波数Faを
FaO+ΔF、圧縮機2の運転周波数FbをFb、+Δ
Fで所定時間駆動する(第1の駆動状態)。さらに、同
様に圧縮機1の運転周波数FaをFa(1+2ΔFに上
昇させるとともに、圧縮機2の運転周波数FbをFbo
十ΔFに保持させた状態で所定時間駆動させ(第2の駆
動状態)、続けて圧縮機2の運転周波数FbをFbo+
2ΔFに上昇させ、圧縮機1の運転周波数FaをFa□
 +2ΔF、圧縮機2の運転周波数FbをFbO+2Δ
Fで所定時間駆動する(第1の駆動状態)。そして、こ
のように第1の駆動状態と第2の駆動状態とを交互に繰
返しながら各室内ユニットC,D、E側からの要求能力
の総和に対応する状態まで再圧縮機1.2の総合能力を
制御する。
When the total required capacity from the E side increases, first, the operating frequency Fa of the compressor 1 is increased to Fa□+ΔF, and the operating frequency Fb of the compressor 2 is maintained at Fbo while being driven ( second driving state). Next, after driving in this state for a predetermined time, the operating frequency Fb of the compressor 2 is increased to Fbo+ΔF, the operating frequency Fa of the compressor 1 is increased to FaO+ΔF, and the operating frequency Fb of the compressor 2 is increased to Fb,+ΔF.
Drive at F for a predetermined time (first drive state). Furthermore, the operating frequency Fa of the compressor 1 is similarly increased to Fa(1+2ΔF, and the operating frequency Fb of the compressor 2 is increased to Fbo
The operating frequency Fb of the compressor 2 is then set to Fbo+.
2ΔF, and the operating frequency Fa of compressor 1 becomes Fa□
+2ΔF, the operating frequency Fb of compressor 2 is FbO+2Δ
Drive at F for a predetermined time (first drive state). Then, while repeating the first drive state and the second drive state alternately in this way, the recompressor 1.2 is integrated until the state corresponds to the total required capacity from each indoor unit C, D, and E side. Control abilities.

そのため、この場合には再圧縮機1.2の総合能力の変
更時に再圧縮機1.2の運転周波数Fa。
Therefore, in this case, the operating frequency Fa of the recompressor 1.2 is changed when the overall capacity of the recompressor 1.2 is changed.

Fbを同時に増減させる場合に比べて再圧縮機1゜2の
総合能力の分解能を高めることができるので、各室内ユ
ニットC,D、E側からの要求能力の総和の変更に対応
させて細かに再圧縮機1.2の総合能力を制御させるこ
とができ、再圧縮機1,2の運転効率の向上および快適
性の向上を図ることができる。
Compared to increasing and decreasing Fb at the same time, it is possible to improve the resolution of the total capacity of the recompressor 1゜2, so it is possible to increase or decrease Fb in detail in response to changes in the total required capacity from each indoor unit C, D, and E side. The overall capacity of the recompressors 1.2 can be controlled, and the operating efficiency and comfort of the recompressors 1, 2 can be improved.

また、室外制御部50では圧縮機1,2の2台運転中、
再圧縮機1,2の圧縮機ケース内の潤滑油量を均一化す
る均油運転を行なう。
In addition, in the outdoor control unit 50, while the two compressors 1 and 2 are in operation,
An oil equalization operation is performed to equalize the amount of lubricating oil in the compressor cases of the recompressors 1 and 2.

この圧縮機1.2の均油運転を第4図乃至第6図を参照
しながら説明する。第4図は均油運転時の一方の圧縮機
1の運転周波数F′aの変化状態(同図中に実線で示す
)および他方の圧縮機2の運転周波数Fbの変化状態(
同図中に点線で示す)をそれぞれ示すものである。
The oil equalizing operation of the compressor 1.2 will be explained with reference to FIGS. 4 to 6. Figure 4 shows how the operating frequency F'a of one compressor 1 changes during oil equalization operation (indicated by a solid line in the figure) and how the operating frequency Fb of the other compressor 2 changes (
(indicated by dotted lines in the same figure).

いま、圧縮機1,2が通常運転状態(第1の駆動状態と
第2の駆動状態とが交互に繰返される状態)で駆動され
、再圧縮機1.2が第2の駆動状態で運転しているとす
る。例えば、第4図に示すように圧縮機1の運転周波数
FaをFal、圧縮機2の運転周波数FbをFbo (
Fa□#FbO。
Now, the compressors 1 and 2 are driven in a normal operating state (a state in which the first driving state and the second driving state are alternately repeated), and the recompressor 1.2 is operating in the second driving state. Suppose that For example, as shown in FIG. 4, the operating frequency Fa of the compressor 1 is set to Fal, and the operating frequency Fb of the compressor 2 is set to Fbo (
Fa□#FbO.

Fal−FaO+ΔF>Fbo)で駆動している。Fal-FaO+ΔF>Fbo).

この状態で一定時間Tが経過した時点で第1の均油運転
を行なう。
When a certain period of time T has elapsed in this state, a first oil equalization operation is performed.

この第1の均油運転時には始めに圧縮機1の運転周波数
FaをFalからFaoに下降させて再圧縮機1.2を
略同一の運転周波数(圧縮機1の運転周波数FaをFa
o、圧縮機2の運転周波数FbをFbo)で所定時間を
駆動する。その後、一方の圧縮機1の運転周波数Faを
nステップ周波数低下させる。この場合、他方の圧縮機
2の運転周波数FbはFboのままの状態で保持させる
During this first oil equalization operation, the operating frequency Fa of the compressor 1 is first lowered from Fal to Fao, and the recompressor 1.2 is operated at approximately the same operating frequency (the operating frequency Fa of the compressor 1 is reduced to Fao).
o, the compressor 2 is driven at the operating frequency Fb (Fbo) for a predetermined period of time. Thereafter, the operating frequency Fa of one compressor 1 is lowered by n steps. In this case, the operating frequency Fb of the other compressor 2 is maintained at Fbo.

そのため、この場合には圧縮機1の運転周波数F a 
2の方が圧縮機2の運転周波数Fboよりも低くなり、
圧縮機1のケース内の圧力Paは圧縮機2のケース内の
圧力pbよりも高くなるので、高圧側の圧縮機1のケー
ス内の潤滑油が冷媒とともに均油管45を通じて徐々に
低圧側の圧縮機2のケース内側に流入し、第5図に示す
ように圧縮機1のケース内の油面は徐々に下降するとと
もに、圧縮機2のケース内の油面は徐々に上昇する。な
お、この場合の圧縮機1のケース内の油面の下限レベル
は均油管45の下面位置までである。
Therefore, in this case, the operating frequency F a of the compressor 1
2 is lower than the operating frequency Fbo of the compressor 2,
Since the pressure Pa in the case of the compressor 1 becomes higher than the pressure Pb in the case of the compressor 2, the lubricating oil in the case of the compressor 1 on the high pressure side passes through the oil equalizing pipe 45 together with the refrigerant and gradually compresses it on the low pressure side. The oil flows into the case of the compressor 2, and as shown in FIG. 5, the oil level in the case of the compressor 1 gradually decreases, and the oil level in the case of the compressor 2 gradually rises. Note that the lower limit level of the oil level in the case of the compressor 1 in this case is up to the lower surface position of the oil equalizing pipe 45.

また、圧縮機1の運転周波数FaをFa2に低下させた
状態でt1時間経過すると、この時点で圧縮機1の運転
周波数FaをFaoからnステップ周波数上昇させる。
Moreover, when time t1 elapses with the operating frequency Fa of the compressor 1 being lowered to Fa2, the operating frequency Fa of the compressor 1 is increased by n steps from Fao at this point.

この場合、圧縮機2の運転周波数FbはFboあままの
状態で保持させる。
In this case, the operating frequency Fb of the compressor 2 is maintained at Fbo.

そのため、この場合には圧縮機1の運転周波数Fa3の
方が圧縮機2の運転周波数Fboよりも高くなり、圧縮
機1のケース内の圧力Paは圧縮機2のケース内の圧力
pbよりも低くなるので、高圧側の圧縮機2のケース内
の潤看油が冷媒とともに均油管45を通じて徐々に低圧
側の圧縮機1のケース内側に流入し、第6図に示すよう
に圧縮機2のケース内の油面は徐々に下降するとともに
、圧縮機1のケース内の油面は徐々に上昇する。
Therefore, in this case, the operating frequency Fa3 of the compressor 1 is higher than the operating frequency Fbo of the compressor 2, and the pressure Pa in the case of the compressor 1 is lower than the pressure Pb in the case of the compressor 2. Therefore, the lubricating oil in the case of the compressor 2 on the high pressure side gradually flows into the case of the compressor 1 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and as shown in FIG. The oil level inside the case of the compressor 1 gradually decreases, and the oil level inside the case of the compressor 1 gradually rises.

さらに、圧縮機1の運転周波数FaをFa3に上昇させ
た状態で12時間経過すると、この時点で第1の均油運
転が終了し、圧縮機1の運転周波数FaをFalに戻し
て通常運転状態に戻す。そのため、この第1の均油運転
終了後の通常運転領域では第6図に示すように圧縮機2
のケース内の曲面に比べて圧縮機1のケース内の油面が
上昇した状態で保持される。そして、この通常運転状態
で一定時間Tが経過した時点で再圧縮機1,2を入替え
た状態で均油運転を行なう(第2の均油運転)。
Furthermore, after 12 hours have passed with the operating frequency Fa of the compressor 1 raised to Fa3, the first oil equalization operation is completed at this point, and the operating frequency Fa of the compressor 1 is returned to Fal to return to the normal operating state. Return to Therefore, in the normal operating range after the first oil equalization operation, the compressor 2
The oil level inside the case of the compressor 1 is maintained at a higher level than the curved surface inside the case. Then, after a certain period of time T has elapsed in this normal operating state, oil equalization operation is performed with the recompressors 1 and 2 replaced (second oil equalization operation).

この第2の均油運転時には始めに圧縮機1の運転周波9
F、aをFalからF、a、0に下降させて再圧縮機1
,2を略同一の運転周波数(圧縮機1の運転周波数Fa
をFao、圧縮機2の運転周波数FbをFbo)で所定
時間を駆動する。その後、圧縮機2の運転周波数Fbを
nステップ周波数低下させる。この場合、圧縮機1の運
転周波数FaはFaOのままの状態で保持させる。その
ため、この場合には圧縮機2の運転周波数Fb2の方が
圧縮機1の運転周波数Fa(、よりも低くなり、圧縮機
2のケース内の圧力pbは圧縮機1のケース内の圧力P
aよりも高くなるので、高圧側の圧縮機2のケース内の
潤滑油が冷媒とともに均油管45を通じて徐々に低圧側
の圧縮機1のケース内側に流入し、第6図に示すように
圧縮機2のケース内の油面ば徐々に下降するとともに、
圧縮機1のケース内の油面は徐々に上昇する。
During this second oil equalization operation, the operating frequency of the compressor 1 is 9 at the beginning.
Recompressor 1 by lowering F, a from Fal to F, a, 0
, 2 are approximately the same operating frequency (operating frequency Fa of compressor 1
is driven for a predetermined time at the operating frequency Fb of the compressor 2 (Fbo). Thereafter, the operating frequency Fb of the compressor 2 is lowered by n steps. In this case, the operating frequency Fa of the compressor 1 is maintained at FaO. Therefore, in this case, the operating frequency Fb2 of the compressor 2 is lower than the operating frequency Fa(,) of the compressor 1, and the pressure pb in the case of the compressor 2 is the pressure P
a, the lubricating oil in the case of the compressor 2 on the high pressure side gradually flows into the case of the compressor 1 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and as shown in FIG. As the oil level in case 2 gradually decreases,
The oil level in the case of the compressor 1 gradually rises.

また、圧縮機2の運転周波数FbをFb2に低下させた
状態でt1時間経過すると、この時点で圧縮機2の運転
周波数FbをFboからnステップ周波数上昇させる。
Moreover, when time t1 elapses with the operating frequency Fb of the compressor 2 being lowered to Fb2, the operating frequency Fb of the compressor 2 is increased by n steps from Fbo at this point.

この場合、圧縮機1の運転周波数FaはFaoのままの
状態で保持させる。
In this case, the operating frequency Fa of the compressor 1 is maintained at Fao.

そのため、この場合には圧縮機2の運転周波数Fb、の
方が圧縮機1の運転周波数FaOよりも高くなり、圧縮
機2のケース内の圧力pbは圧縮Illのケース内の圧
力Paよりも低くなるので、高圧側の圧縮機1のケース
内の潤滑油が冷媒とともに均油管45を通じて徐々に低
圧側の圧縮機2のケース内側に流入し、第5図に示すよ
うに圧縮機1のケース内の油面は徐々に下降するととも
に、圧縮機2のケース内の油面は徐々に上昇する。
Therefore, in this case, the operating frequency Fb of the compressor 2 is higher than the operating frequency FaO of the compressor 1, and the pressure pb in the case of the compressor 2 is lower than the pressure Pa in the case of the compressor Ill. Therefore, the lubricating oil in the case of the compressor 1 on the high pressure side gradually flows into the case of the compressor 2 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and as shown in FIG. The oil level in the case of the compressor 2 gradually decreases, and the oil level in the case of the compressor 2 gradually rises.

さらに、圧縮機2の運転周波数FbをFb3に上昇させ
た状態でt2時間経過すると、この時点で圧縮機2の運
転周波数FbをFbo、圧縮機1の運転周波数FaをF
alに戻し、通常運転状態に戻す。そのため、この第2
の均油運転終了後の通常運転領域では第5図に示すよう
に圧縮機1のケース内の曲面に比べて圧縮機2のケース
内の油面が上昇した状態で保持される。そして、以後は
通常運転と第1の均油運転または第2の均油運転とを一
定周期毎に交互に繰返すようにしている。
Furthermore, when time t2 elapses with the operating frequency Fb of the compressor 2 raised to Fb3, at this point the operating frequency Fb of the compressor 2 is Fbo, and the operating frequency Fa of the compressor 1 is Fbo.
Al, and return to normal operation. Therefore, this second
In the normal operating range after the end of the oil equalization operation, the oil level inside the case of the compressor 2 is maintained in a higher state than the curved surface inside the case of the compressor 1, as shown in FIG. Thereafter, the normal operation and the first oil equalizing operation or the second oil equalizing operation are alternately repeated at regular intervals.

かくして、上記構成のものにあっては圧縮機1゜2の2
台運転中、再圧縮機1.2のうちの一方の圧縮機1の運
転周波数Faを圧縮機2の運転周波数Fbに比べて相対
的に一定時間ずつ上下させ、その間、圧縮機2の運転周
波数Fbを一定の運転周波数Fboで保持する第1の均
油運転および再圧縮機1.2を入替えた状態で第1の均
油運転を行なう第2の均油運転を一定周期毎に交互に繰
返す均油運転を行なうようにしたので、第1の均油運転
終了後の通常運転領域における圧縮機1.2の油面レベ
ル状態と第2の均油運転終了後の通常運転領域における
圧縮機1,2の油面レベル状態とで交互に油面レベルの
高低を入替えることができる。そのため、長時間運転の
場合でも圧縮機1゜2の油面レベルの高低が一方に極端
に偏ることを防止することができ、圧縮機1.2の油面
レベルの均一化を図ることができる。
Thus, in the case of the above configuration, the compressor is
During unit operation, the operating frequency Fa of one of the recompressors 1. A first oil equalizing operation in which Fb is maintained at a constant operating frequency Fbo and a second oil equalizing operation in which the first oil equalizing operation is performed with the recompressor 1.2 replaced are alternately repeated at regular intervals. Since the oil leveling operation is performed, the oil level state of the compressor 1.2 in the normal operating range after the first oil leveling operation and the compressor 1 in the normal operating range after the second oil leveling operation are different. , 2, the oil level can be alternately changed between high and low levels. Therefore, even during long-term operation, it is possible to prevent the oil level of compressors 1.2 from being extremely biased to one side, and it is possible to equalize the oil level of compressors 1.2. .

したがって、常に安定運転が可能となるとともに、圧縮
機1.2のオイル上りやロックを防ぐことができ、ひい
ては圧縮機1.2の損傷を防ぐことができる。
Therefore, stable operation is possible at all times, oil leakage and locking of the compressor 1.2 can be prevented, and damage to the compressor 1.2 can be prevented.

さらに、均油管45としては、大径のものは必要なく、
小径のものを用いることができるので、十分な強度を確
保することができ、圧縮機振動や圧縮機騒音を同道する
ことができるとともに、コスト的にも有利である。
Furthermore, there is no need for a large-diameter oil equalizing pipe 45;
Since a small-diameter one can be used, sufficient strength can be ensured, compressor vibration and compressor noise can be suppressed, and it is also advantageous in terms of cost.

また、コスト高のフロート式レギュレータや油面センサ
等を格別に圧縮機1,2に設置することな(均油効果を
得ることができるので、全体の構成を簡略化することが
でき、コスト低下を図ることができる。
In addition, there is no need to install costly float type regulators, oil level sensors, etc. in the compressors 1 and 2 (because oil leveling effects can be obtained, the overall configuration can be simplified and costs can be reduced). can be achieved.

さらに、圧縮機1,2の均油運転時には通常運転中の運
転周波数FaO(またはFbo)よりもnステップ周波
数低下させる動作と通常運転中の運転周波数Fao (
またはFbo)よりもnステップ周波数上昇させる動作
とを交互に行なわせるようにしているので、通常運転中
の運転周波数Fao  (またはFbo)よりもnステ
ップ周波数上昇させる際にインバータ回路51(または
52)の出力電流異常を判定し、このインバータ回路5
1(または52)の出力周波数を一定値低減する電流レ
リースが動作して周波数上昇時の均油運転が不能になっ
た場合であっても、通常運転中の運転周波数Fa□  
(またはFbo)よりもnステップ周波数低下させる動
作時に確実に均油運転を行なうことができる。そのため
、1時間内に少なくとも1回の均油運転を行ない均油効
果を得ることができる。
Furthermore, during oil equalization operation of the compressors 1 and 2, the frequency is lowered by n steps from the operating frequency FaO (or Fbo) during normal operation, and the operating frequency Fao (or Fbo) during normal operation is lowered by n steps.
Since the operation of increasing the frequency by n steps from the operating frequency Fao (or Fbo) during normal operation is performed alternately, the inverter circuit 51 (or 52) This inverter circuit 5
Even if the current release that reduces the output frequency of 1 (or 52) by a certain value operates and oil equalization operation when the frequency increases becomes impossible, the operating frequency Fa□ during normal operation
(or Fbo), it is possible to reliably perform oil equalization operation when the frequency is lowered by n steps than Fbo. Therefore, an oil equalizing effect can be obtained by performing oil equalizing operation at least once within one hour.

また、圧縮機1,2が共に運転周波数Fa。Further, both compressors 1 and 2 have an operating frequency Fa.

Fbが最大値に達した場合であっても通常運転中の運転
周波数Fao (またはFbo)よりもnステップ周波
数低下させる動作時に確実に均油運転を行なうことがで
きるので、1時間内に少なくとも1回の均油運転を行な
い均油効果を得ることができる。
Even when Fb reaches the maximum value, oil equalization operation can be reliably performed when the frequency is lowered by n steps than the operating frequency Fao (or Fbo) during normal operation, so at least one Oil equalization effect can be obtained by performing oil equalization operation twice.

さらに、圧縮機1.2が共に運転周波数Fa。Furthermore, both compressors 1 and 2 have an operating frequency Fa.

Fbが最小値に達した場合であっても通常運転中の運転
周波数Fao (またはFbo)よりもnステップ周波
数上昇させる動作時に確実に均油運転を行なうことがで
きるので、1時間内に少なくとも1回の均油運転を行な
い均油効果を得ることができる。
Even when Fb reaches the minimum value, oil equalization operation can be reliably performed when the frequency is increased by n steps from the operating frequency Fao (or Fbo) during normal operation, so at least 1 Oil equalization effect can be obtained by performing oil equalization operation twice.

また、再圧縮機1.2の同時運転中、再圧縮機1.2を
略同一の運転周波数(FaOζFbo)で駆動する第1
の駆動状態と再圧縮機1.2の運転周波数間に所定周波
数の差ΔFを持たせた状態で駆動する第2の駆動状態と
を組合わせて制御するようにしたので、再圧縮機1,2
の総合能力の分解能を高めることができる。
Also, during the simultaneous operation of the recompressor 1.2, the first
Since the driving state of the recompressors 1.2 and the second driving state of driving with a predetermined frequency difference ΔF between the operating frequencies of the recompressors 1.2 are controlled in combination, the recompressors 1. 2
The resolution of the overall capacity can be increased.

さらに、均油運転時には均油運転を開始する前に再圧縮
機1,2を略同一の運転周波数(Fa。
Furthermore, during the oil equalization operation, the recompressors 1 and 2 are operated at substantially the same operating frequency (Fa) before starting the oil equalization operation.

ζFbo)で駆動し、その後、再圧縮機1,2の均油運
転を開始させるようにしたので、再圧縮機1.2が第2
の駆動状態のままの状態で均油運転が開始されることを
防止することができる。そのため、再圧縮機1.2が第
2の駆動状態のままの状態で均油運転が開始され、均油
運転中の再圧縮機1.2の運転周波数の差ΔFが不均一
になることを確実に防止することができ、再圧縮機1.
2が第2の駆動状態のままの状態で均油運転が開始され
た場合であっても均一な均油効果を得ることができる。
ζFbo) and then started the oil equalization operation of recompressors 1 and 2, so that recompressors 1 and 2
It is possible to prevent the oil equalization operation from starting while the engine is still in the driving state. Therefore, the oil equalization operation is started while the recompressor 1.2 remains in the second driving state, and the difference ΔF in the operating frequency of the recompressor 1.2 during the oil equalization operation becomes uneven. Recompressor 1.
Even if the oil equalizing operation is started while the oil pump 2 remains in the second driving state, a uniform oil equalizing effect can be obtained.

なお、この発明は上記実施例に限定されるものではない
。例えば、上記実施例では室内ユニットが3台の場合に
ついて説明したが、それ以上あるいは2台の場合につい
ても同様に実施可能である。
Note that this invention is not limited to the above embodiments. For example, in the above embodiment, the case where there are three indoor units has been described, but it is also possible to implement the case with more or two indoor units.

さらに、その他この発明の要旨を逸脱しない範囲で種々
変形実施できることは勿論である。
Furthermore, it goes without saying that various other modifications can be made without departing from the gist of the invention.

[発明の効果] この発明によれば各圧縮機間に均油管を設けるとともに
、再圧縮機の同時運転中、再圧縮機を略同一の運転周波
数で駆動する第1の駆動状態と再圧縮機の運転周波数間
に所定周波数の差を持たせた状態で駆動する第2の駆動
状態とを組合わせて再圧縮機の総合能力を制御する手段
、始めに再圧縮機を略同一の運転周波数で駆動し、その
後、再圧縮機のうちの一方の運転周波数を他方に比べて
相対的に一定時間ずつ上下させ、他方の運転周波数を一
定の運転周波数で保持する第1の均油運転手段および再
圧縮機を入替えた状態で第1の均油運転を行なう第2の
均油運転手段をそれぞれ設けたので、大径の均油管を用
いることなく各圧縮機間の均油効果を得ることができ、
圧縮機振動や圧縮機騒音を回避し、しかも均油管の十分
な強度を確保して信頼性を高めることができ、加えて一
層の均油効果の向上を図ることができる。
[Effects of the Invention] According to the present invention, an oil equalizing pipe is provided between each compressor, and during simultaneous operation of the recompressors, the first driving state and the recompressor are driven at substantially the same operating frequency. A means for controlling the overall capacity of the recompressor by combining a second driving state in which the recompressor is driven with a predetermined frequency difference between the operating frequencies of the recompressor. the first recompressor, and then increases or decreases the operating frequency of one of the recompressors relative to the other in fixed time increments, and maintains the operating frequency of the other at a constant operating frequency; Since a second oil equalizing operation means is provided to perform the first oil equalizing operation when the compressor is replaced, it is possible to obtain an oil equalizing effect between each compressor without using a large diameter oil equalizing pipe. ,
Compressor vibration and compressor noise can be avoided, and reliability can be increased by ensuring sufficient strength of the oil equalizing pipe, and in addition, the oil equalizing effect can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図はこの発明の一実施例を示すもので、
第1図は空気調和機内の冷凍サイクルを示す全体の概略
構成図、第2図は各圧縮機と均油管の関係を示す概略構
成図、第3図は冷凍サイクルの制御回路の構成を示す概
略構成図、第4図は均油運転時の運転周波数の変化状態
を示す特性図、第5図は第1の圧縮機の運転周波数を第
2の圧縮機の運転周波数よりも低くした場合の油面変化
状態を示す概略構成図、第6図は第1の圧縮機の運転周
波数を第2の圧縮機の運転周波数よりも高くした場合の
曲面変化状態を示す概略構成図、第7図は従来の空気調
和機内の冷凍サイクルを示す全体の概略構成図である。 A・・・室外ユニット、B・・・分岐ユニット、C,D
。 E・・・室内ユニット、1,2・・・能力可変圧縮機、
45・・・均油管、50・・・室外制御部、60・・・
マルチ制御部、70,80.90・・・室内制御部。 出願人代理人 弁理士 鈴江武彦 第2図 時間− 第4図 第5図   第6図
1 to 6 show an embodiment of the present invention,
Figure 1 is an overall schematic diagram showing the refrigeration cycle in the air conditioner, Figure 2 is a schematic diagram showing the relationship between each compressor and oil equalizing pipes, and Figure 3 is a schematic diagram showing the configuration of the refrigeration cycle control circuit. The configuration diagram, Figure 4 is a characteristic diagram showing how the operating frequency changes during oil equalization operation, and Figure 5 shows the oil change when the operating frequency of the first compressor is lower than the operating frequency of the second compressor. A schematic configuration diagram showing a state of surface change. FIG. 6 is a schematic configuration diagram showing a state of curved surface change when the operating frequency of the first compressor is higher than the operating frequency of the second compressor. FIG. 1 is an overall schematic configuration diagram showing a refrigeration cycle in an air conditioner. A...Outdoor unit, B...Branch unit, C, D
. E... Indoor unit, 1, 2... Variable capacity compressor,
45... Oil equalizing pipe, 50... Outdoor control section, 60...
Multi-control unit, 70, 80.90...Indoor control unit. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Time - Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 2台の能力可変圧縮機を有する室外ユニット、および複
数の室内ユニットを備え、これら室内ユニットの要求能
力に応じて前記各圧縮機の運転台数および運転周波数を
制御する空気調和機において、前記各圧縮機間に設けた
均油管と、前記両圧縮機の同時運転中、前記両圧縮機を
略同一の運転周波数で駆動する第1の駆動状態と前記両
圧縮機の運転周波数間に所定周波数の差を持たせた状態
で駆動する第2の駆動状態とを組合わせて前記両圧縮機
の総合能力を制御する手段と、始めに前記両圧縮機を略
同一の運転周波数で駆動し、その後、前記両圧縮機のう
ちの一方の運転周波数を他方に比べて相対的に一定時間
ずつ上下させ、他方の運転周波数を一定の運転周波数で
保持する第1の均油運転手段と、前記両圧縮機を入替え
た状態で前記第1の均油運転を行なう第2の均油運転手
段とを具備したことを特徴とする空気調和機。
In an air conditioner comprising an outdoor unit having two variable capacity compressors and a plurality of indoor units, the number of operating units and operating frequency of each compressor is controlled according to the required capacity of these indoor units. An oil equalizing pipe provided between the machines and a predetermined frequency difference between a first driving state in which both compressors are driven at substantially the same operating frequency and the operating frequencies of both compressors during simultaneous operation of both compressors. means for controlling the overall capacity of both compressors by combining a second driving state in which the two compressors are driven at substantially the same operating frequency; a first oil-equalizing operation means for raising and lowering the operating frequency of one of the compressors by a fixed amount of time relative to the other, and maintaining the operating frequency of the other compressor at a fixed operating frequency; and a second oil equalizing operation means that performs the first oil equalizing operation in a replaced state.
JP63028115A 1988-02-09 1988-02-09 Air conditioner Expired - Lifetime JP2664702B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63028115A JP2664702B2 (en) 1988-02-09 1988-02-09 Air conditioner
GB8902043A GB2215866B (en) 1988-02-09 1989-01-31 Multi-type air conditioner system with oil level control for parallel operated compressor therein
US07/305,906 US4870831A (en) 1988-02-09 1989-02-02 Multi-type air conditioner system with oil level control for parallel operated compressor therein
AU29572/89A AU603279B2 (en) 1988-02-09 1989-02-02 Multi-type air conditioner system with oil control for parallel operated compressor therein
KR1019890001487A KR930008346B1 (en) 1988-02-09 1989-02-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028115A JP2664702B2 (en) 1988-02-09 1988-02-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH01203680A true JPH01203680A (en) 1989-08-16
JP2664702B2 JP2664702B2 (en) 1997-10-22

Family

ID=12239814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028115A Expired - Lifetime JP2664702B2 (en) 1988-02-09 1988-02-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP2664702B2 (en)

Also Published As

Publication number Publication date
JP2664702B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JP2664740B2 (en) Air conditioner
US4766735A (en) Inverter-aided multisystem air conditioner with control functions of refrigerant distribution and superheating states
JP2557903B2 (en) Air conditioner
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
US5263333A (en) Multi-type air conditioner system with optimum control for gaseous flow adjustment valve and liquid expansion valve
KR930008346B1 (en) Air conditioner
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JPH037853A (en) Air conditioner
JP4440883B2 (en) Air conditioner
JPH01203855A (en) Air conditioner
JPH0571822A (en) Air-conditioner
JPH01203680A (en) Air conditioner
JPH01127865A (en) Air conditioner
JPH01203677A (en) Air conditioner
EP1475575A1 (en) Air conditioner
JPH01193088A (en) Air conditioner
JPH01203678A (en) Air conditioner
JPH01203854A (en) Air conditioner
JPH01203676A (en) Air conditioner
JPH01203679A (en) Air conditioner
JPH01314861A (en) Air conditioner
JP2955278B2 (en) Multi-room air conditioning system
JP2614253B2 (en) Air conditioner
KR20060056511A (en) Controlling method of inverter compressor in air conditioner
JPH01203859A (en) Air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11