JPH01203678A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01203678A
JPH01203678A JP63028112A JP2811288A JPH01203678A JP H01203678 A JPH01203678 A JP H01203678A JP 63028112 A JP63028112 A JP 63028112A JP 2811288 A JP2811288 A JP 2811288A JP H01203678 A JPH01203678 A JP H01203678A
Authority
JP
Japan
Prior art keywords
compressor
oil
operating frequency
compressors
oil equalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63028112A
Other languages
Japanese (ja)
Inventor
Manabu Kitamoto
学 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63028112A priority Critical patent/JPH01203678A/en
Priority to GB8902043A priority patent/GB2215866B/en
Priority to US07/305,906 priority patent/US4870831A/en
Priority to AU29572/89A priority patent/AU603279B2/en
Priority to KR1019890001487A priority patent/KR930008346B1/en
Publication of JPH01203678A publication Critical patent/JPH01203678A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To obtain an oil equalizing effect between each compressor without using an oil equalizer pipe of large bore by providing an oil equalizer pipe between both the compressors while performing oil equalizing operation which relatively up-down controls an operating frequency of both the compressors during their simultaneous operation. CONSTITUTION:An oil equalizer pipe 45 is provided between compressors 1, 2. Normal operation drives both the compressors by an almost equal operating frequency. The first oil equalizing operation relatively up-down controls by every fixed time an operating frequency of one of both the compressors as compared with the other frequency while holds an operating frequency of the other compressor to a fixed operating frequency. The second oil equalizing operation performs the first oil equalizing operation in a condition that both the compressors are replaced with each other. An oil equalizing operation means, which repeatedly performs in every fixed period the normal operation, first oil equalizing operation and the second oil equalizing operation during simultaneous operation of both the compressors 1, 2, is provided.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は1台の室外ユニットと複数の室内ユニットと
を備えたマルチタイプの空気調和機の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an improvement of a multi-type air conditioner including one outdoor unit and a plurality of indoor units.

(従来の技術) 一般に、この種の空気調和機としては第7図に示すよう
なヒートポンプ式冷凍サイクルを備えたものがある。
(Prior Art) Generally, this type of air conditioner includes one equipped with a heat pump type refrigeration cycle as shown in FIG.

第7図において、Aは室外ユニット、Bは分岐ユニット
、C,D、Eは室内ユニットである。室外ユニットAは
2台の能力可変圧縮機1.2を備え、その圧縮機1,2
を逆止弁3,4をそれぞれ介して並列に接続している。
In FIG. 7, A is an outdoor unit, B is a branch unit, and C, D, and E are indoor units. The outdoor unit A is equipped with two variable capacity compressors 1.2.
are connected in parallel via check valves 3 and 4, respectively.

そして、圧縮機1゜2、四方弁5、室外熱交換器6、暖
房用膨張弁7と冷房サイクル形成用逆止弁8の並列体、
リキッドタンク9、電動式流量調整弁11,21,31
、冷房用膨張弁12,22.32と暖房サイクル形成用
逆止弁13,23.33の並列体、室内熱交換器14.
24.34、ガス側開閉弁(電磁開閉弁)15.25.
35、アキュームレータ10などを順次連通し、ヒート
ポンプ式冷凍サイクルを構成している。
A parallel body of a compressor 1°2, a four-way valve 5, an outdoor heat exchanger 6, a heating expansion valve 7 and a cooling cycle forming check valve 8,
Liquid tank 9, electric flow rate adjustment valve 11, 21, 31
, a parallel body of a cooling expansion valve 12, 22.32 and a heating cycle forming check valve 13, 23.33, an indoor heat exchanger 14.
24.34, Gas side on-off valve (electromagnetic on-off valve) 15.25.
35, the accumulator 10, etc. are successively connected to form a heat pump type refrigeration cycle.

なお、冷房用膨張弁12,22.32はそれぞれ感温筒
12a、22a、32aを有してお゛す、これら感温筒
を室内熱交換器14,24.34のガス側冷媒配管にそ
れぞれ増付けている。
The cooling expansion valves 12, 22.32 each have a temperature sensing tube 12a, 22a, 32a, and these temperature sensing tubes are connected to the gas side refrigerant piping of the indoor heat exchanger 14, 24.34, respectively. We are adding more.

すなわち、室内熱交換″rA14.24.34を並列構
成とするとともに、冷房運転時は図示実線矢印の方向に
冷媒を流して冷房サイクルを形成し、暖房運転時は四方
弁5の切換作動により図示点線矢印の方向に冷媒を流し
て暖房サイクルを形成するようにしている。
That is, the indoor heat exchanger ``rA14.24.34'' is arranged in parallel, and during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure to form a cooling cycle, and during heating operation, the switching operation of the four-way valve 5 causes the refrigerant to flow in the direction shown in the figure. A heating cycle is created by flowing refrigerant in the direction of the dotted arrow.

このような空気調和機においては、各室内ユニットの要
求能力を満足するべく、圧縮機1.2の運転台数および
能力を制御するとともに、流量制御弁11,21.31
の開度をそれぞれ制御して各室内熱交換器への冷媒流量
を調節するようにしている。
In such an air conditioner, in order to satisfy the required capacity of each indoor unit, the number and capacity of compressors 1.2 in operation are controlled, and the flow rate control valves 11, 21, 31 are controlled.
The opening degree of each is controlled to adjust the flow rate of refrigerant to each indoor heat exchanger.

そして、膨張弁12,22.32により、冷媒流量の変
化にかかわらず各室内熱交換器における冷媒過熱度を一
定に維持し、安定かつ効率の良い運転を行なうようにし
ている。
The expansion valves 12, 22, and 32 maintain the degree of superheating of the refrigerant in each indoor heat exchanger constant regardless of changes in the refrigerant flow rate, thereby ensuring stable and efficient operation.

したがって、たとえば冷房運転時、各室内ユニットの要
求能力が大きくなると、圧縮機1の能力が増大したり、
さらには圧縮機1に加えて圧縮機2も起動することにな
る。この状態から各室内ユニットの要求能力が小さ(な
ると、圧縮機2の能力が低減したり、さらには圧縮機2
の運転が停止して圧縮機1のみの運転となる。
Therefore, for example, when the required capacity of each indoor unit increases during cooling operation, the capacity of the compressor 1 increases,
Furthermore, in addition to compressor 1, compressor 2 is also activated. From this state, the required capacity of each indoor unit becomes small (as a result, the capacity of compressor 2 decreases, or even compressor 2
The operation of the compressor 1 is stopped and only the compressor 1 is operated.

しかしながら、このような空気調和機においては、圧縮
機1.2の吐油量と返油量が完全には一致しないため、
時間の経過とともに一方の圧縮機の潤滑油の量が増え、
他方の圧縮機の潤滑油の量が減り、両者間に油量のアン
バランスが生じて安定運転が困難になる。
However, in such an air conditioner, the amount of oil discharged from the compressor 1.2 and the amount of oil returned do not completely match, so
As time passes, the amount of lubricating oil in one compressor increases,
The amount of lubricating oil in the other compressor decreases, creating an imbalance in the amount of oil between the two, making stable operation difficult.

しかも、潤滑油の油面レベルが限界油面レベル(運転可
能レベル)よりも下がった場合には、潤滑部への潤滑油
の供給が断たれ、圧縮機1.2が損傷してしまう。
Furthermore, if the lubricating oil level falls below the limit oil level (operable level), the supply of lubricating oil to the lubricating section is cut off, resulting in damage to the compressor 1.2.

そこで、各圧縮機1.2における油量のアンバランスを
解消するべく、各圧縮機1.2間を均油管で連通し、油
量の多い方から少ない方へと潤滑部を移動させるように
したものがある。
Therefore, in order to eliminate the imbalance in the amount of oil in each compressor 1.2, we communicated each compressor 1.2 with an oil equalizing pipe and moved the lubricating part from the side with more oil amount to the one with less oil amount. There is something I did.

ただし、各圧縮機1,2の能力は完全に同じではないた
め、相対的に能力の大きい側の圧縮機は吸込管の圧力損
失が大きくなり、圧縮機ケース内圧力は逆に小さくなる
。この傾向は各圧縮機1゜2の容量が異なる場合に顕著
である。
However, since the capacities of the compressors 1 and 2 are not completely the same, the pressure loss in the suction pipe of the compressor with relatively greater capacity is large, and the pressure inside the compressor case is conversely reduced. This tendency is remarkable when the capacity of each compressor 1.2 is different.

その結果、冷媒ガスはケース内圧力の高い側の圧縮機か
らケース内圧力の小さい側の圧縮機へと均油管を通して
移動し、それに伴って潤滑油も同方向に移動する。
As a result, the refrigerant gas moves from the compressor on the side where the case internal pressure is high to the compressor on the side where the case internal pressure is low through the oil equalizing pipe, and the lubricating oil also moves in the same direction.

そして、ケース内圧力の高い側の圧縮機における返油量
が吐油量よりも多いときには、均油管レベル以上の潤滑
油は均゛油管を通してケース内圧力の低い側の圧縮機に
移動し、各圧縮機内の油面レベルは均油管位置で等しく
なる。逆に、返油量が吐油量よりも少ないときには、ケ
ース内圧力の高い側の圧縮機内の油面レベルが時間の経
過とともに低下し、ついには限界油面レベル以下に下が
ってしまう。なお、この場合、ケース内圧力の低い側の
圧縮機内の潤滑部は、各圧縮機のケース内圧力差により
、ケース内圧力の高い側の圧縮機への移動が阻I卜され
る。
When the amount of oil returned in the compressor on the side where the case internal pressure is higher is greater than the oil discharge amount, the lubricating oil above the level of the oil equalizing pipe moves through the oil equalizing pipe to the compressor on the side where the case internal pressure is lower. The oil level in the compressor becomes equal at the oil equalizing pipe position. Conversely, when the amount of returned oil is less than the amount of oil discharged, the oil level in the compressor on the side where the case internal pressure is higher decreases over time, and eventually falls below the critical oil level level. In this case, the lubricating part in the compressor on the side where the case internal pressure is low is prevented from moving to the compressor on the side where the case internal pressure is high due to the difference in the case internal pressure of each compressor.

そこで、均油管の管路を大径にすることにより、各圧縮
機1,2内の油面レベルを均一化するとともに、各圧縮
機1,2のケース内圧力を均一化することが考えられて
いる。
Therefore, it is possible to equalize the oil level in each compressor 1, 2 and equalize the pressure inside the case of each compressor 1, 2 by increasing the diameter of the oil equalizing pipe. ing.

ところが、大径の均油管を用いると、一方の圧縮機に発
生する振動が均油管を介して他方の圧縮機に伝わり易く
なり、側圧縮機1,2の運転周波数域の組合わせによっ
ては共振等が発生し、圧縮機振動や圧縮機騒音を招く問
題があるとともに、均油管の破損につながるおそれもあ
ワた。
However, when a large-diameter oil equalizing pipe is used, vibrations generated in one compressor are easily transmitted to the other compressor via the oil equalizing pipe, and depending on the combination of the operating frequency ranges of the side compressors 1 and 2, resonance may occur. This causes problems such as compressor vibration and compressor noise, and there is also the risk of damage to the oil equalizing pipe.

(発明が解決しようとする課題) 各圧縮機1,2間を均油管で連通した場合には各圧縮機
1.2のケース内圧力差により、ケース内圧力の高い側
の圧縮機からケース内圧力の小さい側の圧縮機へとケー
ス内の潤滑油が均油管を通して移動し、各圧縮機1.2
のケース内の油面レベルが不均一になる問題があるとと
もに、大径の均油管を用いて各圧縮機1.2内の油面レ
ベルの均一化および各圧縮機1,2のケース内圧力の均
一化を図るようにした場合には一方の圧縮機に発生する
振動が均油管を介して他方の圧縮機に伝わり易くなり、
側圧縮機1,2の運転周波数域の組合わせによっては共
振等が発生し、圧縮機振動や圧縮機騒音を招く問題があ
るとともに、均油管の破損につながるおそれもあった。
(Problem to be Solved by the Invention) When the compressors 1 and 2 are communicated with each other by an oil equalizing pipe, due to the pressure difference in the case of each compressor 1.2, the compressor with the higher pressure in the case is The lubricating oil in the case moves to the compressor with lower pressure through the oil equalizing pipe, and each compressor 1.2
There is a problem that the oil level in the case of the compressors 1 and 2 becomes uneven, and the oil level in each compressor 1.2 is made uniform by using a large diameter oil equalizing pipe, and the pressure in the case of each compressor 1 and 2 is improved. If you try to equalize the pressure, the vibrations generated in one compressor will be more likely to be transmitted to the other compressor via the oil equalizing pipe.
Depending on the combination of the operating frequency ranges of the side compressors 1 and 2, resonance etc. may occur, causing problems such as compressor vibration and compressor noise, and there is also a risk of damage to the oil equalizing pipe.

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、大径の均油管を用いることな
く各圧縮機間の均油効果を得ることができ、これにより
圧縮機振動や圧縮機騒音を回避し、しかも均油管の十分
な強度を確保することができる信頼性にすぐれた空気調
和機を提供することにある。
This invention was made in view of the above circumstances,
The purpose of this is to achieve an oil equalizing effect between each compressor without using large diameter oil equalizing pipes, thereby avoiding compressor vibration and compressor noise, and to maintain sufficient strength of the oil equalizing pipes. Our goal is to provide an air conditioner with excellent reliability that can ensure the following.

[発明の構成] (課題を解決するための手段) 各圧縮機間に均油管を設けるとともに、側圧縮機の同時
運転中、側圧縮機を略同一の運転周波数で駆動する通常
運転、側圧縮機のうちの一方の運転周波数を他方に比べ
て相対的に一定時間ずつ上下させ、他方の運転周波数を
一定の運転周波数で保持する第1の均油運転および側圧
縮機を入替えた状態で第1の均油運転を行なう第2の均
油運転を一定周期毎に繰返す均油運転手段を設けたもの
である。
[Structure of the invention] (Means for solving the problem) In addition to providing an oil equalizing pipe between each compressor, normal operation and side compression are performed in which the side compressors are driven at substantially the same operating frequency during simultaneous operation of the side compressors. The first oil equalization operation involves increasing or decreasing the operating frequency of one of the compressors by a fixed amount of time relative to the other, and maintaining the operating frequency of the other at a constant operating frequency. The oil equalizing operation means is provided for repeating the first oil equalizing operation and the second oil equalizing operation at regular intervals.

(作用) 側圧縮機の同時運転中、通常運転、第1の均油運転およ
び第2の均油運転を一定周期毎に繰返し、第1のおよび
第2の均油運転時には側圧縮機の運転周波数を相対的に
上下させ、側圧縮機の圧縮機ケース内の潤滑油を均油管
を通して効率よく流通させることにより、大径の均油管
を用いることなく各圧縮機間の均油効果を得るとともに
、圧縮機振動や圧縮機騒音を回避させるようにしたもの
である。
(Function) During simultaneous operation of the side compressor, normal operation, first oil equalization operation, and second oil equalization operation are repeated at regular intervals, and during the first and second oil equalization operation, the side compressor is operated. By relatively raising and lowering the frequency and efficiently distributing the lubricating oil in the compressor case of the side compressor through the oil equalizing pipe, it is possible to obtain an oil equalizing effect between each compressor without using a large diameter oil equalizing pipe. This is designed to avoid compressor vibration and compressor noise.

(実施例) 中で第S図と同一部分には同一符号を付し、その説明は
省略する。
(Example) The same parts as in FIG. S are given the same reference numerals, and the explanation thereof will be omitted.

第1図に示すように、圧縮機1の冷媒吐出側配管にオイ
ルセパレータ41を設け、そのオイルセパレータ41か
ら圧縮機1の冷媒吸込側配管にかけてオイルバイパス管
42を設ける。
As shown in FIG. 1, an oil separator 41 is provided on the refrigerant discharge side piping of the compressor 1, and an oil bypass pipe 42 is provided from the oil separator 41 to the refrigerant suction side piping of the compressor 1.

さらに、圧縮機2の冷媒吐出側配管にオイルセパレータ
43を設け、そのオイルセパレータ43から圧縮機2の
冷媒吸込側配管にかけてオイルバイパス管44を設ける
Further, an oil separator 43 is provided on the refrigerant discharge side piping of the compressor 2, and an oil bypass pipe 44 is provided from the oil separator 43 to the refrigerant suction side piping of the compressor 2.

また、第2図に示すように圧縮機1.2のそれぞれケー
スを均油管45で連通する。この場合、圧縮機1.2は
同−而に設置する。なお、圧縮機1.2にはケース内に
溜められる潤滑油の最適な基準油面レベルおよび許容最
低限の限界油面レベルが予め定めてあり、その基準油面
レベルとほぼ同じ高さの位置に均油管45を取付ける。
Further, as shown in FIG. 2, the cases of the compressors 1.2 are communicated with each other through oil equalizing pipes 45. In this case, compressor 1.2 is installed in the same way. In addition, the optimal reference oil level and the minimum allowable limit oil level for the lubricating oil stored in the case of the compressor 1.2 are predetermined, and the position at approximately the same height as the reference oil level is determined in advance. Attach oil equalizing pipe 45 to.

一方、第3図は冷凍サイクルの制御回路を示すものであ
る。第3図中で、50は室外ユニットAに装着させた室
外制御部である。この室外制御部50はマイクロコンピ
ュータおよびその周辺回路などからなり、外部にインバ
ータ回路51.52を接続している。インバータ回路5
1.52は交流電源53の電圧を整流し、それを室外制
御部50の指令に応じたスイッチングによって所定周波
数の交流電圧に変換し、圧縮機モータIM。
On the other hand, FIG. 3 shows a control circuit for the refrigeration cycle. In FIG. 3, 50 is an outdoor control section attached to the outdoor unit A. This outdoor control section 50 is composed of a microcomputer and its peripheral circuits, and is connected to inverter circuits 51 and 52 externally. Inverter circuit 5
1.52 rectifies the voltage of the AC power supply 53, converts it into an AC voltage of a predetermined frequency by switching according to a command from the outdoor control unit 50, and drives the compressor motor IM.

2Mにそれぞれ駆動電力として供給するものである。2M respectively as driving power.

また、60は分岐ユニットBに装着させたマルチ制御部
60である。このマルチ制御部60はマイクロコンピュ
ータおよびその周辺回路からなり、外部に流量:J!J
整弁11,21.31および一開閉弁15.25.35
をそれぞれ接続している。
Further, 60 is a multi-control unit 60 attached to the branch unit B. This multi-control unit 60 is made up of a microcomputer and its peripheral circuits, and has an external flow rate of J! J
Control valve 11, 21.31 and one-open/close valve 15.25.35
are connected to each other.

さらに、70,80.90は室内ユニットC2D、Hに
それぞれ装着させた室内制御部である。
Furthermore, 70, 80.90 are indoor control units attached to the indoor units C2D and H, respectively.

これら室内制御部70,80.90はマイクロコンピュ
ータおよびその周辺回路からなり、外部に運転操作部7
1,81.91および室内温度センサ72.82.92
をそれぞれ接続している。
These indoor control units 70, 80, and 90 consist of a microcomputer and its peripheral circuits, and an external operation unit 7
1,81.91 and indoor temperature sensor 72.82.92
are connected to each other.

そして、各室内制御部70.80.90は周波数設定信
号f1.f2.f3を要求能力としてマルチ制御部60
に転送するようになっている。マルチ制御部60は転送
されてくる周波数設定信号から各・室内ユニットC,D
、Hの要求能力の総和を求め、それに対応する周波数設
定信号f。を室外制御部50に転送するようになってい
る。
Each indoor control unit 70, 80, 90 receives a frequency setting signal f1. f2. Multi-control unit 60 with f3 as required capacity
It is designed to be transferred to The multi-control unit 60 controls each indoor unit C, D from the transferred frequency setting signal.
, H is calculated, and the corresponding frequency setting signal f is determined. is transferred to the outdoor control section 50.

つぎに、上記構成の作用を説明する。Next, the operation of the above configuration will be explained.

いま、全ての室内ユニットで冷房運転を行なっているも
のとする。
It is assumed that all indoor units are currently performing cooling operation.

このとき、室内ユニットCの室内制御部70は、室内温
度センサ72の検知温度と運転操作部71で定められた
設定温度との差を演算し、その温度差に対応する周波数
設定信号f、を要求冷房能力としてマルチ制御部60に
転送する。同様に、室内ユニットD、Hの室内制御部8
0.90も、周波数設定信号f2.f3を要求冷房能力
としてマルチ制御部60に転送する。
At this time, the indoor control section 70 of the indoor unit C calculates the difference between the temperature detected by the indoor temperature sensor 72 and the set temperature determined by the operation operation section 71, and outputs a frequency setting signal f corresponding to the temperature difference. It is transferred to the multi-control unit 60 as the required cooling capacity. Similarly, the indoor control sections 8 of indoor units D and H
0.90 is also the frequency setting signal f2. f3 is transferred to the multi-control unit 60 as the required cooling capacity.

さらに、マルチ制御部60では転送されてくる周波数設
定信号に基づいて各室内ユニツ)C,D。
Furthermore, the multi-control unit 60 controls each indoor unit (C, D) based on the transferred frequency setting signal.

Eの要求冷房能力の総和を求める。そして、求めた総和
に対応する周波数設定信号f。を室外制御部50に転送
する。この室外制御部50では転送されてくる周波数設
定信号f、に基づいて各室内ユニットC,D、Hの要求
冷房能力の総和を求め、その総和に応じて圧縮機1.2
の運転台数および運転周波数(インバータ回路51.5
2の出力周波数)Fを制御する。この場合、室外制御部
50では要求冷房能力の総和が大きくなるに従い圧縮機
1の1台運転から圧縮機1.2の2台運転に移行するよ
うにしている。
Find the total required cooling capacity of E. Then, a frequency setting signal f corresponding to the calculated sum. is transferred to the outdoor control section 50. This outdoor control unit 50 calculates the total required cooling capacity of each indoor unit C, D, and H based on the frequency setting signal f that is transferred, and depending on the total, the compressor 1.
Number of operating units and operating frequency (inverter circuit 51.5
2 output frequency) F is controlled. In this case, the outdoor control unit 50 shifts from operating one compressor 1 to operating two compressors 1 and 2 as the total required cooling capacity increases.

また、圧縮機1の運転中、吐出冷媒に含まれている潤滑
油のほとんどがオイルセパレータ41で回収され、オイ
ルバイパス管42を通して圧縮機1に戻される。同様に
、圧縮機2の運転中、吐出冷媒に含まれている潤滑油の
ほとんどがオイルセパレータ43で回収され、オイルバ
イパス管44を通して圧縮機2に戻される。なお、回収
されなかった冷媒は冷凍サイクルを一巡し、圧縮機1゜
2に戻る。
Furthermore, while the compressor 1 is operating, most of the lubricating oil contained in the discharged refrigerant is recovered by the oil separator 41 and returned to the compressor 1 through the oil bypass pipe 42. Similarly, during operation of the compressor 2, most of the lubricating oil contained in the discharged refrigerant is recovered by the oil separator 43 and returned to the compressor 2 through the oil bypass pipe 44. Note that the refrigerant that is not recovered goes through the refrigeration cycle and returns to the compressor 1.2.

一方、マルチ制御部60では各室内ユニットC1D、E
からの周波数設定信号に応じて冷媒流口調整弁11.2
1.31の開度を制御しており、各室内ユニットC,D
、Hの要求冷房能力に対応する最適な量の冷媒が各室内
熱交換器14,24゜34に流入する。また、膨張弁1
2,22.32により、各室内熱交換器14,24.3
4における冷媒過熱度が一定に制御される。
On the other hand, in the multi-control unit 60, each indoor unit C1D, E
Refrigerant flow regulating valve 11.2 according to the frequency setting signal from
It controls the opening degree of 1.31, and each indoor unit C, D
, H flows into each indoor heat exchanger 14, 24°34. In addition, expansion valve 1
2, 22.32, each indoor heat exchanger 14, 24.3
The degree of superheating of the refrigerant in No. 4 is controlled to be constant.

また、室外制御部50では圧縮機1.2の2台運転中、
再圧縮機1,2を略同一の運転周波数で駆動する通常運
転、再圧縮機1.2のうちの一方、例えば圧縮機1の運
転周波数Faを圧縮機2の運転周波数Fbに比べて相対
的に一定時間ずつ上下させ、その間、圧縮機2の運転周
波数Fbを一定の運転周波数Fboで保持する第1の均
油運転および再圧縮機1,2を入替えた状態で第1の均
油運転を行なう第2の均油運転を一定周期毎に交互に繰
返す均油運転を行なう。
In addition, in the outdoor control unit 50, while the two compressors 1 and 2 are in operation,
In a normal operation in which the recompressors 1 and 2 are driven at approximately the same operating frequency, one of the recompressors 1 and 2, for example, the operating frequency Fa of the compressor 1 is relatively compared to the operating frequency Fb of the compressor 2. A first oil equalizing operation is performed in which the operating frequency Fb of the compressor 2 is maintained at a constant operating frequency Fbo, and a first oil equalizing operation is performed with the recompressors 1 and 2 replaced. An oil equalizing operation is performed in which the second oil equalizing operation is repeated alternately at regular intervals.

この圧縮機1,2の均油運転を第4図乃至第6図を参照
しながら説明する。第4図は均油運転時の一方の圧縮機
1の運転周波数Faの変化状態(同図中に実線で示す)
および他方の圧縮機2の運転周波数Fbの変化状態(同
図中に点線で示す)をそれぞれ示すものである。
The oil equalizing operation of the compressors 1 and 2 will be explained with reference to FIGS. 4 to 6. Figure 4 shows how the operating frequency Fa of one compressor 1 changes during oil equalization operation (indicated by a solid line in the figure).
and the state of change in the operating frequency Fb of the other compressor 2 (indicated by a dotted line in the figure), respectively.

いま、例えば圧縮機1,2の運転周波数Fa。Now, for example, the operating frequency Fa of compressors 1 and 2.

Fbを略同一状態(Fao=pbo)に設定した通常運
転状態でそれぞれ駆動し、この通常運転状態で一定時間
Tが経過した時点で第1の均油運転を行なう。
They are respectively driven in a normal operating state in which Fb is set to substantially the same state (Fao=pbo), and when a certain period of time T has elapsed in this normal operating state, a first oil equalizing operation is performed.

この第1の均油運転時にはまず、一方の圧縮機1の運転
周波数Faをnステップ周波数低下させる。この場合、
他方の圧縮機2の運転周波数FbはFboのままの状態
で保持させる。そのため、この場合には圧縮機1の運転
周波数Fa1の方が圧縮機2の運転周波数Fboよりも
低くなり、圧縮機1のケース内の圧力Paは圧縮機2の
ケース内の圧力pbよりも高くなるので、高圧側の圧縮
機1のケース内の潤滑油が冷媒とともに均油管45を通
じて徐々に低圧側の圧縮機2のケース内側に流入し、第
5図に示すように圧縮機1のケース内の油面は徐々に下
降するとともに、圧縮機2のケース内の油面ば徐々に上
昇する。なお、この場合の圧縮機1のケース内の油面の
下限レベルは均油管45の下面位置までである。
During this first oil equalization operation, first, the operating frequency Fa of one compressor 1 is lowered by n steps. in this case,
The operating frequency Fb of the other compressor 2 is maintained at Fbo. Therefore, in this case, the operating frequency Fa1 of the compressor 1 is lower than the operating frequency Fbo of the compressor 2, and the pressure Pa in the case of the compressor 1 is higher than the pressure Pb in the case of the compressor 2. Therefore, the lubricating oil in the case of the compressor 1 on the high pressure side gradually flows into the case of the compressor 2 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and as shown in FIG. The oil level in the case of the compressor 2 gradually decreases, and the oil level in the case of the compressor 2 gradually rises. Note that the lower limit level of the oil level in the case of the compressor 1 in this case is up to the lower surface position of the oil equalizing pipe 45.

また、圧縮機1の運転周波数FaをFaよに低下させた
状態で【1時間経過すると、この時点で圧縮機1の運転
周波数FaをFaoからnステップ周波数上昇させる。
Further, when [1 hour has elapsed with the operating frequency Fa of the compressor 1 being decreased to Fa, the operating frequency Fa of the compressor 1 is increased by n steps from Fao at this point.

この場合、圧縮機2の運転周波数FbはFboのままの
状態で保持させる。
In this case, the operating frequency Fb of the compressor 2 is maintained at Fbo.

そのため、この場合には圧縮機1の運転周波数Fa2の
方が圧縮機2の運転周波数Fboよりも高くなり、圧縮
機1のケース内の圧力Paは圧縮機2のケース内の圧力
pbよりも低くなるので、高圧側の圧縮機2のケース内
の潤滑油が冷媒とともに均油管45を通じて徐々に低圧
側の圧縮機1のケース内側に流入し、第6図に示すよう
に圧縮機2のケース内の油面は徐々に下降するとともに
、圧縮機1のケース内の油面は徐々に上昇する。
Therefore, in this case, the operating frequency Fa2 of compressor 1 is higher than the operating frequency Fbo of compressor 2, and the pressure Pa in the case of compressor 1 is lower than the pressure Pb in the case of compressor 2. Therefore, the lubricating oil in the case of the compressor 2 on the high pressure side gradually flows into the case of the compressor 1 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and as shown in FIG. The oil level in the case of the compressor 1 gradually decreases, and the oil level in the case of the compressor 1 gradually rises.

さらに、圧縮機1の運転周波数FaをFa2に上昇させ
た状態でt2時間経過すると、この時点で第1の均油運
転が終了し、圧縮機1の運転周波数FaをFaOに戻し
て通常運転状態に戻す。そのため、この第1の均油運転
終了後の通常運転領域(II)では第6図に示すように
圧縮機2のケース内の油面に比べて圧縮機1のケース内
の油面が上昇した状態で保持される。そして、この通常
運転状態で一定時間Tが経過した時点で第2の均油運転
を行なう。
Furthermore, when time t2 has elapsed with the operating frequency Fa of the compressor 1 raised to Fa2, the first oil equalization operation is completed at this point, and the operating frequency Fa of the compressor 1 is returned to FaO to return to the normal operating state. Return to Therefore, in the normal operation region (II) after the first oil equalization operation, the oil level in the case of compressor 1 rose compared to the oil level in the case of compressor 2, as shown in Figure 6. maintained in the state. Then, after a certain period of time T has elapsed in this normal operating state, a second oil equalizing operation is performed.

この第2の均油運転時にはまず、圧縮機2の運転周波数
Fbをnステップ周波数低下させる。この場合、圧縮機
1の運転周波数FaはFa(、のままの状態で保持させ
る。そのため、この場合には圧縮機2の運転周波数Fb
lの方が圧縮機1の運転周波数Faoよりも低くなり、
圧縮機2のケース内の圧力pbは圧縮機1のケース内の
圧力Paよりも高くなるので、高圧側の圧縮機2のケー
ス内の潤滑油が冷媒とともに均油管45を通じて徐々に
低圧側の圧縮機1のケース内側に流入し、第6図に示す
ように圧縮機2のケース内の油面ば徐々に下降するとと
もに、圧縮機1のケース内の油面は徐々に上昇する。
During this second oil equalization operation, first, the operating frequency Fb of the compressor 2 is lowered by n steps. In this case, the operating frequency Fa of the compressor 1 is maintained as Fa (. Therefore, in this case, the operating frequency Fa of the compressor 2 is Fb
l is lower than the operating frequency Fao of the compressor 1,
Since the pressure Pb inside the case of the compressor 2 becomes higher than the pressure Pa inside the case of the compressor 1, the lubricating oil inside the case of the compressor 2 on the high pressure side passes through the oil equalizing pipe 45 together with the refrigerant and gradually compresses the low pressure side. The oil flows into the case of the compressor 1, and as shown in FIG. 6, the oil level in the case of the compressor 2 gradually decreases, and the oil level in the case of the compressor 1 gradually rises.

また、圧縮機2の運転周波数FbをFblに低下させた
状態でt1時間経過すると、この時点で圧縮機2の運転
周波数FbをFboからnステップ周波数4−昇させる
。この場合、圧縮機1の運転周波数FaはFa□のまま
の状態で保持させる。
Further, when time t1 has elapsed with the operating frequency Fb of the compressor 2 being lowered to Fbl, the operating frequency Fb of the compressor 2 is increased from Fbo by n steps of frequency 4 at this point. In this case, the operating frequency Fa of the compressor 1 is maintained at Fa□.

そのため、この場合には圧縮機2の運転周波数Fb2の
方が圧縮機1の運転周波数Faoよりも高くなり、圧縮
機2のケース内の圧力pbは圧縮機1のケース内の圧力
Paよりも低くなるので、高圧側の圧縮機1のケース内
の潤滑油が冷媒とともに均油管45を通じて徐々に低圧
側の圧縮機2のケース内側に流入し、第5図に示すよう
に圧縮機1のケース内の油面は徐々に下降するとともに
、圧縮機2のケース内の油面は徐々に上昇する。
Therefore, in this case, the operating frequency Fb2 of compressor 2 is higher than the operating frequency Fao of compressor 1, and the pressure pb in the case of compressor 2 is lower than the pressure Pa in the case of compressor 1. Therefore, the lubricating oil in the case of the compressor 1 on the high pressure side gradually flows into the case of the compressor 2 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and as shown in FIG. The oil level in the case of the compressor 2 gradually decreases, and the oil level in the case of the compressor 2 gradually rises.

さらに、圧縮機2の運転周波数FbをFb2に上昇させ
た状態でt2時間経過すると、この時点で圧縮機2の運
転周波数FbをFboに戻し、通常運転状態に戻す。そ
のため、この第2の均油運転終了後の通常運転領域(1
)では第5図に示すように圧縮機1のケース内の曲面に
比べて圧縮機2のケース内の油面が上昇した状態で保持
される。
Furthermore, when the operating frequency Fb of the compressor 2 is raised to Fb2 for a period of t2, the operating frequency Fb of the compressor 2 is returned to Fbo at this point, and the normal operating state is returned. Therefore, the normal operation area (1
), the oil level inside the case of the compressor 2 is maintained at a higher level than the curved surface inside the case of the compressor 1, as shown in FIG.

そして、以後は通常運転と第1の肉池運転または第2の
均油運転とを一定周期毎に交互に繰返すようにしている
Thereafter, the normal operation and the first oil-leveling operation or the second oil-equalizing operation are alternately repeated at regular intervals.

かくして、」−記構成のものにあっては圧縮機1゜2の
2台運転中、再圧縮機1,2を略同一の運転周波数で駆
動する通常運転、再圧縮機1.2のうちの一方の圧縮機
1の運転周波数Faを圧縮機2の運転周波数Fbに比べ
て相対的に一定時間ずつ上下させ、その間、圧縮機2の
運転周波数Fbを一定の運転周波数Fb□で保持する第
1の均油運転および再圧縮機1.2を入替えた状態で第
1の均油運転を行なう第2の均油運転を一定周期毎に交
互に繰返す均油運転を行なうようにしたので、第1の均
油運転終了後の通常運転領域(II)における圧縮機1
.2の油面レベル状態と第2の均油運転終了後の通常運
転領域(4’)における圧縮機1.2の油面レベル状態
とで交互に油面レベルの高低を入替えることができる。
Thus, in the case of the configuration described in "-", during the operation of the two compressors 1 and 2, during normal operation in which the recompressors 1 and 2 are driven at substantially the same operating frequency, and when the recompressors 1 and 2 are operated at approximately the same operating frequency, A first system that increases or decreases the operating frequency Fa of one compressor 1 relative to the operating frequency Fb of the compressor 2 by a certain period of time, and maintains the operating frequency Fb of the compressor 2 at a constant operating frequency Fb□ during that time. The first oil equalizing operation is repeated at regular intervals, and the first oil equalizing operation is performed with the recompressor 1.2 replaced. Compressor 1 in normal operation region (II) after completion of oil equalization operation
.. The height of the oil level can be alternately changed between the oil level state of the compressor 1.2 and the oil level state of the compressor 1.2 in the normal operation region (4') after the end of the second oil equalization operation.

そのため、長時間運転の場合でも圧縮機1,2の油面レ
ベルの高低が一方に極端に偏ることを防止することがで
き、圧縮機1,2の油面レベルの均一化を図ることがで
きる。
Therefore, even during long-term operation, it is possible to prevent the oil level of the compressors 1 and 2 from being extremely biased to one side, and it is possible to equalize the oil level of the compressors 1 and 2. .

したがって、常に安定運転が可能となるとともに、圧縮
機1.2のオイル上りやロックを防ぐことができ、ひい
ては圧縮機1.2の損傷を防ぐことができる。
Therefore, stable operation is possible at all times, oil leakage and locking of the compressor 1.2 can be prevented, and damage to the compressor 1.2 can be prevented.

さらに、均油管45としては、大径のものは必要なく、
小径のものを用いることができるので、十分な強度を確
保することができ、圧縮機振動や圧縮機騒音を回避する
ことができるとともに、コスト的にも有利である。
Furthermore, there is no need for a large-diameter oil equalizing pipe 45;
Since a small diameter one can be used, sufficient strength can be ensured, compressor vibration and compressor noise can be avoided, and it is also advantageous in terms of cost.

また、コスト高のフロート式レギュレータや油面センサ
等を格別に圧縮機1.2に設置することなく均油効果を
得ることができ°るので、全体の構成を簡略化すること
ができ、コスト低下を図ることができる。
In addition, it is possible to obtain an oil equalization effect without installing a costly float type regulator, oil level sensor, etc. in the compressor 1.2, so the overall configuration can be simplified and the cost can be reduced. It is possible to reduce the

さらに、圧縮機1.2の均油運転時には通常運転中の運
転周波数Fag  (またはFb、)よりもnステップ
周波数低下させる動作と通常運転中の運転周波数Fa□
  (またはFbo)よりもnステップ周波数−上昇さ
せる動作とを交互に行なわせるようにしているので、通
常運転中の運転周波数FaO(またはFbo)よりもn
ステップ周波数上昇させる際にインバータ回路51(ま
たは52)の出力電流異常を判定し、このインバータ回
路51(または52)の出力周波数を一定値低減する電
流レリースが動作して周波数上昇時の均油運転が不能に
なった場合であっても、通常運転中の運転周波数Fao
 (またはFbo)よりもnステップ周波数低下させる
動作時に確実に均油運転を行なうことができる。そのた
め、1時間内に少なくとも1回の均油運転を行ない均油
効果を得ることができる。
Furthermore, during oil equalization operation of compressor 1.2, the frequency is lowered by n steps than the operating frequency Fag (or Fb,) during normal operation, and the operating frequency Fa□ during normal operation.
(or Fbo), the frequency is increased by n steps.
When increasing the step frequency, an abnormality in the output current of the inverter circuit 51 (or 52) is determined, and a current release is activated to reduce the output frequency of the inverter circuit 51 (or 52) by a certain value, resulting in oil equalization operation when the frequency increases. Even if the operating frequency Fao becomes unavailable during normal operation,
(or Fbo), it is possible to reliably perform oil equalization operation when the frequency is lowered by n steps than Fbo. Therefore, an oil equalizing effect can be obtained by performing oil equalizing operation at least once within one hour.

また、圧縮機1.2が共に運転周波数Fa。Further, both compressors 1 and 2 have an operating frequency Fa.

Fbが最大値に達した場合であっても通常運転中の運転
周波数Fa□  (またはFbo)よりもnステップ周
波数低下させる動作時に確実に均油運転を行なうことが
できるので、1時間内に少なくとも1回の均油運転を行
ない均油効果を得ることができる。
Even when Fb reaches its maximum value, oil equalization operation can be reliably performed when the frequency is lowered by n steps than the operating frequency Fa□ (or Fbo) during normal operation. The oil equalizing effect can be obtained by performing one oil equalizing operation.

さらに、圧縮機1,2が共に運転周波数Fa。Furthermore, both compressors 1 and 2 have an operating frequency Fa.

Fbが最小値に達した場合であっても通常運転中の運転
周波数FaO(またはFbo)よりもnステップ周波数
上昇させる動作時に確実に均油運転を行なうことができ
るので、1時間内に少なくとも1回の均油運転を行ない
均油効果を得ることができる。
Even if Fb reaches the minimum value, oil equalization operation can be reliably performed when the frequency is increased by n steps from the operating frequency FaO (or Fbo) during normal operation, so at least 1 Oil equalization effect can be obtained by performing oil equalization operation twice.

なお、この発明は上記実施例に限定されるものではない
。例えば、上記実施例では室内ユニットが3台の場合に
ついて説明したが、それ以上あるいは2台の場合につい
ても同様に実施可能である。
Note that this invention is not limited to the above embodiments. For example, in the above embodiment, the case where there are three indoor units has been described, but it is also possible to implement the case with more or two indoor units.

さらに、その他この発明の要旨を逸脱しない範囲で種々
変形実施できることは勿論である。
Furthermore, it goes without saying that various other modifications can be made without departing from the gist of the invention.

[発明の効果] この発明によれば各圧縮機間に均油管を設けるとともに
、両圧縮機の同時運転中、両圧縮機を略同一の運転周波
数で駆動する通常運転、両圧縮機のうちの一方の運転周
波数を他方に比べて相対的に一定時間ずつ上下させ、他
方の運転周波数を一定の運転周波数で保持する第1の均
油運転および両圧縮機を入替えた状態で第1の均油運転
を行なう第2の均油運転を一定周期毎に繰返す均油運転
手段を設けたので、大径の均油管を用いることなく各圧
縮機間の均油効果を得ることができ、これにより圧縮機
振動や圧縮機騒音を回避し、しかも均油管の十分な強度
を確保することができ、信頼性の向上を図ることができ
る。
[Effect of the invention] According to this invention, an oil equalizing pipe is provided between each compressor, and during simultaneous operation of both compressors, normal operation in which both compressors are driven at approximately the same operating frequency, and First oil equalization operation in which the operating frequency of one is increased or decreased by a fixed amount of time relative to the other and the other operating frequency is maintained at a constant operating frequency, and the first oil equalization operation is performed with both compressors replaced. Since we have provided an oil equalizing operation means that repeats the second oil equalizing operation at regular intervals, it is possible to obtain an oil equalizing effect between each compressor without using a large diameter oil equalizing pipe, and this allows the compression Machine vibration and compressor noise can be avoided, and sufficient strength of the oil equalizing pipe can be ensured, leading to improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図はこの発明の一実施例を示すもので、
第1図は空気調和機内の冷凍サイクルを示す全体の概略
構成図、第2図は各圧縮機と均油管の関係を示す概略構
成図、第3図は冷凍サイクルの制御回路の構成を示す概
略構成図、第4図は均油運転時の運転周波数の変化状態
を示す特性図、第5図は第1の圧縮機の運転周波数を第
2の圧縮機の運転周波数よりも低くした場合の油面変化
状態を示す概略構成図、第6図は第1の圧縮機の運転周
波数を第2の圧縮機の運転周波数よりも高くした場合の
油面変化状態を示す概略構成図、第7図は従来の空気調
和機内の冷凍サイクルを示す全体の概略構成図である。 A・・・室外ユニット、B・・・分岐ユニット、C,D
。 E・・・室内ユニット、1,2・・・能力可変圧縮機、
45・・・均油管、50・・・室外制御部、60・・・
マルチ制御部、70.80.90・・・室内制御部。 出願人代理人  弁理士 鈴江武彦
1 to 6 show an embodiment of the present invention,
Figure 1 is an overall schematic diagram showing the refrigeration cycle in the air conditioner, Figure 2 is a schematic diagram showing the relationship between each compressor and oil equalizing pipes, and Figure 3 is a schematic diagram showing the configuration of the refrigeration cycle control circuit. The configuration diagram, Figure 4 is a characteristic diagram showing how the operating frequency changes during oil equalization operation, and Figure 5 shows the oil change when the operating frequency of the first compressor is lower than the operating frequency of the second compressor. FIG. 6 is a schematic configuration diagram showing the oil level change state when the operating frequency of the first compressor is higher than the operating frequency of the second compressor, and FIG. 7 is a schematic configuration diagram showing the oil level change state. FIG. 1 is an overall schematic configuration diagram showing a refrigeration cycle in a conventional air conditioner. A...Outdoor unit, B...Branch unit, C, D
. E... Indoor unit, 1, 2... Variable capacity compressor,
45... Oil equalizing pipe, 50... Outdoor control section, 60...
Multi-control unit, 70.80.90...indoor control unit. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 2台の能力可変圧縮機を有する室外ユニット、および複
数の室内ユニットを備え、これら室内ユニットの要求能
力に応じて前記各圧縮機の運転台数および運転周波数を
制御する空気調和機において、前記各圧縮機間に設けた
均油管と、前記両圧縮機の同時運転中、前記両圧縮機を
略同一の運転周波数で駆動する通常運転、前記両圧縮機
のうちの一方の運転周波数を他方に比べて相対的に一定
時間ずつ上下させ、他方の運転周波数を一定の運転周波
数で保持する第1の均油運転および前記両圧縮機を入替
えた状態で前記第1の均油運転を行なう第2の均油運転
を一定周期毎に繰返す均油運転手段とを具備したことを
特徴とする空気調和機。
In an air conditioner comprising an outdoor unit having two variable capacity compressors and a plurality of indoor units, the number of operating units and operating frequency of each compressor is controlled according to the required capacity of these indoor units. During simultaneous operation of the oil equalizing pipe provided between the machines and both compressors, normal operation in which both compressors are driven at approximately the same operating frequency, and the operating frequency of one of the compressors compared to the other. A first oil equalizing operation in which the operating frequency of the other compressor is maintained at a constant operating frequency by increasing and decreasing the operating frequency for a certain period of time, and a second oil equalizing operation in which the first oil equalizing operation is performed with both compressors replaced. An air conditioner characterized by comprising an oil equalizing operation means that repeats oil operation at regular intervals.
JP63028112A 1988-02-09 1988-02-09 Air conditioner Pending JPH01203678A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63028112A JPH01203678A (en) 1988-02-09 1988-02-09 Air conditioner
GB8902043A GB2215866B (en) 1988-02-09 1989-01-31 Multi-type air conditioner system with oil level control for parallel operated compressor therein
US07/305,906 US4870831A (en) 1988-02-09 1989-02-02 Multi-type air conditioner system with oil level control for parallel operated compressor therein
AU29572/89A AU603279B2 (en) 1988-02-09 1989-02-02 Multi-type air conditioner system with oil control for parallel operated compressor therein
KR1019890001487A KR930008346B1 (en) 1988-02-09 1989-02-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028112A JPH01203678A (en) 1988-02-09 1988-02-09 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01203678A true JPH01203678A (en) 1989-08-16

Family

ID=12239732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028112A Pending JPH01203678A (en) 1988-02-09 1988-02-09 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01203678A (en)

Similar Documents

Publication Publication Date Title
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
JP2664740B2 (en) Air conditioner
KR930008346B1 (en) Air conditioner
JP2557903B2 (en) Air conditioner
US4766735A (en) Inverter-aided multisystem air conditioner with control functions of refrigerant distribution and superheating states
EP1692439A1 (en) Refrigerant system with controlled refrigerant charge amount
JP4440883B2 (en) Air conditioner
JP2656285B2 (en) Air conditioner
JP3163133B2 (en) Air conditioner
JPH01127865A (en) Air conditioner
JPH01203678A (en) Air conditioner
EP1475575B1 (en) Air conditioner
JP2835044B2 (en) Air conditioner
JPH01203677A (en) Air conditioner
JPH01203680A (en) Air conditioner
JPH01203679A (en) Air conditioner
JPH01203676A (en) Air conditioner
JPH01203854A (en) Air conditioner
JPH01203859A (en) Air conditioner
JP2614253B2 (en) Air conditioner
JPH01314861A (en) Air conditioner
KR20060056511A (en) Controlling method of inverter compressor in air conditioner
JPH01203858A (en) Air conditioner
JPH0960991A (en) Air-conditioner and operation method thereof
JPH01203860A (en) Air conditioner