JPH01202886A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01202886A
JPH01202886A JP2791288A JP2791288A JPH01202886A JP H01202886 A JPH01202886 A JP H01202886A JP 2791288 A JP2791288 A JP 2791288A JP 2791288 A JP2791288 A JP 2791288A JP H01202886 A JPH01202886 A JP H01202886A
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
width
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2791288A
Other languages
Japanese (ja)
Inventor
Yoshifumi Tsunekawa
吉文 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2791288A priority Critical patent/JPH01202886A/en
Publication of JPH01202886A publication Critical patent/JPH01202886A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To acquire stable basic transverse mode oscillation of small astigmatism by optimizing the values of various structural parameters which determine characteristics of a semiconductor laser. CONSTITUTION:A rib-type optical waveguide is provided with a refractive index waveguide structure near a resonator end, and gain waveguide structure in the other region. The side of optical waveguide is buried with a II-VI compound semiconductor layer. The refractive index waveguide region length is set at 5-500mum at the light emitting side. At the monitor side, the refractive index waveguide region length is set at not more than 500mum, the gain waveguide region length is set at 10-500mum, the refractive index waveguide region width is set at 0.5-10mum, the gain waveguide region width is set not less than 5mum, and the current injection width is set not exceeding 10mum. In this way, stable and single transverse mode oscillation can be conducted from low light-output operation to high light-output operation, return light noises are restrained by longitudinal multi-axial mode oscillation, a laser beam of small antigmatism is outputted, and current flowing in the outside of an active region is restrained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本横モード発振し、かつ低雑音で高出力発
振可能な半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor laser that oscillates in a fundamental transverse mode and is capable of high output oscillation with low noise.

〔従来の技術〕[Conventional technology]

半導体レーザ(以下LDと記す、)を、書き換え可能型
光磁気ディスクシステム等光情報処理用光源として使用
する際には、安定した基本横モード発振はもとより、出
射光の1部がディスク面を含む外部光学系より反射され
て再度LDの共振器に戻ることにより干渉効果によって
生ずる雑音(以下戻り光雑音と記す、)に対しても安定
して発振する低雑音特性および、ディスクに情報を書き
込んだり、あるいは書き込まれている情報を消去する際
の数十mW以上の高光出力特性を有することが必要とな
る。
When a semiconductor laser (hereinafter referred to as LD) is used as a light source for optical information processing such as a rewritable magneto-optical disk system, not only stable fundamental transverse mode oscillation occurs, but also a portion of the emitted light includes the disk surface. It has low-noise characteristics that oscillates stably even against noise caused by interference effects when it is reflected from the external optical system and returns to the LD resonator (hereinafter referred to as "return optical noise"), and it also has low noise characteristics that allow it to oscillate stably even when writing information to the disk. Alternatively, it is necessary to have a high optical output characteristic of several tens of mW or more when erasing written information.

そこで以上の特性を実現する手段として、第1の導電型
の化合物半導体基板上に、第1の導電型の第1のクラッ
ド層、活性層、導波路層、および第2のiwi型の第2
のクラッド層を順次積層した構造の該第2のクラッド層
まで除去して成るリブ状の光導波路を存し、かつ該光導
波路は少なくとも一方の共振器端面近傍では該光導波路
の幅と電流注入幅をほぼ等しくして屈折率導波構造であ
り、該屈折率導波構造以外の領域では該光導波路の幅を
電流注入幅より充分広くして利得導波構造であり、かつ
該リブ状の光導波路の測面は、■−■族化合物半導体層
で埋め込まれて成る構造の半導体レーザがあった。
Therefore, as a means for realizing the above characteristics, a first cladding layer, an active layer, a waveguide layer of the first conductivity type, and a second iwi type second conductivity type are formed on the first conductivity type compound semiconductor substrate.
A rib-shaped optical waveguide is formed by removing up to the second cladding layer of a structure in which cladding layers are sequentially laminated, and the optical waveguide has a width that corresponds to the width of the optical waveguide and the current injection in the vicinity of at least one resonator end face. The width of the optical waveguide is substantially equal to form a refractive index waveguide structure, and in the area other than the refractive index waveguide structure, the width of the optical waveguide is made sufficiently wider than the current injection width to form a gain waveguide structure, and the rib-shaped The surface of the optical waveguide had a semiconductor laser embedded in a ■-■ group compound semiconductor layer.

(発明が解決しようとする課題〕 しかし前述の従来技術ではLD特性を左右する種々のパ
ラメータには以下のような問題点を存している。
(Problems to be Solved by the Invention) However, the above-mentioned prior art has the following problems with various parameters that influence the LD characteristics.

1) 出射端面付近での光導波路幅の限定がない為、屈
折率導波路幅が広くなると単一横モード発振が得られな
くなる。
1) Since there is no limitation on the width of the optical waveguide near the output end face, single transverse mode oscillation cannot be obtained if the refractive index waveguide width becomes wide.

2)シたがって各ILD応用応用上置用する際複雑な光
学系が必要となるだけでなく、実用に供することが不可
能となる。
2) Therefore, not only is a complicated optical system required for each ILD application, but it is also impossible to put it to practical use.

3) 利得導波領域幅が狭くなると屈折率導波成分が増
加し縦多軸モード発振が不可能となる。
3) When the width of the gain waveguide region becomes narrower, the refractive index waveguide component increases and longitudinal multi-axis mode oscillation becomes impossible.

4)  光導波路幅等の設定が適切でないことによりL
Dの発振しきい値電流が増大する。
4) L due to inappropriate setting of optical waveguide width, etc.
The oscillation threshold current of D increases.

5)シたがって素子内での発熱量が増加しLDの信頼性
が劣化する。
5) Therefore, the amount of heat generated within the element increases and the reliability of the LD deteriorates.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、低光出力動作から高光出力動作
まで安定な単一横モード発振を行ない、かつ縦多軸モー
ド発振により戻り光雑音を抑え、かつ非点隔差の小さい
レーザ光を出射し、かつ活性領域外を流れる無効電流を
極力抑えた低しきい値発振可能なLDを提供するところ
にある。
Therefore, the present invention is intended to solve these problems.The purpose of the present invention is to perform stable single transverse mode oscillation from low optical output operation to high optical output operation, and to reduce the return light by vertical multi-axis mode oscillation. The object of the present invention is to provide an LD capable of low threshold oscillation, which suppresses noise, emits laser light with a small astigmatism difference, and suppresses reactive current flowing outside the active region as much as possible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザは、第1の導電型のGaAs基板
上に、第1の導電型の第1のAβ−xGtL s −x
 A Sクラブト層(1≧x>0)s AJyG a 
s −y A s活性層(x>y) 、Aj2+ Ga
s+ u A s導波路層、および第2の導電型の第2
のAj2z Gas −! Asクラッド層(z>y)
を順次積層した構造の該第2のAIIz Oat −!
 Asクラッド層を該AρuGam−aAs導波路層ま
で除去してなるリブ状の光導波路を育し、かつ該光導波
路は少なくとも一方の共振器端面近傍では該光導波路幅
と電流注入幅をほぼ等しくして屈折率導波構造であり、
該屈折率導波構造以外の領域では該光導波路の幅を電流
注入幅より充分広くして利得導波構造であり、かつ該リ
ブ状の光導波路の測面は、II−Vl族化合物半導体層
で埋め込まれて成る半導体レーザにおいて光出射側の屈
折率導波領域長が5乃至500μm1モニタ側の屈[率
導波領域長が500μm以下、利得導波領域長が10乃
至500μm、屈折率導波領域幅が0.5乃至10μm
1利得導波領域幅が5μm以上、電流注入幅が10μm
以下であることを特徴とする。
The semiconductor laser of the present invention has a first Aβ-xGtL s -x of a first conductivity type on a GaAs substrate of a first conductivity type.
A S Crab layer (1≧x>0)s AJyG a
s −y As active layer (x>y), Aj2+ Ga
s+ u A s waveguide layer, and a second waveguide layer of a second conductivity type.
Aj2z Gas-! As cladding layer (z>y)
The second AIIz Oat -! has a structure in which layers are sequentially laminated.
A rib-shaped optical waveguide is grown by removing the As cladding layer up to the AρuGam-aAs waveguide layer, and the optical waveguide has a width approximately equal to the current injection width near at least one resonator end face. It has a refractive index waveguide structure,
In a region other than the refractive index waveguide structure, the width of the optical waveguide is made sufficiently wider than the current injection width to form a gain waveguide structure, and the surface of the rib-shaped optical waveguide is formed by a II-Vl group compound semiconductor layer. In a semiconductor laser embedded in a semiconductor laser, the length of the refractive index waveguide region on the light emission side is 5 to 500 μm, the length of the refractive index waveguide region on the monitor side is 500 μm or less, the length of the gain waveguide region is 10 to 500 μm, and the length of the refractive index waveguide region on the monitor side is 5 to 500 μm. Region width is 0.5 to 10 μm
1 gain waveguide region width is 5 μm or more, current injection width is 10 μm
It is characterized by the following:

〔実施例〕〔Example〕

以下本発明の詳細な説明する。ここではZnSeにより
埋め込み層以外は、化合物半導体の代表であるAJ2G
aAs化合物半導体を例とするが、他の化合物半導体に
ついてもまた説明内の導電型をすべて逆にした構造にお
いても、同様に実施可能である。
The present invention will be explained in detail below. Here, except for the buried layer made of ZnSe, AJ2G, which is a representative compound semiconductor, is used.
Although the aAs compound semiconductor is taken as an example, the present invention can be implemented in the same manner with other compound semiconductors and even with structures in which all the conductivity types in the description are reversed.

第1図に本発明によりLDの構造を示し、第2図にその
作製工程図を示す、以下、第2図を用いて構造等を説明
する。
FIG. 1 shows the structure of an LD according to the present invention, and FIG. 2 shows a manufacturing process diagram thereof. Hereinafter, the structure etc. will be explained using FIG. 2.

n型−GaAs基板(201)上にn 型−G aAs
バッフy −層202、n1l−AJ2xGat−xA
SAlO2ラッドrA203、A(ly Gas −y
As活性層(x>y)204、Aρu G &、−u 
A s 83波路層205、p型−AρzG&+−zA
s第2のクラッドffi (z>y)20B、p型Ga
Asコンタクト層207より成る構造を連続して形成す
る(第2図(a))。上記各層の成長は、液相成長法(
以下LPE法と記す)、任機金属気相成長法(以下MO
CVD法と記す)、分子線成長法(以下MBE法と記す
)等の方法により行なえる。次いで第2図(C1の斜線
部209の如く形伏に、リブエツチング用マスク208
を形成する。
n-type GaAs on the n-type GaAs substrate (201)
Buffer y-layer 202, n1l-AJ2xGat-xA
SAlO2 rad rA203, A(ly Gas-y
As active layer (x>y) 204, Aρu G &, -u
A s 83 wave layer 205, p-type -AρzG&+-zA
s second cladding ffi (z>y) 20B, p-type Ga
A structure consisting of an As contact layer 207 is continuously formed (FIG. 2(a)). The growth of each of the above layers is carried out using the liquid phase growth method (
(hereinafter referred to as LPE method), Renki metal vapor phase epitaxy method (hereinafter referred to as MO
This can be performed by a method such as a CVD method (hereinafter referred to as a CVD method) or a molecular beam growth method (hereinafter referred to as an MBE method). Next, a rib etching mask 208 is applied to the shape as shown in the shaded area 209 in FIG. 2 (C1).
form.

続いて種々のウェットエツチング法またはドライエツチ
ング法によりp !!! −G a A sコンタクト
層207およびp!!−AρzGam−zAs第2のク
ラッド届206をエツチング除去し、エツチングマスク
208と同形吠のリブを形成する。エツチングの島、第
2のクラドラ層206と導波路層205は、Aρ混晶比
が異なることから、エツチングレートに差が生ずる。こ
の際導波路B2O5はエツチングストップ層としても利
用できる。
Subsequently, p! ! ! -G a As contact layer 207 and p! ! -AρzGam-zAs The second cladding layer 206 is removed by etching to form a rib having the same shape as the etching mask 208. Since the etching island, the second cladra layer 206, and the waveguide layer 205 have different Aρ mixed crystal ratios, a difference occurs in the etching rate. At this time, the waveguide B2O5 can also be used as an etching stop layer.

(第2図(d)) 続いて■−■族化合物半導体であるZnSe埋め込み層
210を、MOCVD法等により成長する。MOCVD
法を採用した際には、リブを形成したウェー面上で極め
て均一な膜厚−1御が可能である。(第2図(e))。
(FIG. 2(d)) Subsequently, a ZnSe buried layer 210, which is a ■-■ group compound semiconductor, is grown by MOCVD or the like. MOCVD
When this method is adopted, extremely uniform film thickness -1 can be achieved on the wafer surface on which ribs are formed. (Figure 2(e)).

次いでリブ上めZ n S e届を、ストライプ吠にエ
ツチング除去する。エツチング後の素子の上面図を第2
図(幻に示す。斜線部がZnSe埋め込み層210であ
り、中央部のストライプはf) Ml −G a A 
sコンタクト層207が露出している部分である。以後
p制電ti211の形成、裏面の基板ケンマ工程、n側
電極212を形成してLDを形成する。
Next, the ribbed ZnSe sheet is removed by etching into stripes. The top view of the element after etching is shown in the second figure.
Figure (shown in the illusion. The shaded area is the ZnSe buried layer 210, and the stripe in the center is f) Ml -G a A
This is the exposed portion of the s-contact layer 207. Thereafter, the LD is formed by forming the p-type anti-static Ti 211, performing a backside substrate removal process, and forming the n-side electrode 212.

本発明で使用したZnSe埋め込み71210の屈折率
は、いかなるAρ混晶比のA、9GaAs層よりも小さ
な値であり、禁制帯幅はいかなるAρ混品比のAfIG
aAs層よりも広い材料である。
The refractive index of the ZnSe-embedded 71210 used in the present invention is smaller than that of the A,9GaAs layer with any Aρ mixing ratio, and the forbidden band width is smaller than that of the A9GaAs layer with any Aρ mixing ratio.
It is a wider material than the aAs layer.

したがって本発明により形成される導波路は、ZnSe
層によるレーザ発振光の吸収は生じない為接合に水平な
方向に複素屈折率の実数部により形成される屈折率差が
生じ、屈折率導波路となる。
Therefore, the waveguide formed according to the present invention is made of ZnSe
Since the layer does not absorb the laser oscillation light, a refractive index difference formed by the real part of the complex refractive index occurs in a direction horizontal to the junction, forming a refractive index waveguide.

したがって、共振器端面近傍では上記屈折率導波路の幅
と電流注入幅を同程度として届折率導波a構としている
ので、安定な単一横モード発振が可能でかつ非点隔差の
極めて小さなレーザ光が出射される。
Therefore, in the vicinity of the resonator end face, the width of the refractive index waveguide and the current injection width are approximately the same, resulting in a refractive index waveguide a structure, which enables stable single transverse mode oscillation and an extremely small astigmatism difference. Laser light is emitted.

一方共振器中央部では上記屈折率導波路の幅を電流注入
幅より充分広くすることで利得導波機構となり縦多軸モ
ード発振となり戻り光雑音を極力抑えることができる。
On the other hand, in the center of the resonator, by making the width of the refractive index waveguide sufficiently wider than the current injection width, it becomes a gain waveguide mechanism, resulting in vertical multi-axis mode oscillation, and return optical noise can be suppressed as much as possible.

さらにZnSe層は抵抗率が高い材料(1010cm以
上)であるので電流狭窄が育効に行なわれ活性領域外を
流れる無効電流を極力抑えることができる。
Furthermore, since the ZnSe layer is a material with high resistivity (1010 cm or more), current confinement is effectively performed, and reactive current flowing outside the active region can be suppressed as much as possible.

第1表に本発明のLDにおいて、各構造パラメータ(a
〜r:第1図参照)を変化させた場合のLD特性を示す
Table 1 shows each structural parameter (a
~r: see FIG. 1) is shown.

試料番号1乃至6については、本発明で限定した範囲内
に各パラメータが入っている場合で、すべての試料に対
し、基本横モード発振、縦マルチモード発振を満足した
上で、非点収差も数μm以下と極めて小さな値となって
いる。一方試料番号7乃至10は、パラメータの1部が
本発明で限定した範囲外の個となっている。このような
試料については、横モードが高次で発振したり、しきい
値電流が大となったり、あるいは縦モードがシングルで
発振したり、非点収差が極めて大というような特性の変
化が生ずる。このような場合、LDを光情報処理装置等
の光源として用いた際には、複雑な外部光学系が必要と
なる等の問題を生じ、実用に供することが不可能となる
。したがう°C本発明で限定した範囲内に各パラメータ
を設定することが最適である。
Regarding sample numbers 1 to 6, when each parameter is within the range limited by the present invention, all samples satisfy fundamental transverse mode oscillation and longitudinal multimode oscillation, and astigmatism is also eliminated. This is an extremely small value of several μm or less. On the other hand, in sample numbers 7 to 10, some of the parameters are outside the range defined by the present invention. For such samples, changes in characteristics such as transverse mode oscillation at a higher order, threshold current becoming large, longitudinal mode oscillating in a single mode, or extremely large astigmatism may occur. arise. In such a case, when the LD is used as a light source for an optical information processing device or the like, problems arise such as the need for a complicated external optical system, making it impossible to put it to practical use. Therefore, it is optimal to set each parameter within the range limited by the present invention.

第1表 b:利得導波領域長 C:モニタ側屈折率導波領域長 d二利得導波領域幅 e:屈折率導波領域幅 f:電流注入幅 ■thニジきい値電流 (発明の効果〕 以上述べたように本発明によれば、LDの特性を決める
構造上の種々のパラメータの数値を最適化したことによ
り以下のような効果が得られる。
Table 1 b: Gain waveguide region length C: Monitor side refractive index waveguide region length d Double gain waveguide region width e: Refractive index waveguide region width f: Current injection width ■th Niji threshold current (effect of the invention ] As described above, according to the present invention, the following effects can be obtained by optimizing the values of various structural parameters that determine the characteristics of the LD.

!) 光出射端面近傍の屈折率導波領域の構造パラメー
タの最適化により、極めて非点収差の小さな、安定した
基本横モード発振が得られる。
! ) By optimizing the structural parameters of the refractive index waveguide region near the light exit end face, stable fundamental transverse mode oscillation with extremely small astigmatism can be obtained.

2) 上記理由により、複雑な外部光学系を必要とする
ことなく種々のLD応用装置への搭載が可能となる。
2) Due to the above reasons, it becomes possible to install it in various LD application devices without requiring a complicated external optical system.

3) 利得導波領域の構造パラメータの数値の最適化に
より、本LDは縦多モード発振となる。
3) By optimizing the numerical values of the structural parameters of the gain waveguide region, this LD achieves longitudinal multimode oscillation.

4)シたがって、戻り光雑音の極めて小さな発振が得ら
れる。
4) Therefore, oscillation with extremely low return optical noise can be obtained.

5) 加えて戻り光雑音対策で実施されている高周波重
量法で必要となる付加的な回路を必要とすることなく低
雑音化が達成され、また光学ヘッドの軽量化にもつなが
り、高速アクセスが期待できる。
5) In addition, low noise is achieved without the need for additional circuitry required by the high-frequency gravimetric method used to counter optical return noise, and it also leads to a lighter optical head, allowing high-speed access. You can expect it.

6) 低屈折率材料のZnSe層でリプ側面が埋め込ま
れており、また活性層直上には、AρGaAsj!!よ
りなる導波路届が存在することから、接合に水平および
垂直方向の光閉じ込めを左右する屈折率段差の制御性の
自由度が増加する。
6) The lip side surface is embedded with a ZnSe layer of low refractive index material, and directly above the active layer is AρGaAsj! ! Since there is a waveguide range of more than 100 nm, the degree of freedom in controlling the refractive index step that influences optical confinement in the horizontal and vertical directions at the junction increases.

7)シたがって基本横モード発振を維持しつつ、近視野
像のスポットサイズの拡大が可能となり、高光出力発振
が可能となる。
7) Therefore, while maintaining the fundamental transverse mode oscillation, the spot size of the near-field image can be expanded, and high optical output oscillation becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜IcIは、本発明のLDの一実施例を示
す構造図、(alは上面図、lblおよび(01図は、
(alに示すAA’ IIB’での断面図 第2図1al〜(glは、本発明のLDの作製工程図2
01−・・n型−GaAs基板 202−n !! −G a −A sバフファー層2
03−・・n型−Aj2xGam−xAs第1のクラッ
ド層 204−Afly Gas −y As活性層205−
Aflu GAS −M AsW波路回路層2oe・p
m  ”AI!t  Ga1− !  As第2゜クラ
ッド層 207・・・p型−GaAsコンタクト層208.20
9・・・リプエツチング用マスク210・・・ZnSe
埋め込み層 211・・・p側電極 212・・・n側電極 以 ”上 出願人 セイコーエプソン株式会社 (fン 子LL!1
FIG. 1 (al to IcI are structural diagrams showing one embodiment of the LD of the present invention, (al is a top view, lbl and (01 are
(al is a cross-sectional view at AA'IIB' shown in FIG. 2.
01-...n-type GaAs substrate 202-n! ! -G a -A s buffer layer 2
03-...n-type-Aj2xGam-xAs first cladding layer 204-Afly Gas-yAs active layer 205-
Aflu GAS-M AsW wave circuit layer 2oe/p
m ”AI!t Ga1-!As second degree cladding layer 207...p-type-GaAs contact layer 208.20
9...Repetching mask 210...ZnSe
Buried layer 211...P-side electrode 212...N-side electrode and above

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型のGaAs基板上に、第1の導電型の第1
のAl_xGa_1_−_xAsクラッド層(1≧x>
0)、Al_yGa_1_−_yAs活性層(x>y)
、Al_uGa_1_−_uAs導波路層、および第2
の導電型の第2のAl_zGa_1_−_zAsクラッ
ド層(z>y)を順次積層した構造の該第2のAl_z
Ga_1_−_zAsクラッド層を該Al_uGa_1
_−_uAs導波路層まで除去してなるリブ状の光導波
路を有し、かつ該光導波路は少なくとも一方の共振器端
面近傍では該光導波路幅と電流注入幅をほぼ等しくして
屈折率導波構造であり、該屈折率導波構造以外の領域で
は該光導波路の幅を電流注入幅より充分広くして利得導
波構造であり、かつ該リブ状の光導波路の測面は、II−
VI族化合物半導体層であるZnSeで埋め込まれて成る
半導体レーザにおいて光出射側の屈折率導波領域長が5
乃至500μm、モニタ側の屈折率導波領域長が500
μm以下、利得導波領域長が10乃至500μm、屈折
率導波領域幅が0.5乃至10μm、利得導波領域幅が
5μm以上、電流注入幅が10μm以下であることを特
徴とする半導体レーザ。
A first conductive type GaAs substrate is formed on a first conductive type GaAs substrate.
Al_xGa_1_-_xAs cladding layer (1≧x>
0), Al_yGa_1_-_yAs active layer (x>y)
, Al_uGa_1_-_uAs waveguide layer, and a second
The second Al_z has a structure in which second Al_zGa_1_-_zAs cladding layers (z>y) of conductivity type are sequentially laminated.
Ga_1_-_zAs cladding layer and Al_uGa_1
It has a rib-shaped optical waveguide formed by removing up to the uAs waveguide layer, and the optical waveguide has a refractive index waveguide with the optical waveguide width and current injection width being approximately equal to each other in the vicinity of at least one resonator end face. In the region other than the refractive index waveguide structure, the width of the optical waveguide is made sufficiently wider than the current injection width to form a gain waveguide structure, and the surface measurement of the rib-shaped optical waveguide is II-
In a semiconductor laser embedded with ZnSe, which is a group VI compound semiconductor layer, the refractive index waveguide region length on the light emission side is 5.
500μm, refractive index waveguide region length on the monitor side is 500μm
A semiconductor laser characterized by having a gain waveguide region length of 10 to 500 μm, a refractive index waveguide region width of 0.5 to 10 μm, a gain waveguide region width of 5 μm or more, and a current injection width of 10 μm or less. .
JP2791288A 1988-02-09 1988-02-09 Semiconductor laser Pending JPH01202886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2791288A JPH01202886A (en) 1988-02-09 1988-02-09 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2791288A JPH01202886A (en) 1988-02-09 1988-02-09 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01202886A true JPH01202886A (en) 1989-08-15

Family

ID=12234096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2791288A Pending JPH01202886A (en) 1988-02-09 1988-02-09 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01202886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528739B2 (en) 2009-11-25 2013-09-10 Danny Lee Haile Package for colored products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528739B2 (en) 2009-11-25 2013-09-10 Danny Lee Haile Package for colored products

Similar Documents

Publication Publication Date Title
US4901123A (en) Superluminescent diode
US4852110A (en) Semiconductor laser of a refractive index-guided type and a process for fabricating the same
EP0155151B1 (en) A semiconductor laser
US4745615A (en) Semiconductor laser device with a diffraction grating
JPH01202886A (en) Semiconductor laser
US5518954A (en) Method for fabricating a semiconductor laser
US5136601A (en) Semiconductor laser
JPS61296783A (en) Semiconductor laser device
JPH02116187A (en) Semiconductor laser
JPH11284223A (en) Superluminascent diode
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JPH03253089A (en) Semiconductor diode laser and manufacture thereof
JPH0268975A (en) Semiconductor laser
JPH0715080A (en) Semiconductor optical component
JPS63288086A (en) Semiconductor device
JPH0569318B2 (en)
JPH0278290A (en) Semiconductor laser device
JPH084177B2 (en) Semiconductor laser
Mukai et al. A semiconductor laser with a converging output beam
JPH01202887A (en) Semiconductor laser
JPH09307187A (en) Secondary harmonic component generating semiconductor laser
JPH05235467A (en) Semiconductor laser
JPS61244082A (en) Semiconductor laser device
JPS6167285A (en) Semiconductor laser device
JPH0685379A (en) Semiconductor laser element and manufacture thereof