JP2664702B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2664702B2
JP2664702B2 JP63028115A JP2811588A JP2664702B2 JP 2664702 B2 JP2664702 B2 JP 2664702B2 JP 63028115 A JP63028115 A JP 63028115A JP 2811588 A JP2811588 A JP 2811588A JP 2664702 B2 JP2664702 B2 JP 2664702B2
Authority
JP
Japan
Prior art keywords
compressors
oil
operating frequency
compressor
oil equalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63028115A
Other languages
Japanese (ja)
Other versions
JPH01203680A (en
Inventor
学 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63028115A priority Critical patent/JP2664702B2/en
Priority to GB8902043A priority patent/GB2215866B/en
Priority to US07/305,906 priority patent/US4870831A/en
Priority to AU29572/89A priority patent/AU603279B2/en
Priority to KR1019890001487A priority patent/KR930008346B1/en
Publication of JPH01203680A publication Critical patent/JPH01203680A/en
Application granted granted Critical
Publication of JP2664702B2 publication Critical patent/JP2664702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は1台の室外ユニットと複数の室内ユニット
とを備えたマルチタイプの空気調和機の改良に関する。
The present invention relates to an improvement of a multi-type air conditioner including one outdoor unit and a plurality of indoor units.

(従来の技術) 一般に、この種の空気調和機としては第7図に示すよ
うなヒートポンプ式冷凍サイクルを備えたものがある。
(Prior Art) Generally, as this type of air conditioner, there is an air conditioner equipped with a heat pump refrigeration cycle as shown in FIG.

第7図において、Aは室外ユニット、Bは分岐ユニッ
ト、C,D,Eは室内ユニットである。室外ユニットAは2
台の能力可変圧縮機1,2を備え、その圧縮機1,2を逆止弁
3,4をそれぞれ介して並列に接続している。そして、圧
縮機1,2、四方弁5、室外熱交換器6、暖房用膨張弁7
と冷房サイクル形成用逆止弁8の並列体、リキッドタン
ク9、電動式流量調整弁11,21,31、冷房用膨張弁12,22,
32と暖房サイクル形成用逆止弁13,23,33の並列体、室内
熱交換器14,24,34、ガス側開閉弁(電磁開閉弁)15,25,
35、アキュームレータ10などを順次連通し、ヒートポン
プ式冷凍サイクルを構成している。
In FIG. 7, A is an outdoor unit, B is a branch unit, and C, D and E are indoor units. Outdoor unit A is 2
Equipped with two variable capacity compressors 1 and 2, and the compressors 1 and 2 are check valves
They are connected in parallel via 3 and 4, respectively. Then, the compressors 1 and 2, the four-way valve 5, the outdoor heat exchanger 6, the heating expansion valve 7
And a cooling cycle forming check valve 8 in parallel, a liquid tank 9, electric flow regulating valves 11, 21, 31, cooling expansion valves 12, 22,
A parallel body of 32 and check valves 13, 23, 33 for forming a heating cycle, indoor heat exchangers 14, 24, 34, gas side on-off valves (electromagnetic on-off valves) 15, 25,
35, the accumulator 10 and the like are sequentially communicated to form a heat pump refrigeration cycle.

なお、冷房用膨張弁12,22,32はそれぞれ感温筒12a,22
a,32aを有しており、これら感温筒を室内熱交換器14,2
4,34のガス側冷媒配管にそれぞれ取付けている。
The cooling expansion valves 12, 22, and 32 are temperature-sensitive cylinders 12a, 22 respectively.
a, 32a, and these temperature-sensitive cylinders are connected to the indoor heat exchangers 14, 2
It is attached to each of 4,34 gas side refrigerant pipes.

すなわち、室内熱交換器14,24,34を並列構成とすると
ともに、冷房運転時は図示実線矢印の方向に冷媒を流し
て冷房サイクルを形成し、暖房運転時は四方弁5の切換
作動により図示点線矢印の方向に冷媒を流して暖房サイ
クルを形成するようにしている。
That is, the indoor heat exchangers 14, 24, and 34 are arranged in parallel, and a cooling cycle is formed by flowing a refrigerant in a direction of a solid line arrow in a cooling operation, and a switching operation of the four-way valve 5 is performed in a heating operation. The refrigerant is caused to flow in the direction of the dotted arrow to form a heating cycle.

このような空気調和機においては、各室内ユニットの
要求能力を満足するべく、圧縮機1,2の運転台数および
能力を制御するとともに、流量制御弁11,21,31の開度を
それぞれ制御して各室内熱交換器への冷媒流量を調節す
るようにしている。
In such an air conditioner, in order to satisfy the required capacity of each indoor unit, the number of operating compressors 1 and 2 and the capacity thereof are controlled, and the opening degrees of the flow control valves 11, 21, 31 are respectively controlled. Thus, the flow rate of the refrigerant to each indoor heat exchanger is adjusted.

そして、膨張弁12,22,32により、冷媒流量の変化にか
かわらず各室内熱交換器における冷媒過熱度を一定に維
持し、安定かつ効率の良い運転を行なうようにしてい
る。
The expansion valves 12, 22, and 32 maintain a constant degree of superheat of the refrigerant in each indoor heat exchanger irrespective of a change in the refrigerant flow rate, thereby performing stable and efficient operation.

したがって、たとえば冷房運転時、各室内ユニットの
要求能力が大きくなると、圧縮機1の能力が増大した
り、さらには圧縮機1に加えて圧縮機2も起動すること
になる。この状態から各室内ユニットの要求能力が小さ
くなると、圧縮機2の能力が低減したり、さらには圧縮
機2の運転が停止して圧縮機1のみの運転となる。
Therefore, for example, during the cooling operation, when the required capacity of each indoor unit increases, the capacity of the compressor 1 increases, and the compressor 2 in addition to the compressor 1 starts. When the required capacity of each indoor unit is reduced from this state, the capacity of the compressor 2 is reduced, or the operation of the compressor 2 is stopped and only the compressor 1 is operated.

しかしながら、このような空気調和機においては、圧
縮機1,2の吐油量と返油量が完全には一致しないため、
時間の経過とともに一方の圧縮機の潤滑油の量が増え、
他方の圧縮機の潤滑油の量が減り、両者間に油量のアン
バランスが生じて安定運転が困難になる。
However, in such an air conditioner, the oil discharge amount and the oil return amount of the compressors 1 and 2 do not completely match.
Over time, the amount of lubricating oil in one compressor increased,
The amount of lubricating oil in the other compressor decreases, and an imbalance in the amount of oil occurs between the two, making stable operation difficult.

しかも、潤滑油の油面レベルが限界油面レベル(運転
可能レベル)よりも下がった場合には、潤滑部への潤滑
油の供給が断たれ、圧縮機1,2が損傷してしまう。
Moreover, when the oil level of the lubricating oil falls below the critical oil level (operable level), the supply of the lubricating oil to the lubricating unit is cut off, and the compressors 1 and 2 are damaged.

そこで、各圧縮機1,2における油量のアンバランスを
解消するべく、各圧縮機1,2間を均油管で連通し、油量
の多い方から少ない方へと潤滑油を移動させるようにし
たものがある。
Therefore, in order to eliminate the imbalance in the amount of oil in each of the compressors 1 and 2, it is necessary to connect the compressors 1 and 2 with an equalizing pipe so that the lubricating oil moves from the larger oil amount to the smaller oil amount. There is something.

ただし、各圧縮機1,2の能力は完全に同じではないた
め、相対的に能力の大きい側の圧縮機は吸込管の圧力損
失が大きくなり、圧縮機ケース内圧力は逆に小さくな
る。この傾向は各圧縮機1,2の容量が異なる場合に顕著
である。
However, since the capacity of each of the compressors 1 and 2 is not completely the same, the pressure loss of the suction pipe of the compressor having a relatively large capacity becomes large, and the pressure inside the compressor case becomes small. This tendency is remarkable when the compressors 1 and 2 have different capacities.

その結果、冷媒ガスはケース内圧力の高い側の圧縮機
からケース内圧力の小さい側の圧縮機へと均油管を通し
て移動し、それに伴って潤滑油も同方向に移動する。
As a result, the refrigerant gas moves through the oil equalizing pipe from the compressor on the side with the higher internal pressure to the compressor on the side with the lower internal pressure, and accordingly, the lubricating oil also moves in the same direction.

そして、ケース内圧力の高い側の圧縮機における返油
量が吐油量よりも多いときには、均油管レベル以上の潤
滑油は均油管を通してケース内圧力の低い側の圧縮機に
移動し、各圧縮機内の油面レベルは均油管位置で等しく
なる。逆に、返油量が吐油量よりも少ないときには、ケ
ース内圧力の高い側の圧縮機内の油面レベルが時間の経
過とともに低下し、ついには限界油面レベル以下に下が
ってしまう。なお、この場合、ケース内圧力の低い側の
圧縮機内の潤滑油は、各圧縮機のケース内圧力差によ
り、ケース内圧力の高い側の圧縮機への移動が阻止され
る。
When the amount of oil returned from the compressor with the higher pressure in the case is greater than the amount of oil discharged, lubricating oil at a level equal to or higher than the oil equalizing pipe moves to the compressor with the lower pressure in the case through the oil equalizing pipe. The oil level inside the machine is equal at the leveling pipe position. Conversely, when the oil return amount is smaller than the oil discharge amount, the oil level in the compressor on the side where the pressure in the case is high decreases with the passage of time, and eventually falls below the limit oil level. In this case, the lubricating oil in the compressor with the lower pressure in the case is prevented from moving to the compressor with the higher pressure in the case due to the pressure difference in the case between the compressors.

そこで、均油管の管路を大径にすることにより、各圧
縮機1,2内の油面レベルを均一化するとともに、各圧縮
機1,2のケース内圧力を均一化することが考えられてい
る。
Therefore, it is conceivable to make the oil level in each of the compressors 1 and 2 uniform and the pressure in the case of each of the compressors 1 and 2 by increasing the diameter of the oil equalizing pipe. ing.

ところが、大径の均油管を用いると、一方の圧縮機に
発生する振動が均油管を介して他方の圧縮機に伝わり易
くなり、両圧縮機1,2の運転周波数域の組合わせによっ
ては共振等が発生し、圧縮機振動や圧縮機騒音を招く問
題があるとともに、均油管の破損につながるおそれもあ
った。
However, when a large-diameter oil equalizing pipe is used, vibration generated in one compressor is easily transmitted to the other compressor via the oil equalizing pipe, and resonance occurs depending on a combination of operating frequency ranges of both compressors 1 and 2. And the like, which causes compressor vibration and compressor noise, and also may cause damage to the oil equalizing pipe.

(発明が解決しようとする課題) 各圧縮機1,2間を均油管で連通した場合には各圧縮機
1,2のケース内圧力差により、ケース内圧力の高い側の
圧縮機からケース内圧力の小さい側の圧縮機へとケース
内の潤滑油が均油管を通して移動し、各圧縮機1,2のケ
ース内の油面レベルが不均一になる問題があるととも
に、大径の均油管を用いて各圧縮機1,2内の油面レベル
の均一化および各圧縮機1,2のケース内圧力の均一化を
図るようにした場合には一方の圧縮機に発生する振動が
均油管を介して他方の圧縮機に伝わり易くなり、両圧縮
機1,2の運転周波数域の組合わせによっては共振等が発
生し、圧縮機振動や圧縮機騒音を招く問題があるととも
に、均油管の破損につながるおそれもあった。
(Problems to be Solved by the Invention) When the compressors 1 and 2 are connected by an oil equalizing pipe,
Due to the pressure difference in the cases 1 and 2, the lubricating oil in the case moves from the compressor with the higher pressure in the case to the compressor with the lower pressure in the case through the oil equalizing pipe, and the In addition to the problem that the oil level in the case becomes uneven, the oil level in each compressor 1 and 2 is made uniform and the pressure in the case of each compressor 1 and 2 is If the compressor is made uniform, the vibration generated in one compressor will be easily transmitted to the other compressor via the oil equalization pipe, and depending on the combination of the operating frequency ranges of both compressors 1 and 2, resonance may occur. As a result, there is a problem that compressor vibration and compressor noise are caused, and there is a possibility that the oil equalizing pipe may be damaged.

この発明は上記のような事情に鑑みてなされたもの
で、その目的とするところは、大径の均油管を用いるこ
となく各圧縮機間の均油効果を得ることができ、圧縮機
振動や圧縮機騒音を回避し、しかも均油管の十分な強度
を確保して信頼性を高めることができ、加えて一層の均
油効果の向上を図ることができる空気調和機を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain an oil equalizing effect between compressors without using a large-diameter oil equalizing pipe. It is an object of the present invention to provide an air conditioner that can avoid compressor noise, secure sufficient strength of an oil equalizing pipe to enhance reliability, and further improve the oil equalizing effect.

[発明の構成] (課題を解決するための手段) 請求項1の発明は2台の能力可変圧縮機を有する室外
ユニット、および複数の室内ユニットを備え、これら室
内ユニットの要求能力に応じて前記各圧縮機の運転台数
および運転周波数を制御する空気調和機において、前記
各圧縮機間に設けた均油管と、前記両圧縮機の同時運転
中、前記両圧縮機を略同一の運転周波数で駆動する通常
運転手段と、前記両圧縮機のうちの一方の運転周波数を
他方に比べて相対的に一定時間ずつ上下させ、他方の運
転周波数を一定の運転周波数で保持する第1の均油運転
と、前記両圧縮機を入替えた状態で前記第1の均油運転
を行ない第2の均油運転とを繰返す均油運転手段とを具
備したものである。
[Structure of the Invention] (Means for Solving the Problems) The invention of claim 1 includes an outdoor unit having two variable capacity compressors, and a plurality of indoor units. In an air conditioner that controls the number of operating compressors and the operating frequency of each compressor, an oil equalizing pipe provided between the compressors and the compressors are driven at substantially the same operating frequency during simultaneous operation of the compressors. Normal operating means, and a first oil leveling operation in which one of the two compressors is moved up and down by a fixed time relatively to the other by a fixed time, and the other operating frequency is kept at a fixed operating frequency. And an oil equalizing operation means for repeating the first oil equalizing operation and the second oil equalizing operation in a state where both the compressors are exchanged.

請求項2の発明は2台の能力可変圧縮機を有する室外
ユニット、および複数の室内ユニットを備え、これら室
内ユニットの要求能力に応じて前記各圧縮機の運転台数
および運転周波数を制御する空気調和機において、前記
各圧縮機間に設けた均油管と、前記両圧縮機の同時運転
中、前記両圧縮機を略同一の運転周波数で駆動する第1
の駆動状態と、前記両圧縮機の運転周波数間に所定周波
数の差を持たせた状態で駆動する第2の駆動状態とを組
合わせて前記両圧縮機の総合能力を制御する手段と、始
めに前記両圧縮機を略同一の運転周波数で駆動し、その
後、前記両圧縮機のうちの一方の運転周波数を他方に比
べて相対的に一定時間ずつ上下させ、他方の運転周波数
を一定の運転周波数で保持する第1の均油運転手段と、
前記両圧縮機を入替えた状態で前記第1の均油運転を行
なう第2の均油運転手段とを具備したものである。
The invention according to claim 2 includes an outdoor unit having two variable capacity compressors, and a plurality of indoor units, and the air conditioner controls the number of operating and the operating frequency of each of the compressors according to the required capacity of the indoor units. An oil equalizing pipe provided between each of the compressors, and a first for driving both of the compressors at substantially the same operating frequency during simultaneous operation of the two compressors.
Means for controlling the total capacity of the two compressors by combining the driving state of the two compressors and the second driving state of driving the compressor with a predetermined frequency difference between the operating frequencies of the two compressors. Then, the two compressors are driven at substantially the same operating frequency, and thereafter, the operating frequency of one of the two compressors is increased and decreased by a fixed time relative to the other, and the other operating frequency is set to a constant operating frequency. First oil leveling means for maintaining at a frequency;
A second oil equalizing operation means for performing the first oil equalizing operation in a state where the two compressors are exchanged.

(作用) 請求項1の発明では通常運転時には2台の能力可変圧
縮機の同時運転中、両圧縮機を略同一の運転周波数で駆
動する。さらに、均油運転時には両圧縮機のうちの一方
の運転周波数を他方に比べて相対的に一定時間ずつ上下
させ、他方の運転周波数を一定の運転周波数で保持する
第1の均油運転と、両圧縮機を入替えた状態で第1の均
油運転を行なう第2の均油運転とを繰返すことにより、
大径の均油管を用いることなく各圧縮機間の均油効果を
得るとともに、圧縮機振動や圧縮機騒音を回避させるよ
うにしたものである。
(Operation) In the invention of claim 1, during the normal operation, both compressors are driven at substantially the same operation frequency during the simultaneous operation of the two variable capacity compressors. Further, at the time of oil equalizing operation, a first oil equalizing operation in which one of the two compressors is moved up and down relative to the other by a fixed time relatively, and the other operating frequency is held at a constant operating frequency. By repeating the second oil equalizing operation in which the first oil equalizing operation is performed with both compressors replaced,
An oil equalizing effect between the compressors is obtained without using a large-diameter oil equalizing pipe, and compressor vibration and compressor noise are avoided.

請求項2の発明では2台の能力可変圧縮機の同時運転
中、両圧縮機を略同一の運転周波数で駆動する第1の駆
動状態と両圧縮機の運転周波数間に所定周波数の差を持
たせた状態で駆動する第2の駆動状態とを組合わせて制
御することにより、両圧縮機の総合能力の分解能を高め
るとともに、均油運転時には始めに両圧縮機を略同一の
運転周波数で駆動し、その後、両圧縮機のうちの一方の
運転周波数を他方に比べて相対的に一定時間ずつ上下さ
せ、他方の運転周波数を一定の運転周波数で保持するこ
とにより、両圧縮機が第2の駆動状態のままの状態で均
油運転が開始されることを防止し、さらに第1の均油運
転および第2の均油運転を一定周期毎に繰返し、第1の
および第2の均油運転時には両圧縮機の運転周波数を相
対的に上下させ、両圧縮機の圧縮機ケース内の循環油を
均油管を通して効率よく流通させることにより、大径の
均油管を用いることなく各圧縮機間の均油効果を得ると
ともに、圧縮機振動や圧縮機騒音を回避させるようにし
たものである。
According to the invention of claim 2, during the simultaneous operation of the two variable capacity compressors, there is a predetermined frequency difference between the first drive state in which both compressors are driven at substantially the same operation frequency and the operation frequency of both compressors. By controlling in combination with the second drive state in which the compressors are driven in a synchronized state, the resolution of the overall capacity of both compressors is increased, and both compressors are driven at substantially the same operation frequency during oil equalization operation. Then, the operating frequency of one of the two compressors is increased and decreased by a fixed time relative to the other, and the other operating frequency is maintained at a constant operating frequency, so that the two compressors are in the second operation frequency. The first oil equalizing operation and the second oil equalizing operation are repeated at regular intervals to prevent the oil equalizing operation from being started in the drive state, and the first and second oil equalizing operations are repeated. Sometimes the operating frequency of both compressors is raised and lowered relatively, By efficiently circulating the circulating oil in the compressor case of the compressor through the oil equalizing pipe, the oil equalizing effect between each compressor can be obtained without using a large-diameter oil equalizing pipe, and the compressor vibration and compressor noise are reduced. This is to avoid it.

(実施例) 以下、この発明の一実施例を第1図乃至第6図を参照
して説明する。なお、第1図乃至第6図中で第7図と同
一部分には同一符号を付し、その説明は省略する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 6, the same parts as those in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted.

第1図に示すように、圧縮機1の冷媒吐出側配管にオ
イルセパレータ41を設け、そのオイルセパレータ41から
圧縮機1の冷媒吸込側配管にかけてオイルバイパス管42
を設ける。
As shown in FIG. 1, an oil separator 41 is provided on a refrigerant discharge side pipe of the compressor 1, and an oil bypass pipe 42 extends from the oil separator 41 to a refrigerant suction side pipe of the compressor 1.
Is provided.

さらに、圧縮機2の冷媒吐出側配管にオイルセパレー
タ43を設け、そのオイルセパレータ43から圧縮機2の冷
媒吸込側配管にかけてオイルバイパス管44を設ける。
Further, an oil separator 43 is provided in the refrigerant discharge side pipe of the compressor 2, and an oil bypass pipe 44 is provided from the oil separator 43 to the refrigerant suction side pipe of the compressor 2.

また、第2図に示すように圧縮機1,2のそれぞれケー
スを均油管45で連通する。この場合、圧縮機1,2は同一
面に設置する。なお、圧縮機1,2にはケース内に溜めら
れる潤滑油の最適な基準油面レベルおよび許容最低限の
限界油面レベルが予め定めてあり、その基準油面レベル
とほぼ同じ高さの位置に均油管45を取付ける。
Further, as shown in FIG. 2, the cases of the compressors 1 and 2 are connected to each other by an oil equalizing pipe 45. In this case, the compressors 1 and 2 are installed on the same surface. In the compressors 1 and 2, the optimal reference oil level and the minimum allowable limit oil level of the lubricating oil stored in the cases are predetermined, and are set at positions at almost the same height as the reference oil level. Attach oil equalizing pipe 45 to

一方、第3図は冷凍サイクルの制御回路を示すもので
ある。第3図中で、50は室外ユニットAに装着させた室
外制御部である。この室外制御部50はマイクロコンピュ
ータおよびその周辺回路などからなり、外部にインバー
タ回路51,52に接続している。インバータ回路51,52は交
流電源53の電圧を整流し、それを室外制御部50の指定に
応じたスイッチングによって所定周波数の交流電圧に変
換し、圧縮機モータ1M,2Mにそれぞれ駆動電力として供
給するものである。
FIG. 3 shows a control circuit of the refrigeration cycle. In FIG. 3, reference numeral 50 denotes an outdoor control unit mounted on the outdoor unit A. The outdoor control unit 50 includes a microcomputer and its peripheral circuits, and is externally connected to inverter circuits 51 and 52. The inverter circuits 51 and 52 rectify the voltage of the AC power supply 53, convert it to an AC voltage of a predetermined frequency by switching according to the specification of the outdoor control unit 50, and supply the AC voltage as drive power to the compressor motors 1M and 2M, respectively. Things.

また、60は分岐ユニットBに装着させたマルチ制御部
である。このマルチ制御部60はマイクロコンピュータお
よびその周辺回路からなり、外部に流量調整弁11,21,31
および開閉弁15,25,35をそれぞれ接続している。
Reference numeral 60 denotes a multi-control unit mounted on the branch unit B. The multi-control unit 60 is composed of a microcomputer and its peripheral circuits, and is externally provided with flow control valves 11, 21, 31.
And on-off valves 15, 25 and 35, respectively.

さらに、70,80,90は室内ユニットC,D,Eにそれぞれ装
着させた室内制御部である。これら室内制御部70,80,90
はマイクロコンピュータおよびその周辺回路からなり、
外部に運転操作部71,81,91および室内温度センサ72,82,
92をそれぞれ接続している。
Further, 70, 80, and 90 are indoor control units mounted on the indoor units C, D, and E, respectively. These indoor control units 70, 80, 90
Consists of a microcomputer and its peripheral circuits,
External operation control units 71, 81, 91 and indoor temperature sensors 72, 82,
92 are connected respectively.

そして、各室内制御部70,80,90は周波数設定信号f1,f
2,f3を要求能力としてマルチ制御部60に転送するように
なっている。マルチ制御部60は転送されてくる周波数設
定信号から各室内ユニットC,D,Eの要求能力の総和を求
め、それに対応する周波数設定信号f0を室外制御部50に
転送するようになっている。
Then, the indoor control unit 70, 80, 90 the frequency setting signal f 1, f
It adapted to forward the multi-controller 60 as a 2, f 3 required capabilities. Multi-control unit 60 is adapted to transfer each of the indoor unit from the frequency setting signal transferred C, D, the total sum of the required capacity of E, a frequency setting signal f 0 corresponding thereto to the outdoor control unit 50 .

つぎに、上記構成の作用を説明する。 Next, the operation of the above configuration will be described.

いま、全ての室内ユニットで冷房運転を行なっている
ものとする。
Now, it is assumed that all the indoor units are performing the cooling operation.

このとき、室内ユニットCの室内制御部70は、室内温
度センサ72の検知温度と運転操作部71で定められた設定
温度との差を演算し、その温度差に対応する周波数設定
信号f1を要求冷房能力としてマルチ制御部60に転送す
る。同様に、室内ユニットD,Eの室内制御部80,90も、周
波数設定信号f2,f3を要求冷房能力としてマルチ制御部6
0に転送する。
At this time, the indoor control unit 70 of the indoor units C, calculates the difference between a defined set temperature at the detected temperature and the driving operation unit 71 of the indoor temperature sensor 72, a frequency setting signal f 1 corresponding to the temperature difference It is transferred to the multi control unit 60 as the required cooling capacity. Similarly, the indoor control units 80 and 90 of the indoor units D and E also use the frequency control signals f 2 and f 3 as the required cooling capacity,
Transfer to 0.

さらに、マルチ制御部60では転送されてくる周波数設
定信号に基づいて各室内ユニットC,D,Eの要求冷房能力
の総和を求める。そして、求めた総和に対応する周波数
設定信号f0を室外制御部50に転送する。この室外制御部
50では転送されてくる周波数設定信号f0に基づいて各室
内ユニットC,D,Eの要求冷房能力の総和を求め、その総
和に応じて圧縮機1,2の運転台数および運転周波数(イ
ンバータ回路51,52の出力周波数)Fを制御する。この
場合、室外制御部50では要求冷房能力の総和が大きくな
るに従い圧縮機1の1台運転から圧縮機1,2の2台運転
に移行するようにしている。
Further, the multi control unit 60 obtains the sum of the required cooling capacity of each of the indoor units C, D, E based on the transferred frequency setting signal. Then, to transfer the frequency setting signal f 0 corresponding to the sum determined in the outdoor control unit 50. This outdoor control unit
Each indoor unit on the basis of the 50 frequency setting signal f 0 which is transferred in C, D, the total sum of the requested cooling performance of E, the number of operating units and operating frequency (inverter circuit of the compressor 1 in accordance with the sum 51, 52) are controlled. In this case, the outdoor control unit 50 shifts from the operation of one compressor 1 to the operation of two compressors 1 and 2 as the sum of the required cooling capacities increases.

また、圧縮機1の運転中、吐出冷媒に含まれている潤
滑油のほとんどがオイルセパレータ41で回収され、オイ
ルバイパス管42を通して圧縮機1に戻される。同様に、
圧縮機2の運転中、吐出冷媒に含まれている潤滑油のほ
とんどがオイルセパレータ43で回収され、オイルバイパ
ス管44を通して圧縮機2に戻される。なお、回収されな
かった冷媒は冷凍サイクルを一巡し、圧縮機1,2に戻
る。
During operation of the compressor 1, most of the lubricating oil contained in the discharged refrigerant is collected by the oil separator 41 and returned to the compressor 1 through the oil bypass pipe 42. Similarly,
During operation of the compressor 2, most of the lubricating oil contained in the discharged refrigerant is collected by the oil separator 43 and returned to the compressor 2 through the oil bypass pipe 44. The refrigerant that has not been recovered goes through a refrigeration cycle and returns to the compressors 1 and 2.

一方、マルチ制御部60では各室内ユニットC,D,Eから
の周波数設定信号に応じて冷媒流量調整弁11,21,31の開
度を制御しており、各室内ユニットC,D,Eの要求冷房能
力に対応する最適な量の冷媒が各室内熱交換器14,24,34
に流入する。また、膨張弁12,22,32により、各室内熱交
換器14,24,34における冷媒過熱度が一定に制御される。
On the other hand, the multi-control unit 60 controls the opening of the refrigerant flow control valves 11, 21, and 31 in accordance with the frequency setting signals from the indoor units C, D, and E. The optimal amount of refrigerant corresponding to the required cooling capacity is supplied to each indoor heat exchanger 14, 24, 34.
Flows into. Further, the degree of superheat of the refrigerant in each of the indoor heat exchangers 14, 24, 34 is controlled to be constant by the expansion valves 12, 22, 32.

また、室外制御部50では圧縮器1,2の2台運転中、両
圧縮機1,2を略同一の運転周波数で駆動する第1の駆動
状態と両圧縮機1,2の運転周波数間に所定周波数の差を
持たせた状態で駆動する第2の駆動状態とを組合わせて
両圧縮機1,2の総合能力を制御する。例えば、いま一方
の圧縮機1の運転周波数FaがFa0、他方の圧縮機2の運
転周波数FbがFb0(Fa0=Fb0)の状態でそれぞれ駆動さ
れている(第1の駆動状態)とすると、この状態で各室
内ユニットC,D,E側からの要求能力の総和が増大した場
合にはまず、圧縮機1の運転周波数FaをFa0+ΔFに上
昇させ、圧縮機2の運転周波数FbをFb0に保持させた状
態でそれぞれ駆動させる(第2の駆動状態)。次に、こ
の状態で所定時間駆動したのち、圧縮機2の運転周波数
FbをFb0+ΔFに上昇させ、圧縮機1の運転周波数FaをF
a0+ΔF,圧縮機2の運転周波数FbをFb0+ΔFで所定時
間駆動する(第1の駆動状態)。さらに、同様に圧縮機
1の運転周波数FaをFa0+2ΔFに上昇させるととも
に、圧縮機2の運転周波数FbをFb0+ΔFに保持させた
状態で所定時間駆動させ(第2の駆動状態)、続けて圧
縮機2の運転周波数FbをFb0+2ΔFに上昇させ、圧縮
機1の運転周波数FaをFa0+2ΔF、圧縮機2の運転周
波数FbをFb0+2ΔFで所定時間駆動する(第1の駆動
状態)。そして、このように第1の駆動状態と第2の駆
動状態とを交互に繰返しながら各室内ユニットC,D,E側
からの要求能力の総和に対応する状態まで両圧縮機1,2
の総合能力を制御する。そのため、この場合には両圧縮
機1,2の総合能力の変更時に両圧縮機1,2の運転周波数F
a,Fbを同時に増減させる場合に比べて両圧縮機1,2の総
合能力の分解能を高めることができるので、各室内ユニ
ットC,D,E側からの要求能力の総和の変更に対応させて
細かに両圧縮機1,2の総合能力を制御させることがで
き、両圧縮機1,2の運転効率の向上および快適性の向上
を図ることができる。
Further, the outdoor control unit 50 operates between the first driving state in which both compressors 1 and 2 are driven at substantially the same operating frequency and the operating frequency of both compressors 1 and 2 during the operation of the two compressors 1 and 2. The total capacity of both compressors 1 and 2 is controlled in combination with the second drive state in which the compressors are driven with a predetermined frequency difference. For example, the compressor 1 is driven in a state where the operating frequency Fa of the other compressor 1 is Fa 0 and the operating frequency Fb of the other compressor 2 is Fb 0 (Fa 0 = Fb 0 ) (first driving state). In this state, if the sum of the required capacities from the indoor units C, D, and E increases in this state, first, the operating frequency Fa of the compressor 1 is increased to Fa 0 + ΔF, and the operating frequency of the compressor 2 is increased. It is driven respectively in a state of being held and Fb to Fb 0 (second driving state). Next, after driving for a predetermined time in this state, the operating frequency of the compressor 2
Fb is increased to Fb 0 + ΔF, and the operating frequency Fa of the compressor 1 is set to F
a 0 + ΔF, the operating frequency Fb of the compressor 2 is driven for a predetermined time at Fb 0 + ΔF (first driving state). Further, similarly, the operating frequency Fa of the compressor 1 is increased to Fa 0 + 2ΔF, and the compressor 1 is driven for a predetermined time while the operating frequency Fb of the compressor 2 is maintained at Fb 0 + ΔF (second driving state). The operating frequency Fb of the compressor 2 is raised to Fb 0 + 2ΔF, the operating frequency Fa of the compressor 1 is driven at Fa 0 + 2ΔF, and the operating frequency Fb of the compressor 2 is driven at Fb 0 + 2ΔF for a predetermined time (first driving state). ). Then, while the first drive state and the second drive state are alternately repeated in this manner, the compressors 1, 2 are brought to a state corresponding to the sum of the required capacity from the indoor units C, D, E.
Control your overall ability. Therefore, in this case, when the total capacity of both compressors 1 and 2 is changed, the operating frequency F of both compressors 1 and 2 is changed.
Since the resolution of the total capacity of both compressors 1 and 2 can be improved compared to the case where a and Fb are increased and decreased simultaneously, it is possible to respond to the change in the sum of the required capacity from each indoor unit C, D, E side. The total capacity of both compressors 1 and 2 can be controlled finely, and the operating efficiency and comfort of both compressors 1 and 2 can be improved.

また、室外制御部50では圧縮機1,2の2台運転中、両
圧縮機1,2の圧縮機ケース内の潤滑油量を均一化する均
油運転を行なう。
Further, the outdoor control unit 50 performs an oil leveling operation for equalizing the amount of lubricating oil in the compressor cases of the two compressors 1 and 2 while the two compressors 1 and 2 are operating.

この圧縮機1,2の均油運転を第4図乃至第6図を参照
しながら説明する。第4図は均油運転時の一方の圧縮機
1の運転周波数Faの変化状態(同図中に実線で示す)お
よび他方の圧縮機2の運転周波数Fbの変化状態(同図中
に点線で示す)をそれぞれ示すものである。
The oil equalizing operation of the compressors 1 and 2 will be described with reference to FIGS. FIG. 4 shows a change state of the operating frequency Fa of one of the compressors 1 during the oil equalizing operation (shown by a solid line in the figure) and a change state of the operating frequency Fb of the other compressor 2 (shown by a dotted line in the figure). ) Are shown.

いま、圧縮機1,2が通常運転状態(第1の駆動状態と
第2の駆動状態とが交互に繰返される状態)で駆動さ
れ、両圧縮機1,2が第2の駆動状態で運転しているとす
る。例えば、第4図に示すように圧縮機1の運転周波数
FaをFa1、圧縮機2の運転周波数FbをFb0(Fa0≒Fb0、Fa
1=Fa0+ΔF>Fb0)で駆動している。この状態で一定
時間Tが経過した時点で第1の均油運転を行なう。
Now, the compressors 1 and 2 are driven in a normal operation state (a state in which the first drive state and the second drive state are alternately repeated), and both compressors 1 and 2 are operated in the second drive state. Suppose For example, as shown in FIG.
Fa is Fa 1 , and the operating frequency Fb of the compressor 2 is Fb 0 (Fa 0 ≒ Fb 0 , Fa
1 = Fa 0 + ΔF> Fb 0 ). In this state, the first oil equalizing operation is performed when a predetermined time T has elapsed.

この第1の均油運転時には始めに圧縮機1の運転周波
数FaをFa1からFa0に下降させて両圧縮機1,2を略同一の
運転周波数(圧縮機1の運転周波数FaをFa0、圧縮機2
の運転周波数FbをFb0)で所定時間t駆動する。その
後、一方の圧縮機1の運転周波数Faをnステップ周波数
低下させる。この場合、他方の圧縮機2の運転周波数Fb
はFb0のままの状態で保持させる。そのため、この場合
には圧縮機1の運転周波数Fa2の方が圧縮機2の運転周
波数Fb0よりも低くなり、圧縮機1のケース内の圧力Pa
は圧縮機2のケース内の圧力Pbよりも高くなるので、高
圧側の圧縮機1のケース内の潤滑油が冷媒とともに均油
管45を通じて徐々に低圧側の圧縮機2のケース内側に流
入し、第5図に示すように圧縮機1のケース内の油面は
徐々に下降するとともに、圧縮機2のケース内の油面は
徐々に上昇する。なお、この場合の圧縮機1のケース内
の油面の下限レベルは均油管45の下面位置までである。
The first is when the oil equalizing operation operating frequency Fa of the compressor 1 of the operating frequency Fa is lowered from Fa 1 to Fa 0 by both compressors 1, 2 substantially the same operating frequency (the compressor 1 at the beginning Fa 0 , Compressor 2
Is driven for a predetermined time t at Fb 0 ). Thereafter, the operating frequency Fa of one of the compressors 1 is reduced by n step frequencies. In this case, the operating frequency Fb of the other compressor 2
Is kept as Fb 0 . Therefore, the pressure Pa in the direction of the operating frequency Fa 2 of the compressor 1 is lower than the operating frequency Fb 0 of the compressor 2 in the case, the compressor 1 case
Becomes higher than the pressure Pb in the case of the compressor 2, so that the lubricating oil in the case of the compressor 1 on the high pressure side flows into the case of the compressor 2 on the low pressure side gradually through the oil equalizing pipe 45 together with the refrigerant. As shown in FIG. 5, the oil level in the case of the compressor 1 gradually decreases, and the oil level in the case of the compressor 2 gradually increases. In this case, the lower limit level of the oil level in the case of the compressor 1 is up to the lower surface position of the oil equalizing pipe 45.

また、圧縮機1の運転周波数FaをFa2に低下させた状
態でt1時間経過すると、この時点で圧縮機1の運転周波
数FaをFa0からnステップ周波数上昇させる。この場
合、圧縮機2の運転周波数FbはFb0のままの状態で保持
させる。そのため、この場合には圧縮機1の運転周波数
Fa3の方が圧縮機2の運転周波数Fb0よりも高くなり、圧
縮機1のケース内の圧力Paは圧縮機2のケース内の圧力
Pbよりも低くなるので、高圧側の圧縮機2のケース内の
潤滑油が冷媒とともに均油管45を通じて徐々に低圧側の
圧縮機1のケース内側に流入し、第6図に示すように圧
縮機2のケース内の油面は徐々に下降するとともに、圧
縮機1のケース内の油面は徐々に上昇する。
Also, the operating frequency Fa of the compressor 1 after a lapse of t 1 hour while being lowered to Fa 2, the operating frequency Fa of the compressor 1 to n steps the frequency increases from Fa 0 at this point. In this case, the operating frequency Fb of the compressor 2 is maintained in a state of Fb 0. Therefore, in this case, the operating frequency of the compressor 1
Fa 3 is higher than the operating frequency Fb 0 of the compressor 2, and the pressure Pa in the case of the compressor 1 is equal to the pressure Pa in the case of the compressor 2.
Since the pressure becomes lower than Pb, the lubricating oil in the case of the compressor 2 on the high pressure side gradually flows into the case of the compressor 1 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and as shown in FIG. 2, the oil level in the case of the compressor 1 gradually rises.

さらに、圧縮機1の運転周波数FaをFa3に上昇させた
状態でt2時間経過すると、この時点で第1の均油運転が
終了し、圧縮機1の運転周波数FaをFa1に戻して通常運
転状態に戻す。そのため、この第1の均油運転終了後の
通常運転領域では第6図に示すように圧縮機2のケース
内の油面に比べて圧縮機1のケース内の油面が上昇した
状態で保持される。そして、この通常運転状態で一定時
間Tが経過した時点で両圧縮機1,2を入替えた状態で均
油運転を行なう(第2の均油運転)。
Further, when the operating frequency Fa of the compressor 1 has been raised to Fa 3 and the time t 2 has elapsed, the first oil equalizing operation is terminated at this time, and the operating frequency Fa of the compressor 1 is returned to Fa 1. Return to normal operation. Therefore, in the normal operation area after the end of the first oil leveling operation, the oil level in the case of the compressor 1 is maintained higher than the oil level in the case of the compressor 2 as shown in FIG. Is done. Then, when a certain time T elapses in the normal operation state, the oil equalizing operation is performed in a state where both compressors 1 and 2 are exchanged (second oil equalizing operation).

この第2の均油運転時には始めに圧縮機1の運転周波
数FaをFa1からFa0に下降させて両圧縮機1,2を略同一の
運転周波数(圧縮機1の運転周波数FaをFa0、圧縮機2
の運転周波数FbをFb0)で所定時間t駆動する。その
後、圧縮機2の運転周波数Fbをnステップ周波数低下さ
せる。この場合、圧縮機1の運転周波数FaはFa0のまま
の状態で保持させる。そのため、この場合には圧縮機2
の運転周波数Fb2の方が圧縮機1の運転周波数Fa0よりも
低くなり、圧縮機2のケース内の圧力Pbは圧縮機1のケ
ース内の圧力Paよりも高くなるので、高圧側の圧縮機2
のケース内の潤滑油が冷媒とともに均油管45を通じて徐
々に低圧側の圧縮機1のケース内側に流入し、第6図に
示すように圧縮機2のケース内の油面は徐々に下降する
とともに、圧縮機1のケース内の油面は徐々に上昇す
る。
The second is when the oil equalizing operation operating frequency Fa of the compressor 1 of the operating frequency Fa is lowered from Fa 1 to Fa 0 by both compressors 1, 2 substantially the same operating frequency (the compressor 1 at the beginning Fa 0 , Compressor 2
Is driven for a predetermined time t at Fb 0 ). Thereafter, the operating frequency Fb of the compressor 2 is decreased by n step frequencies. In this case, operating frequency Fa of the compressor 1 is held in a state of Fa 0. Therefore, in this case, the compressor 2
Since the operating frequency Fb 2 of the compressor 1 is lower than the operating frequency Fa 0 of the compressor 1 and the pressure Pb in the case of the compressor 2 is higher than the pressure Pa in the case of the compressor 1, Machine 2
Lubricating oil in the case gradually flows into the case of the compressor 1 on the low pressure side through the oil equalizing pipe 45 together with the refrigerant, and the oil level in the case of the compressor 2 gradually decreases as shown in FIG. The oil level in the case of the compressor 1 gradually rises.

また、圧縮機2の運転周波数FbをFb2に低下させた状
態でt1時間経過すると、この時点で圧縮機2の運転周波
数FbをFb0からnステップ周波数上昇させる。この場
合、圧縮機1の運転周波数FaはFa0のままの状態で保持
させる。そのため、この場合には圧縮機2の運転周波数
Fb3の方が圧縮機1の運転周波数Fa0よりも高くなり、圧
縮機2のケース内の圧力Pbは圧縮機1のケース内の圧力
Paよりも低くなるので、高圧側の圧縮機1のケース内の
潤滑油が冷媒とともに均油管45を通じて徐々に低圧側の
圧縮機2のケース内側に流入し、第5図に示すように圧
縮機1のケース内の油面は徐々に下降するとともに、圧
縮機2のケース内の油面は徐々に上昇する。
Also, the operating frequency Fb of the compressor 2 when the elapsed t 1 hour while being reduced in Fb 2, the operating frequency Fb of the compressor 2 to n step frequency increases from Fb 0 at this point. In this case, operating frequency Fa of the compressor 1 is held in a state of Fa 0. Therefore, in this case, the operating frequency of the compressor 2
Fb 3 is higher than the operating frequency Fa 0 of the compressor 1, and the pressure Pb in the case of the compressor 2 is the pressure in the case of the compressor 1.
Therefore, the lubricating oil in the case of the high-pressure side compressor 1 gradually flows into the case of the low-pressure side compressor 2 together with the refrigerant through the oil equalizing pipe 45, as shown in FIG. The oil level in the case of the compressor 2 gradually rises while the oil level in the case 1 falls gradually.

さらに、圧縮機2の運転周波数FbをFb3に上昇させた
状態でt2時間経過すると、この時点で圧縮機2の運転周
波数FbをFb0、圧縮機1の運転周波数FaをFa1に戻し、通
常運転状態に戻す。そのため、この第2の均油運転終了
後の通常運転領域では第5図に示すように圧縮機1のケ
ース内の油面に比べて圧縮機2のケース内の油面が上昇
した状態で保持される。そして、以後は通常運転と第1
の均油運転または第2の均油運転とを一定周期毎に交互
に繰返すようにしている。
Further, after a lapse of t 2 hours in a state of increasing the operating frequency Fb of the compressor 2 to Fb 3, returning the operating frequency Fb of the compressor 2 at this point Fb 0, the operating frequency Fa of the compressor 1 to Fa 1 And return to normal operation. Therefore, in the normal operation range after the end of the second oil leveling operation, the oil level in the case of the compressor 2 is maintained higher than the oil level in the case of the compressor 1 as shown in FIG. Is done. After that, normal operation and the first
And the second oil equalizing operation are alternately repeated at regular intervals.

かくして、上記構成のものにあっては圧縮機1,2の2
台運転中、両圧縮機1,2のうちの一方の圧縮機1の運転
周波数Faを圧縮機2の運転周波数Fbに比べて相対的に一
定時間ずつ上下させ、その間、圧縮機2の運転周波数Fb
を一定の運転周波数Fb0で保持する第1の均油運転およ
び両圧縮機1,2を入替えた状態で第1の均油運転を行な
う第2の均油運転を一定周期毎に交互に繰返す均油運転
を行なうようにしたので、第1の均油運転終了後の通常
運転領域における圧縮機1,2の油面レベル状態と第2の
均油運転終了後の通常運転領域における圧縮機1,2の油
面レベル状態とで交互に油面レベルの高低を入替えるこ
とができる。そのため、長時間運転の場合でも圧縮機1,
2の油面レベルの高低が一方に極端に偏ることを防止す
ることができ、圧縮機1,2の油面レベルの均一化を図る
ことができる。
Thus, in the above configuration, the compressors 1 and 2
During the stand operation, the operating frequency Fa of one of the two compressors 1 and 2 is increased and decreased by a fixed time relative to the operating frequency Fb of the compressor 2 while the operating frequency of the compressor 2 is changed. Fb
Repeated alternately first oil equalizing operation and second oil equalizing operation is performed a first oil equalizing operation in a state in which interchanged both compressors 1, 2 for holding a predetermined cycle at a constant operating frequency Fb 0 Since the oil leveling operation is performed, the oil level levels of the compressors 1 and 2 in the normal operation region after the end of the first oil leveling operation and the compressor 1 in the normal operation region after the end of the second oil leveling operation The level of the oil level can be alternately switched between the two oil level levels. Therefore, the compressor 1,
The level of the oil level 2 can be prevented from being extremely biased toward one side, and the oil levels of the compressors 1 and 2 can be made uniform.

したがって、常に安定運転が可能となるとともに、圧
縮機1,2のオイル上りやロックを防ぐことができ、ひい
ては圧縮機1,2の損傷を防ぐことができる。
Therefore, stable operation can always be performed, and oil rising and locking of the compressors 1 and 2 can be prevented, so that damage to the compressors 1 and 2 can be prevented.

さらに、均油管45としては、大径のものは必要なく、
小径のものを用いることができるので、十分な強度を確
保することができ、圧縮機振動や圧縮機騒音を回避する
ことができるとともに、コスト的にも有利である。
Furthermore, the oil equalizing pipe 45 does not need a large diameter pipe,
Since a small diameter one can be used, sufficient strength can be ensured, compressor vibration and compressor noise can be avoided, and the cost is also advantageous.

また、コスト高のフロート式レギュレータや油面セン
サ等を格別に圧縮機1,2に設置することなく均油効果を
得ることができるので、全体の構成を簡略化することが
でき、コスト低下を図ることができる。
Also, since the oil equalizing effect can be obtained without installing expensive cost type float regulators and oil level sensors in the compressors 1 and 2, the overall configuration can be simplified, and cost reduction can be achieved. Can be planned.

さらに、圧縮機1,2の均油運転時には通常運転中の運
転周波数Fa0(またはFb0)よりもnステップ周波数低下
させる動作と通常運転中の運転周波数Fa0(またはFb0
よりもnステップ周波数上昇させる動作とを交互に行な
わせるようにしているので、通常運転中の運転周波数Fa
0(またはFb0)よりもnステップ周波数上昇させる際に
インバータ回路51(または52)の出力電流異常を判定
し、このインバータ回路51(または52)の出力周波数を
一定値低減する電流レリースが動作して周波数上昇時の
均油運転が不能になった場合であっても、通常運転中の
運転周波数Fa0(またはFb0)よりもnステップ周波数低
下させる動作時に確実に均油運転を行なうことができ
る。そのため、T時間内に少なくとも1回の均油運転を
行ない均油効果を得ることができる。
Further, during the oil equalizing operation of the compressors 1 and 2, an operation of lowering the operating frequency Fa 0 (or Fb 0 ) by n steps from the operating frequency Fa 0 (or Fb 0 ) and the operating frequency Fa 0 (or Fb 0 ) during the normal operation.
And the operation for raising the n-step frequency is performed alternately.
When the frequency of the inverter circuit 51 (or 52) is increased by n steps above 0 (or Fb 0 ), the output current of the inverter circuit 51 (or 52) is determined to be abnormal, and the current release that reduces the output frequency of the inverter circuit 51 (or 52) by a certain value operates. Even if the oil leveling operation at the time of the frequency rise becomes impossible, the oil leveling operation must be performed surely at the time of the operation frequency lower by n steps than the operating frequency Fa 0 (or Fb 0 ) during the normal operation. Can be. Therefore, at least one oil leveling operation can be performed within the time T to obtain an oil leveling effect.

また、圧縮機1,2が共に運転周波数Fa,Fbが最大値に達
した場合であっても通常運転中の運転周波数Fa0(また
はFb0)よりもnステップ周波数低下させる動作時に確
実に均油運転を行なうことができるので、T時間内に少
なくとも1回の均油運転を行ない均油効果を得ることが
できる。
Further, even when the operating frequencies Fa and Fb of both of the compressors 1 and 2 reach the maximum value, it is ensured that the operating frequency is reduced by n step frequency from the operating frequency Fa 0 (or Fb 0 ) during the normal operation. Since the oil operation can be performed, at least one oil equalizing operation can be performed within the time T to obtain an oil equalizing effect.

さらに、圧縮機1,2が共に運転周波数Fa,Fbが最小値に
達した場合であっても通常運転中の運転周波数Fa0(ま
たはFb0)よりもnステップ周波数上昇させる動作時に
確実に均油運転を行なうことができるので、T時間内に
少なくとも1回の均油運転を行ない均油効果を得ること
ができる。
Furthermore, even when the operating frequencies Fa and Fb of both the compressors 1 and 2 have reached the minimum value, it is ensured that the operating frequency is increased by n steps from the operating frequency Fa 0 (or Fb 0 ) during normal operation. Since the oil operation can be performed, at least one oil equalizing operation can be performed within the time T to obtain an oil equalizing effect.

また、両圧縮機1,2の同時運転中、両圧縮機1,2を略同
一の運転周波数(Fa0≒Fb0)で駆動する第1の駆動状態
と両圧縮機1,2の運転周波数間に所定周波数の差ΔFを
持たせた状態で駆動する第2の駆動状態とを組合わせて
制御するようにしたので、両圧縮機1,2の総合能力の分
解能を高めることができる。
Further, during the simultaneous operation of both compressors 1 and 2, the first driving state in which both compressors 1 and 2 are driven at substantially the same operating frequency (Fa 0 ≒ Fb 0 ) and the operating frequency of both compressors 1 and 2 Since the control is performed in combination with the second driving state in which the motor is driven with a predetermined frequency difference ΔF therebetween, the resolution of the total capacity of both compressors 1 and 2 can be increased.

さらに、均油運転時には均油運転を開始する前に両圧
縮機1,2を略同一の運転周波数(Fa0≒Fb0)で駆動し、
その後、両圧縮機1,2の均油運転を開始させるようにし
たので、両圧縮機1,2が第2の駆動状態のままの状態で
均油運転が開始されることを防止することができる。そ
のため、両圧縮機1,2が第2の駆動状態のままの状態で
均油運転が開始され、均油運転中の両圧縮機1,2の運転
周波数の差ΔF不均一になることを確実に防止すること
ができ、両圧縮機1,2が第2の駆動状態のままの状態で
均油運転が開始された場合であっても均一な均油効果を
得ることができる。
Further, during the oil equalizing operation, both compressors 1 and 2 are driven at substantially the same operating frequency (Fa 0 ≒ Fb 0 ) before starting the oil equalizing operation,
Then, since the oil equalizing operation of both compressors 1 and 2 is started, it is possible to prevent the oil equalizing operation from being started with both compressors 1 and 2 remaining in the second drive state. it can. Therefore, the oil equalizing operation is started in a state where both compressors 1 and 2 remain in the second drive state, and it is ensured that the difference ΔF between the operating frequencies of both compressors 1 and 2 during the oil equalizing operation becomes uneven. Even if the oil leveling operation is started with both compressors 1 and 2 kept in the second driving state, a uniform oil leveling effect can be obtained.

なお、この発明は上記実施例に限定されるものではな
い。例えば、上記実施例では室内ユニットが3台の場合
について説明したが、それ以上あるいは2台の場合につ
いても同様に実施可能である。さらに、その他この発明
の要旨を逸脱しない範囲で種々変形実施できることは勿
論である。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the case where the number of the indoor units is three has been described, but the case where the number of the indoor units is two or more or more can be similarly performed. Further, it goes without saying that various modifications can be made without departing from the spirit of the present invention.

[発明の効果] 請求項1の発明によれば2台の能力可変圧縮機間に均
油管を設けるとともに、両圧縮機の同時運転中、両圧縮
機を略同一の運転周波数で駆動する通常運転手段と、両
圧縮機のうちの一方の運転周波数を他方に比べて相対的
に一定時間ずつ上下させ、他方の運転周波数を一定の運
転周波数で保持する第1の均油運転と、両圧縮機を入替
えた状態で第1の均油運転を行なう第2の均油運転とを
繰返す均油運転手段とを設けたので、大径の均油管を用
いることなく各圧縮機間の均油効果を得ることができ、
圧縮機振動や圧縮機騒音を回避し、しかも均油管の十分
な強度を確保して信頼性を高めることができ、加えて一
層の均油効果の向上を図ることができる。
[Effects of the Invention] According to the invention of claim 1, an oil equalizing pipe is provided between the two variable capacity compressors, and both the compressors are driven at substantially the same operation frequency during the simultaneous operation of the two compressors. Means, a first oil equalizing operation in which one operating frequency of both compressors is increased and decreased by a fixed time relative to the other, and the other operating frequency is maintained at a constant operating frequency; And a second oil equalizing operation that repeats the second oil equalizing operation in which the first oil equalizing operation is performed in a state where the oil is replaced, so that an oil equalizing effect between the compressors can be achieved without using a large-diameter oil equalizing pipe. You can get
Compressor vibration and compressor noise can be avoided, and sufficient strength of the oil equalizing pipe can be ensured to enhance reliability. In addition, the oil equalizing effect can be further improved.

請求項2の発明によれば各圧縮機間に均油管を設ける
とともに、両圧縮機の同時運転中、両圧縮機を略同一の
運転周波数で駆動する第1の駆動状態と両圧縮機の運転
周波数間に所定周波数の差を持たせた状態で駆動する第
2の駆動状態とを組合わせた両圧縮機の総合能力を制御
する手段、始めに両圧縮機を略同一の運転周波数で駆動
し、その後、両圧縮機のうちの一方の運転周波数を他方
に比べて相対的に一定時間ずつ上下させ、他方の運転周
波数を一定の運転周波数で保持する第1の均油運転手段
および両圧縮機を入替えた状態で第1の均油運転を行な
う第2の均油運転手段をそれぞれ設けたので、大径の均
油管を用いることなく各圧縮機間の均油効果を得ること
ができ、圧縮機振動や圧縮機騒音を回避し、しかも均油
管の十分な強度を確保して信頼性を高めることができ、
加えて一層の均油効果を向上を図ることができる。
According to the second aspect of the present invention, an oil equalizing pipe is provided between the compressors, and during the simultaneous operation of the two compressors, the first drive state in which both compressors are driven at substantially the same operation frequency and the operation of both compressors Means for controlling the total capacity of both compressors in combination with the second drive state, which is driven with a predetermined frequency difference between the frequencies, initially driving both compressors at substantially the same operating frequency A first oil equalizing operation means and both compressors for raising and lowering the operating frequency of one of the two compressors by a fixed time relative to the other, and maintaining the other operating frequency at a constant operating frequency; The second oil equalizing operation means for performing the first oil equalizing operation in a state where the oil is replaced is provided, so that an oil equalizing effect between the compressors can be obtained without using a large-diameter oil equalizing pipe. Avoid machine vibration and compressor noise, and ensure that the oil equalizing pipe has sufficient strength. And to be able to increase the reliability,
In addition, it is possible to further improve the oil leveling effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第6図はこの発明の一実施例を示すもので、
第1図は空気調和機内の冷凍サイクルを示す全体の概略
構成図、第2図は各圧縮機と均油管の関係を示す概略構
成図、第3図は冷凍サイクルの制御回路の構成を示す概
略構成図、第4図は均油運転時の運転周波数の変化状態
を示す特性図、第5図は第1の圧縮機の運転周波数を第
2の圧縮機の運転周波数よりも低くした場合の油面変化
状態を示す概略構成図、第6図は第1の圧縮機の運転周
波数を第2の圧縮機の運転周波数よりも高くした場合の
油面変化状態を示す概略構成図、第7図は従来の空気調
和機内の冷凍サイクルを示す全体の概略構成図である。 A……室外ユニット、B……分岐ユニット、C,D,E……
室内ユニット、1,2……能力可変圧縮機、45……均油
管、50……室外制御部、60……マルチ制御部、70,80,90
……室内制御部。
1 to 6 show one embodiment of the present invention.
FIG. 1 is an overall schematic diagram showing a refrigeration cycle in an air conditioner, FIG. 2 is a schematic diagram showing a relationship between each compressor and an oil equalizing pipe, and FIG. 3 is a schematic diagram showing a configuration of a control circuit of the refrigeration cycle. FIG. 4 is a characteristic diagram showing a change state of the operating frequency during the oil equalizing operation, and FIG. 5 is an oil diagram when the operating frequency of the first compressor is lower than the operating frequency of the second compressor. FIG. 6 is a schematic configuration diagram showing a surface change state, FIG. 6 is a schematic configuration diagram showing an oil level change state when the operation frequency of the first compressor is higher than the operation frequency of the second compressor, and FIG. It is the whole schematic block diagram which shows the refrigeration cycle in the conventional air conditioner. A: Outdoor unit, B: Branch unit, C, D, E ...
Indoor unit, 1,2… Variable capacity compressor, 45… Equalizer oil pipe, 50… Outdoor control unit, 60 …… Multi control unit, 70,80,90
.... Indoor control unit.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2台の能力可変圧縮機を有する室外ユニッ
ト、および複数の室内ユニットを備え、これら室内ユニ
ットの要求能力に応じて前記各圧縮機の運転台数および
運転周波数を制御する空気調和機において、前記各圧縮
機間に設けた均油管と、前記両圧縮機の同時運転中、前
記両圧縮機を略同一の運転周波数で駆動する通常運転手
段と、前記両圧縮機のうちの一方の運転周波数を他方に
比べて相対的に一定時間ずつ上下させ、他方の運転周波
数を一定の運転周波数で保持する第1の均油運転と、前
記両圧縮機を入替えた状態で前記第1の均油運転を行な
う第2の均油運転とを繰返す均油運転手段とを具備した
ことを特徴とする空気調和機。
An air conditioner comprising: an outdoor unit having two variable capacity compressors; and a plurality of indoor units, wherein the number of operating compressors and the operating frequency of each of the compressors are controlled in accordance with the required capacity of the indoor units. In the oil equalizing pipe provided between the compressors, during the simultaneous operation of the two compressors, a normal operation means for driving both compressors at substantially the same operating frequency, and one of the two compressors The first oil leveling operation, in which the operating frequency is increased and decreased by a constant time relative to the other, and the other operating frequency is maintained at a constant operating frequency, and the first oil leveling operation in a state where both compressors are exchanged. An air conditioner comprising: oil equalizing operation means for repeating a second oil equalizing operation for performing an oil operation.
【請求項2】2台の能力可変圧縮機を有する室外ユニッ
ト、および複数の室内ユニットを備え、これら室内ユニ
ットの要求能力に応じて前記各圧縮機の運転台数および
運転周波数を制御する空気調和機において、前記各圧縮
機間に設けた均油管と、前記両圧縮機の同時運転中、前
記両圧縮機を略同一の運転周波数で駆動する第1の駆動
状態と、前記両圧縮機の運転周波数間に所定周波数の差
を持たせた状態で駆動する第2の駆動状態とを組合わせ
て前記両圧縮機の総合能力を制御する手段と、始めに前
記両圧縮機を略同一の運転周波数で駆動し、その後、前
記両圧縮機のうちの一方の運転周波数を他方に比べて相
対的に一定時間ずつ上下させ、他方の運転周波数を一定
の運転周波数で保持する第1の均油運転手段と、前記両
圧縮機を入替えた状態で前記第1の均油運転を行なう第
2の均油運転手段とを具備したことを特徴とする空気調
和機。
2. An air conditioner comprising an outdoor unit having two variable capacity compressors and a plurality of indoor units, wherein the number of operating compressors and the operating frequency of each of the compressors are controlled according to the required capacity of the indoor units. An oil equalizing pipe provided between the compressors, a first driving state in which the compressors are driven at substantially the same operating frequency during simultaneous operation of the compressors, and an operating frequency of the compressors. Means for controlling the total capacity of the two compressors in combination with a second driving state in which the two compressors are driven with a predetermined frequency difference therebetween, and firstly, the two compressors are operated at substantially the same operating frequency. Driving, and thereafter, the first oil equalizing operation means for raising and lowering the operating frequency of one of the two compressors by a constant time relative to the other, and maintaining the other operating frequency at a constant operating frequency; , The two compressors were replaced An air conditioner characterized by comprising a second oil equalizing operation means for performing the first oil equalizing operation in state.
JP63028115A 1988-02-09 1988-02-09 Air conditioner Expired - Lifetime JP2664702B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63028115A JP2664702B2 (en) 1988-02-09 1988-02-09 Air conditioner
GB8902043A GB2215866B (en) 1988-02-09 1989-01-31 Multi-type air conditioner system with oil level control for parallel operated compressor therein
US07/305,906 US4870831A (en) 1988-02-09 1989-02-02 Multi-type air conditioner system with oil level control for parallel operated compressor therein
AU29572/89A AU603279B2 (en) 1988-02-09 1989-02-02 Multi-type air conditioner system with oil control for parallel operated compressor therein
KR1019890001487A KR930008346B1 (en) 1988-02-09 1989-02-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028115A JP2664702B2 (en) 1988-02-09 1988-02-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH01203680A JPH01203680A (en) 1989-08-16
JP2664702B2 true JP2664702B2 (en) 1997-10-22

Family

ID=12239814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028115A Expired - Lifetime JP2664702B2 (en) 1988-02-09 1988-02-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP2664702B2 (en)

Also Published As

Publication number Publication date
JPH01203680A (en) 1989-08-16

Similar Documents

Publication Publication Date Title
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
JP2557903B2 (en) Air conditioner
KR930008346B1 (en) Air conditioner
JP2664740B2 (en) Air conditioner
JP3163121B2 (en) Air conditioner
US5074120A (en) Multi-type air-conditioning system with fast hot starting for heating operation
JP3230845B2 (en) Multi-type air conditioner
US6807817B2 (en) Method for operating compressors of air conditioner
JPWO2004088212A1 (en) Air conditioner
JP2656285B2 (en) Air conditioner
JPH0534582B2 (en)
JP2664702B2 (en) Air conditioner
EP1475575B1 (en) Air conditioner
JP2835044B2 (en) Air conditioner
JPH05256532A (en) Air-conditioner
JPH01203677A (en) Air conditioner
JP2003247742A (en) Multi-chamber type air conditioner and control method thereof
JPH01127865A (en) Air conditioner
JP2614253B2 (en) Air conditioner
JP2005241070A (en) Method of controlling operation of compressor, and air conditioner having the same
KR20060056511A (en) Controlling method of inverter compressor in air conditioner
JPH0960991A (en) Air-conditioner and operation method thereof
JPH01203678A (en) Air conditioner
JPH1194374A (en) Air-conditioner and its outdoor machine
JPH0721345B2 (en) Control device for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11