JPS5926023A - Automatic colorimeter for light quantity - Google Patents

Automatic colorimeter for light quantity

Info

Publication number
JPS5926023A
JPS5926023A JP57136065A JP13606582A JPS5926023A JP S5926023 A JPS5926023 A JP S5926023A JP 57136065 A JP57136065 A JP 57136065A JP 13606582 A JP13606582 A JP 13606582A JP S5926023 A JPS5926023 A JP S5926023A
Authority
JP
Japan
Prior art keywords
light
sample
standard
rotating disk
optical paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57136065A
Other languages
Japanese (ja)
Other versions
JPH0381092B2 (en
Inventor
Hiroshi Matsuki
松木 博
Mitsuo Fukaya
深谷 三男
Tetsuya Kimura
哲也 木村
Shinji Kikukawa
信治 菊川
Takao Sumiyoshi
孝夫 住吉
Yuichi Sukegawa
助川 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP57136065A priority Critical patent/JPS5926023A/en
Publication of JPS5926023A publication Critical patent/JPS5926023A/en
Publication of JPH0381092B2 publication Critical patent/JPH0381092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/22Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using a variable element in the light-path, e.g. filter, polarising means
    • G01J1/24Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using a variable element in the light-path, e.g. filter, polarising means using electric radiation detectors
    • G01J1/26Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using a variable element in the light-path, e.g. filter, polarising means using electric radiation detectors adapted for automatic variation of the measured or reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0251Colorimeters making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/524Calibration of colorimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure the X, Y, and Z value of a sample stably by equalizing mechanisms which equalize two optical paths on a standard and a sample side in the quantity of light, distributing light energy uniformly in incident luminous flux, and performing zero resetting, standard matching, and measurement in one cycle. CONSTITUTION:Light from a light source 1 passes through a lens and a rotating disk 8 and is distributed through a prism 4 to the sample-side optical path 23 to the sample 10 and the standard-side optical path 24 to a standard plate 11. The light of either optical path passes through an aperture of the rotating disk 8, and reflected light beams from the sample 10 and standard plate 11 are photodetected by the X, Y, and Z photodetectors 13, 14, and 15 of an integrating sphere 12 individually. The quantities of light of those two optical paths are equalized to each other through photodetectors 17 and 19 on the optical paths by the upward/downward movement of a light-quantity adjusting diaphragm 21. The standard plate, sample 10, and a reference standard plate 11 are set and irradiated with light whose quantity is adjusted to find the X, Y, and Z absolute values of the measured sample. Pieces of luminous flux 23 and 24 are passed through three apertures at equal intervals of the rotating disk 8 by turns to perform the zero resetting, standard matching, and measurement in a 120 deg. rotation of the disk 8.

Description

【発明の詳細な説明】 本発明は、2光路方式の測色計に関するものである。[Detailed description of the invention] The present invention relates to a two-light path type colorimeter.

2光路方式による従来の代表的測色計の一つにバーディ
型分光器がある。第1図はその光路説明図である。光源
15からの光は第1スリツ)1、第1プリズム2、反射
鏡3、第2スリツト4 第2プリズム5、第3スリツト
6を経て分光された単色光は、さらに第10−シヨンプ
リズム7、ウォラストンプリズム8. 第20−ンヨン
プリズム9によって2光路に分かれ、ノリツカ−モータ
10によつ射光との比を求め、試料の分光反射率または
分光透過率を求める。この分光器の欠点は、第10−/
百ンプリズム、ウォラストンプリズム、第20−シヨン
プリズムの汚れにより標準側の光量と試料側の光量が変
わり、標準合わせが不可能となることがあり、反射鏡の
表面劣化をおこすために異常光線が発生して測定値に誤
差を生ずる。
One of the typical conventional colorimeters using a two-light path method is a Birdy type spectrometer. FIG. 1 is an explanatory diagram of the optical path. The light from the light source 15 passes through the first slit 1, the first prism 2, the reflecting mirror 3, the second slit 4, the second prism 5, and the third slit 6. , Wollaston Prism 8. The beam is split into two optical paths by the 20th optical prism 9, and the ratio with the light emitted by the Noritzker motor 10 is determined to determine the spectral reflectance or spectral transmittance of the sample. The disadvantage of this spectrometer is the 10th-/
Due to dirt on the Hyakun prism, Wollaston prism, and No. 20 Shion prism, the amount of light on the standard side and the light amount on the sample side may change, making standard alignment impossible. This causes errors in measured values.

壕だ、2光路方式による従来の別の例として父照測光法
がある。第2図はその光路説明図である。光源1かもの
光はレンズ糸2によって平行光となり駆動モータ4によ
って回転するRGB  フィルタ円板3によってHjr
 (r’e光となりさらに半円鏡7により180°回転
毎に標準側光路18と試料側光路19に分けられる。
Another example of the conventional method using the two-light path method is the paternal photometry method. FIG. 2 is an explanatory diagram of the optical path. The light from the light source 1 is converted into parallel light by the lens thread 2, and the RGB filter disk 3 is turned into parallel light by the drive motor 4.
(The light becomes r'e light and is further divided by the semicircular mirror 7 into a standard side optical path 18 and a sample side optical path 19 every 180° rotation.

標準側セル16を通った≠肴透過光はミラー13を経て
受光器14に入る。また試料側セル17を通った試料透
過光はミラー12を経て受光器14に入る。受光器14
は半円鏡回転円板Tの回転によって180°毎に標準側
セルと試料側セルの透過光を受けるので、この比から試
料のRGB  フイールタを透過したときの透過率を求
めることができる。この測定法においては、半円鏡7の
光劣化によって異常光線が発生し測足値に誤差を生ずる
欠点がある。
The light transmitted through the standard side cell 16 enters the light receiver 14 via the mirror 13. Further, the sample-transmitted light that has passed through the sample-side cell 17 enters the light receiver 14 via the mirror 12. Light receiver 14
receives the transmitted light from the standard side cell and the sample side cell every 180 degrees due to the rotation of the semicircular mirror rotating disk T, so from this ratio, the transmittance of the sample when it passes through the RGB filter can be determined. This measurement method has the disadvantage that abnormal light rays are generated due to optical deterioration of the semicircular mirror 7, resulting in errors in the measured values.

前記両従来法のイi′IJれも試料側光路にンヤノタを
入れて手動で零合わせをするが 測定が長時間にわたる
場合には度々この操作を何う必要があるために面倒であ
る、また、両従来法の何れも、標準合わせを行うために
標準側及び試料側に同一の反射率または透過率を持つ標
準板をセットし手動で竹うのであるが、同一のものを二
つ準備することは実際上難しく、二つの差が測定結果に
出るという欠点があり、また測定が長時間にわたるとき
り」度々この操作を行う必要があって面倒である。また
各光路の光量が等しくないだめの欠点がt4々あられれ
る。
In both of the conventional methods mentioned above, zero adjustment is performed manually by inserting a lens into the optical path on the sample side, but this is troublesome as it is necessary to repeat this operation frequently if the measurement lasts a long time. In both conventional methods, standard plates with the same reflectance or transmittance are set on the standard side and the sample side to perform standard matching, and are manually inserted, but two identical plates are prepared. This is difficult in practice, has the disadvantage that the measurement results show a difference between the two, and is troublesome because it requires frequent operations when the measurement takes a long time. Further, there is a drawback t4 that the amount of light in each optical path is not equal.

本発明者は、以上説明した従来法の欠点を解消するだめ
の検討を爪ねた結果とし−C本発明を完成したつすなわ
ち、本発明は、2光路方式の測色原理に基づいて標準側
及び試料側の入射光量を常に測定しながら等しくする自
動光量調節機能を備え、光源電球の光エネルギーを入射
光束内に均等分布するようにシリンドリカルレンズを構
成したレンズ系を1庸え、零合わせ、標準合わせ、測定
の操作を1サイクルで行うだめの回転円板横溝を備えて
試料のXYZ値を測定できるようにした自動光搦測色計
である。
The present inventor has completed the present invention as a result of thorough investigation to eliminate the drawbacks of the conventional method explained above.In other words, the present invention is based on the principle of colorimetry using a two-light path method. It also has an automatic light intensity adjustment function that constantly measures and equalizes the incident light intensity on the sample side, and is equipped with a lens system consisting of a cylindrical lens so that the light energy of the light source bulb is evenly distributed within the incident light flux, and zero adjustment is performed. This is an automatic photochromic colorimeter that is equipped with a rotating disk horizontal groove that performs standard alignment and measurement operations in one cycle, and is capable of measuring the XYZ values of a sample.

次に本発明の実施例を図によって説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第3図において、光源1からの光はレンズ2、シリンド
リカルレンズ3によって平行光束となり、回転円板8、
プリズム4を経て試料10に当たる。光源からの別の光
はレンズ5、シリンドリカルレンズ6によって平行光束
となり、プリズム7、回転円板8を経て標準板11に当
たる。前記各光路の光は、回転円板80開孔によって何
れかl光路の光のみが通ることになるから、測定試料及
び標準板の反射光は交互に発することとなり、積分球1
2に設けられたXYzの受光器13,14.15によっ
て別個に受光される。また、モータ9によって駆動する
回転円板8の開孔は第3図においては3個であるが、1
,2.その他の個数も可能である。
In FIG. 3, light from a light source 1 becomes a parallel beam of light through a lens 2 and a cylindrical lens 3, and a rotating disk 8,
It passes through the prism 4 and hits the sample 10. Another light from the light source is turned into a parallel light beam by a lens 5 and a cylindrical lens 6, passes through a prism 7 and a rotating disk 8, and hits a standard plate 11. Since only the light of one of the optical paths passes through the aperture of the rotating disk 80, the reflected light of the measurement sample and the standard plate are emitted alternately, and the integrating sphere 1
The light is separately received by XYz light receivers 13, 14, and 15 provided at 2. In addition, the number of openings in the rotating disk 8 driven by the motor 9 is three in FIG. 3, but one
,2. Other numbers are also possible.

自動光量調節機能は、試料側光路23と標準側光路24
の各光路にセットされたノ・−フミラー16.18.試
料側光曖測定受光器17、標準側光散測定受光器19を
用いて光量比較増巾器20と絞り駆動モータ22により
光量調節絞り21を上ド動して、標準側光祉と試料側光
柑とを等しくするものである。この調節動作スイッチを
入れておけば、本測色計が動作中宮に試料側及び標飴側
各党路の光年が自動的に等しくなる。
The automatic light amount adjustment function uses the sample side optical path 23 and the standard side optical path 24.
No-f mirrors 16, 18, set in each optical path. Using the sample-side light scatter measurement receiver 17 and the standard-side light scatter measurement receiver 19, the light amount adjustment diaphragm 21 is moved upward by the light amount comparison intensifier 20 and the aperture drive motor 22, and the standard side light beam and the sample side light beam are measured. It is made equal to light orange. If this adjustment operation switch is turned on, the light years of each path on the sample side and marker side will automatically become equal when the colorimeter is in operation.

本測色計によって測定するに当たっては、先づ°測定試
料10の代わりに絶対値の分かった標準板をセットし標
準板11の位置に参照標準板をセットして、前記調節機
能によって同量に調節された光量を両者に当て、両者の
反射光の比より参照標準板のXYZ値を決める。次いで
測定試料10をセットし、測定試料10からの反射光と
参照標準板11からの反射光との比より測定試料のXY
Zの絶対値を求めることができる。ここに、参照標準板
とは、標準板が長期にわたって信頼でき−る特性値を持
つに対して、一応標準として認めうる程度のものであっ
て、常時測定には参照標準板を使用する。
When measuring with this colorimeter, first set a standard plate whose absolute value is known in place of the measurement sample 10, set the reference standard plate in the position of the standard plate 11, and use the adjustment function to adjust the amount to the same amount. The adjusted amount of light is applied to both, and the XYZ values of the reference standard plate are determined from the ratio of the reflected light. Next, the measurement sample 10 is set, and the XY
The absolute value of Z can be found. Here, the reference standard plate is a standard plate that has characteristic values that are reliable over a long period of time and can be recognized as a standard, and is used for regular measurements.

シリンドリカルレンズによって構成するレンズ糸は、本
実施例においては凸レンズとの組合わせである。光源電
球の光源は細長い形状のフィラメントであるが、従来の
技術においては通常のレンズ系によって平行光束とする
ために光束内の光エネルギー分布が均等でない。本発明
においては、シリンドリカルレンズの一次元的屈折性を
利用して光源の結像の細長形を短く広巾の形状に修正し
かつ面積を拡大するものであるが、このレンズ系によっ
て生ずる平行光束内の光エネルギー 分布は強くかつ均
等となる。第4図はその関係を示シリンF’tJIJル
レンス°゛3のみl;よ8f度19.4 I工中6〜。
In this embodiment, the lens thread made up of a cylindrical lens is combined with a convex lens. The light source of a light bulb is an elongated filament, but in the conventional technology, a normal lens system is used to create a parallel light beam, so that the light energy distribution within the light beam is not uniform. In the present invention, the one-dimensional refractive properties of the cylindrical lens are used to correct the elongated shape of the image of the light source into a short and wide shape and expand the area. The light energy distribution is strong and uniform. Figure 4 shows this relationship.

すものである。変うフ゛灯の<aD。It is something. <aD of the changing light.

また、零合わせ、参照標準確認、試料測定をスイッチを
入れることによって1サイクルで動作できる構造とする
が、その基本は回転円板機構によるものである。第5図
は回転円板と光束との関係を示す。回転円板に3個の開
孔A、B、Cがあり、各位置は同一円周上に互に等間隔
である。(1)にボす図においては標準側光束及び試料
側光束の倒れも回転円板に遮られるから、この関係で′
4曾わせずなわち零点読取りを行う。ω)においてtよ
参照標準側光束がA孔を通るから、参照標準板のXYz
値を測定する。(3)においてei試料側光束がB孔を
通るから試料のx y Z liiを測定する。
In addition, the structure is such that zero adjustment, reference standard confirmation, and sample measurement can be performed in one cycle by turning on a switch, and its basic structure is based on a rotating disk mechanism. FIG. 5 shows the relationship between the rotating disk and the luminous flux. There are three openings A, B, and C in the rotating disk, and the positions are equidistant from each other on the same circumference. In the figure shown in (1), the tilting of the standard side beam and sample side beam is also blocked by the rotating disk, so in this relationship,
4. In other words, zero point reading is performed. Since the reference standard side light flux passes through the A hole at t at ω), the XYz of the reference standard plate
Measure the value. In (3), since the ei sample side light beam passes through the B hole, x y Z lii of the sample is measured.

(1)、(2)、(3)は回転円板が約90°回転する
間に成立する関係であり、零合わせ、参照標準確認、試
料測定の1ザイクルtよ回転円板が約120°回転する
間に終ることとなる、。
(1), (2), and (3) are relationships that hold while the rotating disk rotates approximately 90 degrees, and the rotating disk rotates approximately 120 degrees per cycle t of zero adjustment, reference standard confirmation, and sample measurement. It will end while it rotates.

以−に本発明の構成と作用について説明したが、次にそ
の効果について説明する。6111定時に常に2光路の
光域を等しくする円節作用が自動的VCはたらくから常
に安定した測定ができる。
The structure and operation of the present invention have been explained above, and next, the effects thereof will be explained. 6111 Since the nodal action that always makes the light areas of the two optical paths equal at a fixed time works automatically, stable measurements can be made at all times.

ミラーの反射を用いずグリ′スノ・の貨反射を用いるか
ら、ミラーの劣化による異常光線の発生がなく、長時間
百足した測定がでへ、また保守が簡単である。
Since it uses the reflection of the sun instead of mirror reflection, there is no occurrence of abnormal rays due to mirror deterioration, long-term measurements can be made, and maintenance is easy.

零合わせは測定毎に自動的に行われるから操作が簡単・
であり、標準合わせは、常に光量調節を目動的に行いな
がら参照標準との関係で6111定値を求めるのである
から、一度行えば長時間測定できることとなる8 シリンドリカルレンズの利用によっ−C光源電球の光t
を有効に用いているから、小さいランプで大きな光量を
利用することとなる。
Zero adjustment is performed automatically for each measurement, making it easy to operate.
The standard adjustment involves constantly adjusting the light intensity and determining the 6111 constant value in relation to the reference standard, so once it is done, long-term measurements can be made.8 By using a cylindrical lens, the C light source light bulb t
This means that a large amount of light can be used with a small lamp.

測定毎に零合わせ、参照標準確認、測定を自動的に行い
、参照標準との関係で測定値が出るから再現性がよい。
Zero adjustment, reference standard confirmation, and measurement are performed automatically for each measurement, and the measured value is obtained in relation to the reference standard, resulting in good reproducibility.

光路は光源、レンズ糸、プリズム、積分球によって決め
られているから異洛光線の発生がなく、回転円板によっ
て断続的に遮断されるので常に同じ光量が与えられる。
Since the optical path is determined by the light source, lens thread, prism, and integrating sphere, there are no extraneous rays, and since the optical path is intermittently interrupted by the rotating disk, the same amount of light is always provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバーディ型分光器、第2図Qよ一般の交照測光
法の光学系、第3図tま本発明に係る測色計説明図、第
4図は/リノドリカルレンズによるフィラメントの結像
’c /je L、第5図は回転円板と光束の関係説明
図である。次は第3図の番、号祝明である。 1・・・光源電球、2 、 5・・・レンズ、3.6・
・・シリンドリカルレンズ、4,7・・・プリズム、8
・・・回転円板、9・・・モータ、10・・・測定試料
、11−・・・参照標準板、12・・・積分球、13・
・・Y用受光器、14・・・X用受光器、15・・・Z
用受光器、16.18・・・ハーフミラ−111・・・
試料側光龍6111定受光器、19・i、f4準111
11 )’(、ltt 61号定受光器、20・・・光
量比較増Ill器、21・・・元l枝調節絞り、22・
・・絞り駆動モータ、23・・・試料側光路、24・・
・標準側光路。 71図 1ノ     4
Figure 1 is a Birdy type spectrometer, Figure 2 is the optical system for general cross-reflection photometry, Figure 3 is an explanatory diagram of the colorimeter according to the present invention, and Figure 4 is a filament using a rhinodorical lens. Image formation 'c/je L, FIG. 5 is an explanatory diagram of the relationship between the rotating disk and the light beam. Next is the number shown in Figure 3. 1... Light source bulb, 2, 5... Lens, 3.6.
... Cylindrical lens, 4, 7... Prism, 8
... Rotating disk, 9... Motor, 10... Measurement sample, 11-... Reference standard plate, 12... Integrating sphere, 13.
...Receiver for Y, 14...Receiver for X, 15...Z
Receiver for 16.18...half mirror 111...
Sample side Koryu 6111 constant receiver, 19・i, f4 semi-111
11)'(, ltt No. 61 constant light receiver, 20... light intensity comparison intensifier, 21... main branch adjustment diaphragm, 22.
...Aperture drive motor, 23...Sample side optical path, 24...
・Standard side optical path. 71Figure 1-4

Claims (1)

【特許請求の範囲】[Claims] 標準側及び試料側の2光路によって積分球に入射する測
色方式において、該2光路の入射光量を常に測定しかつ
等しくする自動光量調節機能と、光源電球の光エネルギ
ーを入射光束内に均等分布するようにシリンドリカルレ
ンズを構成したレンズ系と、零合せ、標準合わせ、測定
の操作を1サイクルで行うだめの回転円板機構とを有す
ることを特徴とする自動光量測色計。
In the color measurement method in which two optical paths enter the integrating sphere through two optical paths, one on the standard side and one on the sample side, an automatic light intensity adjustment function that constantly measures and equalizes the amount of incident light in the two optical paths, and an even distribution of the light energy of the light source bulb within the incident luminous flux. An automatic light intensity colorimeter characterized by having a lens system configured with a cylindrical lens so as to do the same, and a rotary disk mechanism that performs zero adjustment, standard adjustment, and measurement operations in one cycle.
JP57136065A 1982-08-04 1982-08-04 Automatic colorimeter for light quantity Granted JPS5926023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136065A JPS5926023A (en) 1982-08-04 1982-08-04 Automatic colorimeter for light quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136065A JPS5926023A (en) 1982-08-04 1982-08-04 Automatic colorimeter for light quantity

Publications (2)

Publication Number Publication Date
JPS5926023A true JPS5926023A (en) 1984-02-10
JPH0381092B2 JPH0381092B2 (en) 1991-12-27

Family

ID=15166384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136065A Granted JPS5926023A (en) 1982-08-04 1982-08-04 Automatic colorimeter for light quantity

Country Status (1)

Country Link
JP (1) JPS5926023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145926A (en) * 1986-12-10 1988-06-18 Hoya Corp Color sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023127101A (en) * 2022-03-01 2023-09-13 スガ試験機株式会社 Optical characteristic measuring instrument
JP7450953B2 (en) * 2022-03-01 2024-03-18 スガ試験機株式会社 Optical property measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145926A (en) * 1986-12-10 1988-06-18 Hoya Corp Color sensor

Also Published As

Publication number Publication date
JPH0381092B2 (en) 1991-12-27

Similar Documents

Publication Publication Date Title
Clarke et al. Correction methods for integrating‐sphere measurement of hemispherical reflectance
US3927944A (en) Spectrophotometer
US1999023A (en) Photoelectric comparator
JPS5849806B2 (en) spectrum analyzer
JPH0580615B2 (en)
US2413080A (en) Spectrophotometer
JPH0554902B2 (en)
US2263938A (en) Light sensitive measuring instrument
JP3169027B2 (en) Optical fiber spectral transmittance measuring device
JPS5926023A (en) Automatic colorimeter for light quantity
US5477328A (en) Optical transmission calibration device and method for optical transmissiometer
JPS5892844A (en) Method and device for colorimetric measurement
US4988203A (en) Device for inspecting an interference filter for a projection television display tube
Boivin et al. Realization of the New Candela (1979) at NRC
US4035086A (en) Multi-channel analyzer for liquid chromatographic separations
JPS62147344A (en) Multiwavelength spectrophotometer
JPS61189424A (en) Photometer
Eichner et al. The new photometer of the Rutherfurd Observatory
US2435176A (en) Flickering beam spectrophotometer for the measurement of bronze
US3394628A (en) Light measuring apparatus
RU1819343C (en) Method for calibration of radiometer against absolute sensitivity
RU1824547C (en) Reflectometer for concave mirrors
RU1784881C (en) Device for photometric parameters measuring
US2435175A (en) Flickering beam spectrophotometer for the measurement of bronze
RU2109256C1 (en) Method of determination of coefficient of light linear polarization in reflection and device intended for its realization