JPH01202642A - Measuring apparatus - Google Patents

Measuring apparatus

Info

Publication number
JPH01202642A
JPH01202642A JP2836788A JP2836788A JPH01202642A JP H01202642 A JPH01202642 A JP H01202642A JP 2836788 A JP2836788 A JP 2836788A JP 2836788 A JP2836788 A JP 2836788A JP H01202642 A JPH01202642 A JP H01202642A
Authority
JP
Japan
Prior art keywords
light
measuring device
adjusting means
light source
amount adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2836788A
Other languages
Japanese (ja)
Inventor
Jun Koide
純 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2836788A priority Critical patent/JPH01202642A/en
Publication of JPH01202642A publication Critical patent/JPH01202642A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable equalization of an output of a first photoresponsive element in a reference state to that of a second photoresponsive element, by providing a quantity of light adjusting means before the second photoresponsive element into which light from a light source is made incident directly. CONSTITUTION:After reflected diffusively on a surface 2 to be measured, a luminous flux projected to the surface 2 from a light source 1 is made incident into a first photoresponsive element 3 to generate an electric output in the element 3 according to an incident light energy. The reflection factor of incident light energy with respect to the element 3 is determined by a characteristic of an object to be measured and the reflected light thereof is incident into the element 3 according to physical nature of the object being measured. On the other hand, the luminous flux emitted to a second photoresponsive element 4 from the light source 1 is incident into a quantity of light adjusting means 5, with a light energy absorption filter 5a of which 5 the most of the energy is absorbed and incident into the element 4 after scattering reflected light is interrupted with a stop 5b. In this manner, even when there are variations in a relative position relationship between the light source 1 and the element 4, the physical nature of the object being measured can be measured accurately with no remarkable change in the output of the element 4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は物質もしくは物体の物性等を測定するための測
定装置に関し、特に、電子写真用現像剤の経時的濃度変
化を測定するのに好適な測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a measuring device for measuring physical properties of substances or objects, and is particularly suitable for measuring changes in concentration over time of an electrophotographic developer. related to a measuring device.

[従来の技術] 電子写真用現像剤にはよく知られているように1成分系
現像剤と2成分系現像剤とがあり、現在では2成分系現
像剤が広く使用されている。電子写真装置において現像
剤を繰り返して使用していると、現像剤濃度が低下して
ゆき、それに伴って画質が低下していく。従って、画質
低下を防止するためには現像剤の濃度変化を常に測定し
、濃度低下に応じて新らしい現像剤を補給することが必
要となる。
[Prior Art] As is well known, there are two types of electrophotographic developers: one-component developers and two-component developers, and two-component developers are currently widely used. When a developer is repeatedly used in an electrophotographic apparatus, the concentration of the developer decreases, and image quality deteriorates accordingly. Therefore, in order to prevent image quality from deteriorating, it is necessary to constantly measure changes in developer density and replenish new developer in accordance with the decrease in density.

従来、電子写真装置に装備されていた現像剤濃度検出装
置は 現像剤に光を投射する光源と、該光源から該現像
剤に投射された光の反射光を受光する受光素子と、を有
しており、該検出装置では、該現像剤からの反射光の光
エネルギーに応じて該受光素子から発生した電気的出力
を測定することによフて、該現像剤の濃度変化を検出し
ている。しかしながら、この現像剤濃度検出装置では、
光源及び受光素子が使用環境によってその発生光量や出
力に変動を生じやすく、また、経年変化により発光量や
出力が低下するので信頼性の高い正確な検出値を得るこ
とが困難であった。それ故、使用環境の変化や経年変化
による検出値の変動を補償するために、該光源から発生
した光を直接に入射させる第2の受光素子を設け、現像
剤からの反射光が入射する第1の受光素子の出力を前記
第2の受光素子の出力によフて補正する構成の改良され
た現像剤濃度検出装置が提案されている。
Conventionally, a developer concentration detection device installed in an electrophotographic apparatus includes a light source that projects light onto the developer, and a light receiving element that receives reflected light of the light projected onto the developer from the light source. The detection device detects a change in the concentration of the developer by measuring the electrical output generated from the light receiving element according to the optical energy of the reflected light from the developer. . However, with this developer concentration detection device,
It has been difficult to obtain reliable and accurate detection values because the light source and light receiving element tend to fluctuate in the amount of light they generate and their output depending on the environment in which they are used, and the amount of light they emit and the output decrease over time. Therefore, in order to compensate for fluctuations in detected values due to changes in the usage environment or changes over time, a second light-receiving element is provided to directly receive the light generated from the light source, and a second light-receiving element is provided to receive the light reflected from the developer. An improved developer concentration detection device has been proposed in which the output of one light receiving element is corrected by the output of the second light receiving element.

[発明が解決しようとする課題] しかし、第1及び第2の受光素子を具備した前記の現像
剤濃度検出装置は光源の発光量の変動に基因する検出値
の変動を補償することができるが、光源の発光エネルギ
ーの指向性が個々の光源毎にわずかずつ異っているので
光源と第1及び第2の受光素子との相対位置関係に非常
に厳密さが必要とされるため、個々の現像剤濃度検出装
置毎に光源と前記受光素子との設置位置を厳密に調整し
なければならず、従って、前記3者の相対位置関係にバ
ラツキがあると、出力が個々の現像剤濃度検出装置毎に
異ってしまうという欠点があった。
[Problems to be Solved by the Invention] However, although the above-mentioned developer concentration detection device equipped with the first and second light-receiving elements can compensate for fluctuations in the detected value due to fluctuations in the amount of light emitted from the light source, Since the directivity of the emitted energy of the light source differs slightly for each light source, the relative positional relationship between the light source and the first and second light receiving elements must be very precise. The installation positions of the light source and the light-receiving element must be precisely adjusted for each developer concentration detection device, and therefore, if there are variations in the relative positional relationship of the three, the output will be different from that of each developer concentration detection device. The drawback was that each one was different.

本発明の目的は、前記公知の現像剤濃度検出装置の欠点
を排除し、光源及び受光素子の相対位置関係に多少のバ
ラツキがあっても出力のバラツキを生じない改良された
現像剤濃度検出装置乃至は測定装置を提供することであ
る。
An object of the present invention is to provide an improved developer concentration detection device which eliminates the drawbacks of the known developer concentration detection devices and which does not cause variations in output even if there is some variation in the relative positional relationship between the light source and the light receiving element. Or to provide a measuring device.

[課題を解決するための手段] 前記課題を達成するために本発明では光源から発生した
光が直接に入射する第2の受光素子と該光源との間に光
量調整手段を設けることによって該受光素子への入射エ
ネルギーを調整し、これにより第1及び第2の受光素子
の初期出力の差が過大にならぬようにしたことを特徴と
する。また、本発明では光源の発光エネルギーの分光分
布波長域のすべてが受光素子の感度波長域の中に含まれ
るように光源と受光素子とを選択することにより、光源
の発光エネルギーの分光分布及び受光素子の感度分光分
布が経時的及び環境的な影響によって変動し且つ受光素
子間で感度分光分布の差異が生じた場合であっても第1
及び第2の受光素子の出力差を小さくすることができる
[Means for Solving the Problems] In order to achieve the above-mentioned problems, in the present invention, a light amount adjusting means is provided between the light source and the second light receiving element into which the light generated from the light source is directly incident. A feature of the present invention is that the energy incident on the element is adjusted so that the difference between the initial outputs of the first and second light-receiving elements does not become excessive. In addition, in the present invention, by selecting the light source and the light receiving element so that the entire spectral distribution wavelength range of the light emission energy of the light source is included in the sensitivity wavelength range of the light receiving element, the spectral distribution of the light emission energy of the light source and the light reception can be improved. Even if the sensitivity spectral distribution of the element changes over time and due to environmental influences, and there is a difference in the sensitivity spectral distribution between the light receiving elements, the first
The output difference between the second light receiving element and the second light receiving element can be reduced.

[作   用] 本発明の測定装置では、光源からの光が入射する第2の
売込動素子の前に光量調整手段が設けられているので、
被測定物からの反射光が入射される第1の売込動素子の
基準時出力を該第2の売込動素子の出力に等しくするこ
とができるため高精度の測定を行うことができ、また、
光源及び該売込動素子の相対的位置関係にバラツキがあ
ってもそれに影響されることなく、個々の測定装置の精
度を均一にすることができる。
[Function] In the measuring device of the present invention, since the light amount adjustment means is provided in front of the second sales movement element into which the light from the light source enters,
Since the reference output of the first sales movement element into which the reflected light from the object to be measured is incident can be made equal to the output of the second sales movement element, highly accurate measurement can be performed. Also,
Even if there is variation in the relative positional relationship between the light source and the marketing element, the accuracy of each measuring device can be made uniform without being affected by the variation.

[実 施 例] 第1図は本発明の測定装置の第1実施例を示した図であ
り、同図において1はLEDで構成されている光源、2
は2成分現像剤等の被測定物表面、3は被測定物表面2
で反射した光が入射する第1の売込動素子、4は光源1
から発生した光が直接に入射する第2の売込動素子、5
aは光源1と第2の売込動素子4との間の光路に設けら
れた光量調整手段5の構成部材である光エネルギー吸収
フィルター、5bは光量調整手段5の構成部材である絞
り、である。
[Embodiment] Fig. 1 is a diagram showing a first embodiment of the measuring device of the present invention, in which 1 is a light source composed of an LED, 2
is the surface of the object to be measured such as a two-component developer, 3 is the surface of the object to be measured 2
4 is a light source 1;
a second marketing element into which the light generated from the 5 directly enters;
a is a light energy absorbing filter that is a component of the light amount adjustment means 5 provided in the optical path between the light source 1 and the second marketing element 4; and 5b is a diaphragm that is a component of the light amount adjustment means 5. be.

LEDから成る光源1は、発光ピーク波長が940nm
(ナノメートル)、半値波長巾が50nm、発光波長帯
域中が150nmであり、該光源1は被測定物表面2と
第2の売込動素子4とに向って発光拡散指向角30℃で
発光する。
The light source 1 made of LED has an emission peak wavelength of 940 nm.
(nanometers), the half-value wavelength width is 50 nm, and the emission wavelength band is 150 nm. do.

売込動素子3及び4は受光開口が5.7mmφのSPD
等から成っている。光エネルギー吸収フィルター5aは
、本実施例の場合、波長940nmでは透過率が0.9
%、波長1150nm 〜1100nでは透過率が1%
程度であるフィルターである。
Sales elements 3 and 4 are SPDs with a light receiving aperture of 5.7 mmφ.
It consists of etc. In this embodiment, the light energy absorption filter 5a has a transmittance of 0.9 at a wavelength of 940 nm.
%, transmittance is 1% at wavelength 1150nm to 1100n
It is a filter that is about.

被測定物である2成分現像剤はトナーとキアリアとで構
成されており、該トナーは波長940nn+での反射率
がBaSO4に対して60%程度であり、キアリアは波
長940nmでの反射率がBaSO4に対して5%以下
である。このような2成分現像剤ではキアリアに対する
トナーの比が大きければ拡散反射率も大きくなり、従っ
て、反射光エネルギーを測定することによってキアリア
とトナーの比(すなわち、現像剤濃度)を測定すること
ができる。
The two-component developer that is the object to be measured is composed of toner and Chiaria, and the toner has a reflectance at a wavelength of 940 nm+ that is approximately 60% that of BaSO4, and Chiaria has a reflectance at a wavelength of 940 nm that is approximately 60% that of BaSO4. 5% or less. In such a two-component developer, the larger the ratio of toner to chiaria, the greater the diffuse reflectance. Therefore, it is possible to measure the ratio of chiaria to toner (i.e., developer concentration) by measuring the reflected light energy. can.

光源1から被測定物表面2に投射された光束は該表面2
で拡散反射された後、第1の売込動素子3に入射され、
該素子3に入射光エネルギーに応じた電気的出力が発生
する。該素子3に対する入射光エネルギーは被測定物の
物性(すなわち、本実施例では、トナーとキアリアとの
混合比率)によって反射率が決り、該被測定物の物性に
応じた反射光が第1の売込動素子3に入射する。
The light beam projected from the light source 1 onto the surface 2 of the object to be measured is
After being diffusely reflected, it enters the first sales movement element 3,
An electrical output is generated in the element 3 according to the energy of the incident light. The reflectance of the incident light energy to the element 3 is determined by the physical properties of the object to be measured (that is, the mixing ratio of toner and Chiaria in this embodiment), and the reflected light according to the physical properties of the object to be measured is The light enters the sales movement element 3.

一方、光源1から第2の売込動素子4に向けて発射され
た光束は光量調整手段5に入射し、該光量調整手段5の
光エネルギー吸収フィルター5aによって大部分のエネ
ルギーを吸収され、該吸収フィルター5aに入射した光
エネルギーの0.9〜1%のエネルギーのみが該フィル
ター58を透過し、更に絞り5bによって乱反射光が遮
断された後、第2の売込動素子4に入射する。なお、本
実施例の場合、被測定物たる2成分現像剤のキアリアと
トナーとの比が8%である時に第1及び第2の売込動素
子3及び4の出力が等しくなるように設計されている。
On the other hand, the light beam emitted from the light source 1 toward the second marketing element 4 enters the light amount adjustment means 5, and most of the energy is absorbed by the light energy absorption filter 5a of the light amount adjustment means 5. Only 0.9 to 1% of the light energy incident on the absorption filter 5a passes through the filter 58, and after the diffusely reflected light is blocked by the diaphragm 5b, it enters the second marketing element 4. In the case of this embodiment, the design is such that the outputs of the first and second promotional elements 3 and 4 are equal when the ratio of chiaria to toner in the two-component developer, which is the object to be measured, is 8%. has been done.

本実施例のように、前記した特性の光量調整手段5を設
けると、光源1と第2の売込動素子−4との相対的位置
関係にバラツキがあった場合でも第2の光応動素子4の
出力が著るしく変動することがなくなり、該被測定物の
物性(本実施例の場合は、現像剤濃度)を正確に測定す
ることができる。
As in this embodiment, when the light amount adjusting means 5 having the above-mentioned characteristics is provided, even if there is variation in the relative positional relationship between the light source 1 and the second sales element-4, the second light-responsive element-4 can be adjusted. The output of No. 4 does not fluctuate significantly, and the physical properties of the object to be measured (in this example, the developer concentration) can be accurately measured.

第2図は本発明の第2実施例を示したものである。この
実施例では光量調整手段5Aが拡散フィルター50と絞
り5bとで構成されている。拡散フィルター50は光応
動素子4との距離関係により光エネルギー吸収フィルタ
ー58とはメ同じ機能を有するため、本実施例の構成で
あっても第1実施例と同等の効果を得ることができる。
FIG. 2 shows a second embodiment of the invention. In this embodiment, the light amount adjusting means 5A is composed of a diffusion filter 50 and an aperture 5b. Since the diffusion filter 50 has the same function as the optical energy absorption filter 58 due to its distance from the photoresponsive element 4, even with the configuration of this embodiment, the same effect as that of the first embodiment can be obtained.

なお、第2の光応動素子4は第1実施例よりも光源1か
ら遠い位置に設置されている。
Note that the second photoresponsive element 4 is installed at a position farther from the light source 1 than in the first embodiment.

第3図は本発明の第3実施例である。この実施例の光量
調整手段5Bは偏光フィルター5dと絞り5bとで構成
されている。また、第2の光応動素子4は第1実施例よ
りも光源1から遠い位置に設置されており、これにより
第2の光応動素子4に入射する光エネルギーを少くさせ
ることによって偏光フィルター5dに光エネルギー吸収
フィルターと同じ機能を持たせている。
FIG. 3 shows a third embodiment of the present invention. The light amount adjusting means 5B of this embodiment is composed of a polarizing filter 5d and an aperture 5b. Further, the second photoresponsive element 4 is installed at a position farther from the light source 1 than in the first embodiment, thereby reducing the light energy incident on the second photoresponsive element 4, which is applied to the polarizing filter 5d. It has the same function as a light energy absorption filter.

第4図は本発明の第3実施例を示したものである。本実
施例の光量調整手段5Cは、スクリーンフィルター58
と絞り5bとで構成されている。該光量調整手段5Cに
用いるスクリーンフィルターとして第5図に示すように
、ストライブ型スクリーンフィルター581、逆ドツト
型スクリーンフィルター582、格子型スクリーンフィ
ルター503、ドツト型スクリーンフィルター584、
等の各種スクリーンフィルターを使用することができる
FIG. 4 shows a third embodiment of the present invention. The light amount adjustment means 5C of this embodiment includes a screen filter 58.
and an aperture 5b. As shown in FIG. 5, the screen filters used in the light amount adjusting means 5C include a stripe type screen filter 581, an inverted dot type screen filter 582, a lattice type screen filter 503, a dot type screen filter 584,
Various screen filters such as can be used.

第6図は本発明の第4実施例を示したものである。本実
施例の光量調整手段5Dは互いに相対的に回転しつる2
個以上の偏光フィルター5f及び5gを瓜ね合せた構成
を有しており、絞り5bが設けられている0本実施例の
光量調整手段5Dも第1図乃至第5図に示した光量調整
手段と同じ機能を有している。
FIG. 6 shows a fourth embodiment of the present invention. The light amount adjustment means 5D of this embodiment rotates relative to each other.
The light amount adjusting means 5D of this embodiment, which has a structure in which more than one polarizing filter 5f and 5g are meshed together and is provided with an aperture 5b, is also the light amount adjusting means shown in FIGS. 1 to 5. It has the same function as .

第7図に示す第5実施例の光量調整手段5Eは、第8図
に示した2枚のストライブ型スクリーンフィルター5h
及び51を互いに平行移動もしくは相対回転させるよう
に構成されるとともに絞り5bを具備している。
The light amount adjusting means 5E of the fifth embodiment shown in FIG. 7 is composed of two stripe type screen filters 5h shown in FIG.
and 51 are configured to move in parallel or rotate relative to each other, and is provided with an aperture 5b.

第9図に示した第6実施例の光量調整手段5Fは、第1
0図に示すように、互いに平行移動もしくは相対回転し
つる2枚の絞り5b及び5jによって構成されている。
The light amount adjusting means 5F of the sixth embodiment shown in FIG.
As shown in FIG. 0, it is composed of two apertures 5b and 5j that move in parallel or rotate relative to each other.

第11図は、前記第1乃至第6実施例に示した本発明装
置における光源1の発光波長分布21と光応動素子3及
び4の感度分光分布22とを表示した図である0本発明
の装置では、光源1の発光波長分布21が環境変化や経
時変化によって21a及び21bの如く変動した時に該
変動分布21a及び21bが光応動素子3及び4の感度
分光分布22から外へ出ないように光源1の発光特性と
光応動素子の感度特性とが選定されており、また、光源
1の発光波長域で該光応動素子の感度分光分布22がフ
ラットに近くなるような光応動素子を使用している。従
って、本発明の装置では、光源10発光波長が環境要因
や経時変化によって変動し、且つ、2つの光応動素子3
及び4のそれぞれの感度分光分布に多少の差異があって
も該画素子の相互出力差を非常に小さくすることができ
るため、正確な測定値を得ることができる。
FIG. 11 is a diagram showing the emission wavelength distribution 21 of the light source 1 and the sensitivity spectral distribution 22 of the photoresponsive elements 3 and 4 in the apparatus of the present invention shown in the first to sixth embodiments. In the device, when the emission wavelength distribution 21 of the light source 1 fluctuates as shown in 21a and 21b due to environmental changes or changes over time, the fluctuation distributions 21a and 21b are prevented from going outside the sensitivity spectral distribution 22 of the photoresponsive elements 3 and 4. The light emission characteristics of the light source 1 and the sensitivity characteristics of the photoresponsive element are selected, and a photoresponsive element is used such that the sensitivity spectral distribution 22 of the photoresponsive element is nearly flat in the emission wavelength range of the light source 1. ing. Therefore, in the device of the present invention, the emission wavelength of the light source 10 fluctuates depending on environmental factors and changes over time, and the two photoresponsive elements 3
Even if there is a slight difference in the sensitivity spectral distribution of each pixel and 4, the mutual output difference between the pixel elements can be made very small, so accurate measurement values can be obtained.

なお、前記各実施例に示した各種フィルターを互いに組
合せて該光量調整手段を構成してもよいことは勿論であ
る。
It goes without saying that the light amount adjusting means may be constructed by combining the various filters shown in each of the above embodiments.

[発明の効果] 以上に説明したように本発明の測定装置では光源からの
光が直接に入射される第2の光応動素子の前に光量調整
手段を設けたので第1の光応動素子の基準状態での出力
と該第2の光応動素子の出力とを同一にすることが可能
となり、その結果、測定精度を向上することができる。
[Effects of the Invention] As explained above, in the measuring device of the present invention, the light amount adjustment means is provided in front of the second photoresponsive element into which the light from the light source is directly incident, so that the light intensity adjustment means of the first photoresponsive element is It becomes possible to make the output in the reference state and the output of the second photoresponsive element the same, and as a result, measurement accuracy can be improved.

また、本発明の測定装置では、光応動素子の環境変化や
経時変化、光源と該光応動素子の設置位置のバラツキ、
該応動素子の特性のパラツキ、等に基因する2個の素子
の出力誤差を調整することができ、その結果、個々の測
定装置の品質の均一化を図ることができる。更に、本発
明の装置では、光源の特性と光応動素子の特性とが前記
のようになるように光源と該素子とを選定しているので
環境的及び経時的な変動があっても高い測定精度を保つ
ことができる。
In addition, in the measuring device of the present invention, environmental changes and aging of the photoresponsive element, variations in the installation position of the light source and the photoresponsive element,
It is possible to adjust the output errors of the two elements due to variations in the characteristics of the responsive elements, etc., and as a result, it is possible to equalize the quality of the individual measuring devices. Furthermore, in the device of the present invention, the light source and the light-responsive element are selected so that the characteristics of the light source and the characteristics of the photoresponsive element are as described above, so even if there are environmental and temporal fluctuations, high measurement performance can be achieved. Accuracy can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定装置の第1実施例の概略図、第2
図は本発明の第2実施例の概略図、第3図は本発明の第
3実施例の概略図、第4図は本発明の第4実施例の概略
図、第5図は第4図の実施例で使用されるスクリーンフ
ィルターの種類を示した図、第6図は本発明の第5実施
例の概略図、第7図は本発明の第6実施例の概略図、第
8図は第7の実施例で用いられるストライプ型スクリー
ンフィルターを示した図、第9図は本発明の第7実施例
の概略図、第10図は第9図の実施例における光量調整
手段の一部を示す平面図、第11図は本発明装置におけ
る光源の特性と光応動素子の特性とを示した図、である
。 1・・・光源     2・・・被測定物表面3・・・
第1の光応動素子 4・・・第2の先広勅素子 5 、5A、 5B、 5f;、 5D、 5E、 5
F・・・光量調整手段5a・・・光エネルギー吸収フィ
ルター5b、5j・・・絞り   5C・・・拡散フィ
ルター5d・・・イ扁光フィルター 5e・・・スクリーンフィルター 第1図     第2図 覧M     汲艮
FIG. 1 is a schematic diagram of the first embodiment of the measuring device of the present invention, and FIG.
The figure is a schematic diagram of a second embodiment of the present invention, Figure 3 is a schematic diagram of a third embodiment of the present invention, Figure 4 is a schematic diagram of a fourth embodiment of the present invention, and Figure 5 is a schematic diagram of a fourth embodiment of the present invention. Figure 6 is a schematic diagram of the fifth embodiment of the present invention, Figure 7 is a schematic diagram of the sixth embodiment of the present invention, and Figure 8 is a diagram showing the types of screen filters used in the embodiments. A diagram showing a striped screen filter used in the seventh embodiment, FIG. 9 is a schematic diagram of the seventh embodiment of the present invention, and FIG. 10 shows a part of the light amount adjustment means in the embodiment of FIG. FIG. 11 is a plan view showing the characteristics of the light source and the characteristics of the photoresponsive element in the device of the present invention. 1... Light source 2... Surface of the object to be measured 3...
First photoresponsive element 4...Second widening element 5, 5A, 5B, 5f;, 5D, 5E, 5
F...Light amount adjustment means 5a...Light energy absorption filters 5b, 5j...Aperture 5C...Diffusion filter 5d...A flattening filter 5e...Screen filter Fig. 1 Diagram 2 M汲艮

Claims (1)

【特許請求の範囲】 1 被測定物に光を投射する光源と、該被測定物で反射
した反射光を受光して受光量に応じた出力を発生する第
1の光応動素子と、該光源から発生した光を直接に受光
して受光量に応じた出力を発生する第2の光応動素子と
、を有し、該第1の光応動素子の出力と該第2の光応動
素子の出力との差に基いて該被測定物の物性等を測定す
る測定装置において、該光源と該第2の光応動素子との
間の光路中に光量調整手段を設けたことを特徴とする測
定装置。 2 該光量調整手段が光吸収フィルターを有している請
求項1記載の測定装置。 3 該光量調整手段が拡散フィルターを有している請求
項1記載の測定装置。 4 該光量調整手段が少くとも2枚の偏光フィルターを
重ね合せた構成を有している請求項1記載の測定装置。 5 該光量調整手段が相対回転可能な少くとも2枚の偏
光フィルターを重ね合せた構成を有している請求項1記
載の測定装置。 6 該光量調整手段がスクリーンフィルターを有してい
る請求項1記載の測定装置。 7 該光量調整手段が互いに平行移動もしくは相対回転
可能な少くとも2枚以上のストライプスクリーンフィル
ターを重ね合せた構成を有している請求項1記載の測定
装置。 8 該光量調整手段が回転もしくは平行移動が可能な絞
りを有している請求項1記載の測定装置。 9 該光量調整手段が互いに相対回転もしくは相対平行
移動可能な少くとも2枚以上の絞りを有している請求項
1記載の測定装置。 10 該光量調整手段が、光吸収フィルター、拡散フィ
ルター、偏光フィルター、スクリーンフィルター、及び
絞りのうちの2種以上を組合せて構成されている請求項
1記載の測定装置。 11 該光量調整手段が、光吸収フィルター、拡散フィ
ルター、偏光フィルター、スクリーンフィルター、及び
絞りのうちの2種以上を組合せて構成されるとともに該
フィルターもしくは絞りが相対移動できるように構成さ
れている請求項1記載の測定装置。 12 該第1及び第2の光応動素子の感度波長域が該光
源の発光エネルギー波長域よりも広いことを特徴とする
請求項1乃至11記載の測定装置。 13 該第1及び第2の光応動素子の感度波長域におい
て該光源の発光エネルギー波長域の部分がフラットな感
度域であることを特徴とする請求項12記載の測定装置
。 14 該測定装置が粉状体もしくは粒状体などの物質の
物性変化を測定するための装置であることを特徴とする
請求項1乃至13記載の測定装置。 15 該測定装置が電子写真用現像剤の濃度を測定する
ための装置であることを特徴とする請求項1乃至14記
載の測定装置。
[Scope of Claims] 1. A light source that projects light onto an object to be measured, a first light-responsive element that receives reflected light reflected by the object to be measured and generates an output according to the amount of received light, and the light source. a second light-responsive element that directly receives light generated from the light-responsive element and generates an output according to the amount of received light, the output of the first light-responsive element and the output of the second light-responsive element. A measuring device for measuring the physical properties of the object to be measured based on the difference between the light source and the second photoresponsive element, characterized in that a light amount adjusting means is provided in the optical path between the light source and the second photoresponsive element. . 2. The measuring device according to claim 1, wherein the light amount adjusting means has a light absorption filter. 3. The measuring device according to claim 1, wherein the light amount adjusting means has a diffusion filter. 4. The measuring device according to claim 1, wherein the light amount adjusting means has a structure in which at least two polarizing filters are stacked one on top of the other. 5. The measuring device according to claim 1, wherein the light amount adjusting means has a structure in which at least two polarizing filters that are relatively rotatable are stacked one on top of the other. 6. The measuring device according to claim 1, wherein the light amount adjusting means has a screen filter. 7. The measuring device according to claim 1, wherein the light amount adjusting means has a structure in which at least two or more stripe screen filters that can be moved in parallel or rotated relative to each other are stacked one on top of the other. 8. The measuring device according to claim 1, wherein the light amount adjusting means has a diaphragm that can be rotated or translated in parallel. 9. The measuring device according to claim 1, wherein the light amount adjusting means has at least two or more apertures that can rotate or move in parallel relative to each other. 10. The measuring device according to claim 1, wherein the light amount adjusting means is configured by combining two or more of a light absorption filter, a diffusion filter, a polarizing filter, a screen filter, and an aperture. 11. A claim in which the light amount adjusting means is constructed by combining two or more of a light absorption filter, a diffusion filter, a polarizing filter, a screen filter, and an aperture, and the filter or aperture is configured to be relatively movable. Item 1. Measuring device according to item 1. 12. The measuring device according to claim 1, wherein the sensitivity wavelength range of the first and second photoresponsive elements is wider than the emission energy wavelength range of the light source. 13. The measuring device according to claim 12, wherein in the sensitivity wavelength range of the first and second photoresponsive elements, a portion of the emission energy wavelength range of the light source is a flat sensitivity range. 14. The measuring device according to any one of claims 1 to 13, wherein the measuring device is a device for measuring changes in physical properties of a substance such as a powder or a granular material. 15. The measuring device according to any one of claims 1 to 14, wherein the measuring device is a device for measuring the concentration of an electrophotographic developer.
JP2836788A 1988-02-09 1988-02-09 Measuring apparatus Pending JPH01202642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2836788A JPH01202642A (en) 1988-02-09 1988-02-09 Measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2836788A JPH01202642A (en) 1988-02-09 1988-02-09 Measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01202642A true JPH01202642A (en) 1989-08-15

Family

ID=12246655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2836788A Pending JPH01202642A (en) 1988-02-09 1988-02-09 Measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01202642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374347U (en) * 1989-11-21 1991-07-25
JP2002517717A (en) * 1998-06-01 2002-06-18 ハッチ カンパニー Turbidimeter calibration test system
US7492447B2 (en) 2002-10-30 2009-02-17 Atago Co., Ltd. Refractometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161940A (en) * 1978-06-12 1979-12-22 Konishiroku Photo Ind Co Ltd Method and apparatus for detecting toner concentration in electrophotographic copier
JPS5673336A (en) * 1979-11-20 1981-06-18 Ricoh Co Ltd Toner concentration sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161940A (en) * 1978-06-12 1979-12-22 Konishiroku Photo Ind Co Ltd Method and apparatus for detecting toner concentration in electrophotographic copier
JPS5673336A (en) * 1979-11-20 1981-06-18 Ricoh Co Ltd Toner concentration sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374347U (en) * 1989-11-21 1991-07-25
JP2002517717A (en) * 1998-06-01 2002-06-18 ハッチ カンパニー Turbidimeter calibration test system
US7492447B2 (en) 2002-10-30 2009-02-17 Atago Co., Ltd. Refractometer

Similar Documents

Publication Publication Date Title
JP5155325B2 (en) Determination of surface and thickness
US4995727A (en) Compact diffusion light mixing box and colorimeter
JP2621430B2 (en) Light sensor
JP2001041888A (en) Device and method for determining surface quality
US3572951A (en) Single mirror normal incidence reflectometer
US20130188188A1 (en) Apparatus for measuring transmittance
JP2002181698A (en) Spectral reflectance measuring apparatus and method
JPH07509315A (en) Spectrometer for Renzometer
JPH01202642A (en) Measuring apparatus
EP0223485B1 (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film or coating
JPH049464B2 (en)
US4462688A (en) Spectrally tailored wafer chuck shaped light meter
JPH06331543A (en) Floating-particle-concentration measuring apparatus
KR840002359B1 (en) Infared fays film tick measuring instrument
JPS5892844A (en) Method and device for colorimetric measurement
JP5342394B2 (en) Narrowband light source spectrum measuring method and spectrometer device
JPS6029050B2 (en) Device to determine fading of color materials
JPH10281991A (en) Gloss sensor
JP3029628B2 (en) Image forming device
US20140091198A1 (en) Laser output measurement mechanism
CN206594055U (en) Moisture content determining device
CN111947885A (en) Testing system, method and testing device of inner rear-view mirror capable of self-adjusting reflectivity
US10514300B2 (en) Spectrocolorimetric device and conversation rule setting method
JPH0943144A (en) Density sensor
JPS5926023A (en) Automatic colorimeter for light quantity