JPH01202394A - Solid wire for gas shielded arc welding of galvanized steel and its welding method - Google Patents

Solid wire for gas shielded arc welding of galvanized steel and its welding method

Info

Publication number
JPH01202394A
JPH01202394A JP2416888A JP2416888A JPH01202394A JP H01202394 A JPH01202394 A JP H01202394A JP 2416888 A JP2416888 A JP 2416888A JP 2416888 A JP2416888 A JP 2416888A JP H01202394 A JPH01202394 A JP H01202394A
Authority
JP
Japan
Prior art keywords
welding
wire
galvanized steel
zinc
solid wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2416888A
Other languages
Japanese (ja)
Inventor
Kozo Yamashita
山下 礦三
Isamu Kimoto
勇 木本
Hiroshi Koyama
小山 汎司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2416888A priority Critical patent/JPH01202394A/en
Publication of JPH01202394A publication Critical patent/JPH01202394A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent

Abstract

PURPOSE:To obtain a sound weld metal part difficult to generate pit and blowhole by specifying the composition of a solid wire. CONSTITUTION:The composition of the solid wire for gas shielded arc welding of a galvanized steel sheet contains 0.02-0.20% C, 0.10-0.70% Si, 0.20-2.0% Mn, 13-80% Ni, <=0.02% P, <=0.02% S and <=0.040% N in wt.% and the balance Fe with inevitable impurities. A sound welding metal without any pit generation and with extremely less blowholes can thus be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガスシールドアーク溶接に用いるソリッドワイ
ヤおよび溶接方法に関し、例えば亜鉛メッキのように予
め防錆処理を施した鋼材を溶接する時に、ビットやブロ
ホールの発生しにくい健全な溶接金属部が得られる亜鉛
メッキ鋼板のガスシールドアーク溶接用ソリッドワイヤ
およびガスシールドアーク溶接方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a solid wire and a welding method used in gas-shielded arc welding. The present invention relates to a solid wire for gas-shielded arc welding of galvanized steel sheets and a gas-shielded arc welding method that can provide a sound welded metal part that is unlikely to generate blowholes or blowholes.

[従来の技術] 防錆処理を施した耐食性に優れた鋼材としては、例えば
亜鉛メッキ鋼板などがある。亜鉛メッキ鋼板は通常の熱
延あるいは冷延された鋼材表面に亜鉛メッキを施したも
ので、その主な用途は、屋根板をはじめとする建築材料
、ガソリン缶、洗擢機の部品などの他、近年自動車車体
表面処理鋼板においても使用する傾向にある。
[Prior Art] Examples of steel materials that have been subjected to antirust treatment and have excellent corrosion resistance include galvanized steel sheets. Galvanized steel sheets are ordinary hot-rolled or cold-rolled steel surfaces coated with galvanized steel, and their main uses include roofing sheets and other building materials, gasoline cans, washing machine parts, and other materials. In recent years, there has been a trend toward its use in surface-treated steel sheets for automobile bodies.

亜鉛メッキ鋼材を溶接する場合、鉄の融点より沸点の低
い(906℃)亜鉛が溶接時に溶融に侵入して亜鉛蒸気
を突沸し、溶接金属凝固過程で浮上しきれずに気泡とし
て残存しピットやブロホール等の欠陥を多発する。
When welding galvanized steel, zinc, which has a boiling point lower than the melting point of iron (906°C), enters the melt during welding and bumps the zinc vapor, which does not float up during the weld metal solidification process and remains as bubbles, causing pits and blowholes. Frequent defects such as

これらの欠陥は必要溶接金属に対する断面欠損となるか
ら、構造物の強度確保の点から好ましくなく、さらにピ
ットは外観的にも商品価値を低下させる。
These defects result in a cross-sectional loss of the required weld metal, which is undesirable from the viewpoint of ensuring the strength of the structure, and furthermore, the pits reduce the commercial value in terms of appearance.

薄板溶接では溶接速度は速く溶接入熱も小さい上、継ぎ
手形状も重ねや隅肉等の鋼板表面の影響を受けやすい形
状が用いられるため欠陥が発生しやすい条件にある。
In thin plate welding, the welding speed is high and the welding heat input is small, and the joint shape is easily affected by the steel plate surface, such as overlaps and fillets, so defects are likely to occur.

このような亜鉛の害を軽減する手段としては、■予め溶
接線上から亜鉛を機械的に除去する、■先行熱源により
亜鉛を焼却する、■亜鉛に対して鈍感な溶接方法を採用
する、■出来るだけ欠陥発生のしにくい溶接条件を選択
する等が取られているがいずれも本質的な対策とはなっ
ていない。
Measures to reduce the harm caused by zinc include: ■ Mechanically removing zinc from the weld line in advance; ■ Incineration of zinc with a preliminary heat source; ■ Adopting a welding method that is insensitive to zinc; ■ Possible Measures have been taken to select welding conditions that are less likely to cause defects, but none of these are essential countermeasures.

例えばピット、ブロホールの発生しがたい方法としては
手溶接法があり、特にイルミナイト系やチタニャ系の手
溶接棒が優れている。しかしこの溶接法は溶接速度は遅
く、入熱も大きいため、溶接歪みが著しく薄板の溶接に
は適していない。
For example, manual welding is a method that is less likely to cause pits and blowholes, and hand welding rods such as illuminite and titania are particularly effective. However, this welding method has a slow welding speed and a large heat input, so it is not suitable for welding thin plates because it causes significant welding distortion.

しかし薄板の溶接に最も一般的に適用されているソリッ
ドワイヤによるガスシールド溶接法は亜鉛の影響を比較
的受けやすい。
However, gas shield welding using solid wire, which is the most commonly applied method for welding thin plates, is relatively susceptible to the effects of zinc.

表面処理鋼板に対するピット、ブロホールの欠陥防止技
術として特開昭59−45096号公報には亜鉛粉末を
含んだプライマ塗装鋼板を対象として、Ti、Se、T
e、Sb、Sを適宜含有させる溶接材料が提案されてい
る。しかしながら、このような組成の溶接材料では、本
発明が対象としている亜鉛メッキ鋼板の溶接には効果が
期待できないものである。
As a technology for preventing defects such as pits and blowholes on surface-treated steel sheets, JP-A-59-45096 discloses a technique for preventing pits and blowholes on surface-treated steel sheets, targeting primer coated steel sheets containing zinc powder.
Welding materials containing e, Sb, and S as appropriate have been proposed. However, a welding material having such a composition cannot be expected to be effective in welding galvanized steel sheets, which is the object of the present invention.

[発明が解決しようとする課題] 本発明は上記のように亜鉛メッキ鋼板のガスシールド溶
接において問題となるピット、ブロホール等の欠陥発生
を解決するガスシールドアーク溶接用ソリッドワイヤお
よび溶接方法を提供するものである。
[Problems to be Solved by the Invention] The present invention provides a solid wire for gas-shielded arc welding and a welding method that solves the occurrence of defects such as pits and blowholes that occur in gas-shielded welding of galvanized steel sheets as described above. It is something.

[課題を解決するための手段] 本発明は、重量%で、C: 0.02〜0.20k 。[Means to solve the problem] In the present invention, C: 0.02 to 0.20k in weight%.

Si : 0.10〜0.70%F 、 Mn : 0
.20〜2.0%F、 Ni : 13〜80零であり
、P : 0.02に以下、S : 0.02 %i以
下、N : 0.040 零以下に制限され、残部がF
eおよび不可避不純物からなることを特徴とするガスシ
ールドアーク溶接用ソリッドワイヤにあり、さらにこの
ワイヤとAr中に5〜30VoukのCO2または2〜
1OVd零の02を混合したシールドガスを用いて、該
ワイヤを正極とするパルス直流電流の高電流域であるピ
ーク電流時には溶滴を母材側に移行させることなく、電
流の低いベース電流時に溶滴移行を行いながら溶接する
ことを特徴とする亜鉛メッキ鋼板のパルスアークアーク
溶接方法にある。
Si: 0.10-0.70% F, Mn: 0
.. 20-2.0% F, Ni: 13-80 zero, P: 0.02 or less, S: 0.02%i or less, N: 0.040 or less, and the remainder is F.
The solid wire for gas-shielded arc welding is characterized by comprising e and unavoidable impurities, and further contains 5 to 30 Vouk of CO2 or 2 to 30 Vouk in this wire and Ar.
By using a shielding gas mixed with 02 of 1OVd zero, droplets are not transferred to the base metal side during the peak current, which is the high current range of the pulsed DC current with the wire as the positive electrode, and the melt is melted during the low base current. A method for pulsed arc welding of galvanized steel sheets, which is characterized by welding while performing droplet transfer.

[作 用] 本発明者らは、ソリッドワイヤを用いたガスシールド溶
接では既述の如く、特に亜鉛メッキ鋼板でピット、ブロ
ホールが発生し易い理由として、 (イ)溶融溶接金属に入った低沸点(906℃)の亜鉛
は、蒸気となって気泡を形成する。
[Function] As mentioned above, the present inventors found that pits and blowholes are likely to occur in galvanized steel sheets in particular in gas shield welding using solid wires due to (a) low boiling point that enters the molten weld metal. Zinc at (906°C) turns into vapor and forms bubbles.

(0)被覆剤やフラックスを利用しないソリッドワイヤ
によるガスシールド溶接では凝固速度が速く、溶接金属
中において気泡となった亜鉛蒸気が浮上しきれずに残存
しやすく、特に高速溶接においては著しいためと考えた
(0) This is thought to be due to the fact that solid wire gas shield welding, which does not use coating or flux, has a fast solidification rate, and the zinc vapor that has become bubbles in the weld metal tends to remain in the weld metal without being able to float to the surface, which is especially noticeable during high-speed welding. Ta.

このような亜鉛の影響を軽減するには、(a)溶接金属
中の亜鉛蒸気が、気泡として残存しにくくする、(b)
溶接金属に侵入する亜鉛量を抑制する事が有効との観点
に立ち、ワイヤ組成及び溶接法の双方から検討を行い本
発明を構成するに至った。
To reduce this effect of zinc, (a) make it difficult for zinc vapor to remain in the weld metal as bubbles; (b)
Based on the viewpoint that it is effective to suppress the amount of zinc that penetrates into the weld metal, the present invention was constructed by conducting studies from both the wire composition and the welding method.

まず、本発明のワイヤについて以下に述べる。First, the wire of the present invention will be described below.

溶接金属中における気泡残存を減少するには、・溶接金
属を低融点として、気泡浮上時間を長くする、・亜鉛を
合金化し固定する等が最も効果のある手段と考え、種々
元素について影響を検討した結果、Niがこれらを満足
する元素である事を見出した。
In order to reduce the number of bubbles remaining in the weld metal, we believe that the most effective means are - Making the weld metal have a low melting point and increasing the bubble floating time - Alloying and fixing zinc, etc. We considered the effects of various elements to be effective. As a result, we found that Ni is an element that satisfies these requirements.

第1図は、Niのブロホール発生率に及ぼす影響を示し
たもので、JISZ3312(7)YGW121.:相
当するSt−Mn系(目標成分C: O,0B96.S
i:0.8%、Mn:1、詰、P:0.0296.S:
0゜02JN:0.006豹をベースとして、Ni含有
量をO〜9096の範囲で変化させたワイヤ(径: 1
.2mmφ)を用い、第1表に示す鋼種および亜鉛付着
量の試験板(板圧t = 2.3mm 。
Figure 1 shows the influence of Ni on the brohol generation rate, and shows the effect of Ni on the brohol generation rate. : Corresponding St-Mn system (target component C: O, 0B96.S
i: 0.8%, Mn: 1, Tsume, P: 0.0296. S:
0゜02JN: Wire (diameter: 1
.. 2 mmφ), and test plates of the steel type and zinc coating amount shown in Table 1 (plate pressure t = 2.3 mm).

幅W = 50mm、長さ11 = 300mm )を
第2図のごとく2枚重ねて、下向き重ね隅肉姿勢で、シ
ールドガスはAr”20k(:02(流量: 20ff
i/min )で、第2表の溶接条件によりガスシール
ド溶接を行い、隅肉ビードに発生したブロホールを測定
し比較している。
Width W = 50 mm, length 11 = 300 mm) were stacked as shown in Fig. 2, stacked downward in the fillet position, and the shielding gas was Ar”20k (:02 (flow rate: 20ff).
i/min), gas shield welding was performed under the welding conditions shown in Table 2, and the blowholes generated in the fillet bead were measured and compared.

第1表 鋼種および亜鉛付着量 第2表 溶 接 条 件 ブロホールの計測は得られた各々のビードについて放射
線透過試験を行い、そのフィルムを10倍のルーペにて
ビード長さ方向のブロホール幅を測定し、ビード長さに
対するブロホール幅の総和から、発生率(96)を求め
た。
Table 1 Steel type and zinc deposit Table 2 Welding conditions To measure the blowhole, perform a radiographic test on each bead obtained, and measure the blowhole width in the bead length direction using a 10x magnifying glass. Then, the occurrence rate (96) was determined from the sum of the blowhole widths relative to the bead lengths.

ブロホールへの旧の効果は、0〜10零未満の範囲では
比較的少ないが、10零程度以上でブロホール発生率が
顕著に減少し安定して低減している。この理由は、Ni
量の増加に伴って溶接金属の融点が低下し凝固までの時
間が長くなったことにより気泡の浮上が促進されたため
と考えられる。また、ブロホールの発生していない箇所
から採取した試料の溶接金属中亜鉛の分析結果では、N
tの増加に従い亜鉛量の増加が認められた。この結果は
、Niが亜鉛と合金を作り亜鉛を固定することにより、
亜鉛の害を軽減させるという前述の考え方を支持するも
のである。
The effect on brohols is relatively small in the range of 0 to less than 10 zeros, but in the range of about 10 zeros or more, the brohol generation rate decreases significantly and stably. The reason for this is that Ni
This is thought to be because as the amount increased, the melting point of the weld metal decreased and the time until solidification became longer, promoting the floating of air bubbles. In addition, the analysis results of zinc in the weld metal of samples taken from locations where blowholes have not occurred show that N
An increase in the amount of zinc was observed as t increased. This result shows that Ni forms an alloy with zinc and fixes the zinc.
This supports the above-mentioned concept of reducing the harmful effects of zinc.

Niのこのような効果をさらに高め、溶接作業性、ビー
ド形状等を確保するには、C,Si、Mn、の範囲およ
びP、S、Nを制限する必要がある。以下に各元素の限
定理由について述べる。
In order to further enhance the effects of Ni and ensure welding workability, bead shape, etc., it is necessary to limit the ranges of C, Si, and Mn, as well as P, S, and N. The reasons for limiting each element will be described below.

Cは、ブロホール発生を抑制する効果があり、この効果
は0.02!li以上の添加で有効に発揮されるが、0
.2Hを超えるとビードの硬化や高温割れの危険性が著
しく高くなるために、上限をa、’io”<とじた。
C has the effect of suppressing the generation of broholes, and this effect is 0.02! It is effective when adding li or more, but 0
.. If it exceeds 2H, the risk of bead hardening and hot cracking increases significantly, so the upper limit was set as a,'io''<.

ガスシールド溶接用ワイヤのStは、重要な脱酸性元素
として、通常は充分な量の添加がなされである。しかし
、本発明のワイヤにおいてはブロホール性が劣るため、
出来る限り低い添加が好ましい。最適な添加量は、シー
ルドガス中の炭酸ガスあるいは酸素の混合比率によって
若干具なるが、Stが0.70%i以下であれば、いず
れのシールドガス組成においても良好な耐ブロホール性
が得られる。しかし、0.10!未溝になると脱酸不足
によるビット、ブロホールが急増するほか、ビード形状
が凸状となるなどの不具合が生ずる。
St of gas shield welding wire is usually added in sufficient amount as an important deoxidizing element. However, since the wire of the present invention has poor blowhole properties,
Additions as low as possible are preferred. The optimum amount to be added depends somewhat on the mixing ratio of carbon dioxide or oxygen in the shielding gas, but as long as St is 0.70%i or less, good blowhole resistance can be obtained in any shielding gas composition. . But 0.10! If the groove is not grooved, bits and blowholes will rapidly increase due to insufficient deoxidation, and problems such as a convex bead shape will occur.

シールドガス組成によるStの範囲は、例えばCO2の
場合は0.30〜0.70!に、Arに 5〜201 
CO2あるいは2〜10960zを添加する場合には0
.10〜0.40を程度が好ましい。
The range of St depending on the shielding gas composition is, for example, 0.30 to 0.70 in the case of CO2! To, Ar to 5-201
0 when adding CO2 or 2~10960z
.. A range of 10 to 0.40 is preferable.

このように、低めの範囲に適正値が存在するのは、やや
脱酸不充分にすることで、溶接金属中の酸素放出が活発
となり、これに伴って亜鉛気泡の浮上が促進されるため
と考えられる。
The reason why the appropriate value exists in a lower range is that by making the deoxidation somewhat insufficient, the release of oxygen in the weld metal becomes active, which promotes the floating of zinc bubbles. Conceivable.

亜鉛による気孔発生に対してMnは、はぼStと同様の
傾向を示すが、その影響の程度は小さいことから、広範
囲の添加が許容出来る。しかし0.20!li未満では
、Siが上限値においても脱酸不足による気孔が多発す
る。また2、鴎超では、ビードの硬化が著しいために、
2.0!Iiを上限とした。
Mn shows the same tendency as St in the case of pore generation due to zinc, but since the degree of influence is small, addition over a wide range can be tolerated. But 0.20! When Si is less than li, many pores occur due to insufficient deoxidation even when Si is at the upper limit. 2. In Ocho, the bead hardens significantly, so
2.0! Ii was set as the upper limit.

Niは既述のとおり、11程度以上の添加で、耐気孔性
が著しく向上するが、安定した効果が得られるのは13
零以上である。この効果は90零程度まで維持されるが
、経済性を考慮して、上限を80零とした。
As mentioned above, when Ni is added in an amount of about 11 or more, the pore resistance is significantly improved, but stable effects can only be obtained with Ni in amounts of 13 or more.
It is greater than or equal to zero. This effect is maintained up to about 90 zero, but considering economic efficiency, the upper limit was set to 80 zero.

P、Sは耐割れ性を阻害する元素であり、特にNiを添
加する本発明のワイヤにおいては、できる限り抑制する
ことが好ましいが、いずれも0.02X以下であれば目
的を達する。
P and S are elements that inhibit cracking resistance, and it is preferable to suppress them as much as possible, especially in the wire of the present invention in which Ni is added, but the purpose is achieved if both are 0.02X or less.

Nは0.04峙を超えると気孔発生が著しくなることか
ら、0.04096以下に制限される。なお本発明のワ
イヤは、通常のワイヤと同様に、鋼塊を圧延、伸線し、
必要に応じて銅メッキを施して製造することができる。
If N exceeds 0.04, the generation of pores becomes significant, so it is limited to 0.04096 or less. The wire of the present invention can be made by rolling and drawing a steel ingot in the same way as ordinary wire.
It can be manufactured with copper plating if necessary.

このように構成された成分のワイヤを用いて、C02ま
たは八rにCO2などを混合したシールドガスを用いて
亜鉛メッキ鋼板を溶接してもビットの発生はなく、また
ブロホールも非常に少なく、構造物用として十分満足す
るものである。
Even when welding a galvanized steel plate using a wire with the above-mentioned composition and using a shielding gas containing CO2 or 8R mixed with CO2, there will be no bits, and there will be very few blowholes, resulting in a structurally It is quite satisfactory for practical use.

次に、本発明のワイヤの効果は、溶接金属に侵入する亜
鉛量をできる限り抑制する溶接方法によって、さらに効
果的に達成される。
Next, the effects of the wire of the present invention can be more effectively achieved by a welding method that suppresses the amount of zinc penetrating the weld metal as much as possible.

第3図と第4図は、本発明の亜鉛メッキ鋼板のパルスア
ーク溶接方法によるアーク状態と溶接移行状態とを示す
もので、第3図は大電流(ピーク)時、第4図は小電流
(ベース)時のそれぞれの図であり、1は直流電源の溶
接トーチ、2は正極 (+)のソリッドワイヤ、3はピ
ーク電流時のアーク柱、4はソリッドワイヤ先端からア
ークにより生成された母材に移行する溶滴、5は溶接金
属、6はシールドガス、7は母材表面にメッキされた亜
鉛層、8は負極(−)に接続された母材を示す。
Figures 3 and 4 show the arc state and welding transition state according to the pulse arc welding method for galvanized steel sheets of the present invention. 1 is the welding torch of the DC power source, 2 is the solid wire of the positive electrode (+), 3 is the arc column at peak current, and 4 is the base generated by the arc from the tip of the solid wire. 5 is the weld metal, 6 is the shielding gas, 7 is the zinc layer plated on the surface of the base material, and 8 is the base material connected to the negative electrode (-).

本発明では、周期的に繰り返すパルス状直流電流を、第
3図のピーク電流時の大電流アークによって、アーク近
傍の母材表面にメッキされた亜鉛を照射溶融して蒸発さ
せた後に、第4図の如くベース電流時にソリッドワイヤ
先端から母材側に溶接を短絡移行するサイクルを各パル
ス電流サイクル毎に行い溶接する。
In the present invention, periodically repeating pulsed DC current is applied to a large current arc at peak current as shown in Fig. 3, and the zinc plated on the surface of the base material near the arc is irradiated and melted and evaporated. As shown in the figure, a cycle in which welding is short-circuited from the tip of the solid wire to the base metal side during base current is performed for each pulse current cycle.

この方法によって亜鉛の燃焼ガスや蒸気が溶接金属中に
侵入してアーク溶接に与える弊害を減少し、アークを安
定化し、溶接金属に内在するブロホールあるいは溶接金
属表面に発生するビット等の欠陥を少なくし、さらにス
パッタ発生量が少なく、常に美麗な溶接金属を形成する
ことができる。
This method reduces the harmful effects on arc welding caused by zinc combustion gas and vapor penetrating into the weld metal, stabilizes the arc, and reduces defects such as blowholes inherent in the weld metal and bits that occur on the surface of the weld metal. Furthermore, the amount of spatter generated is small, and beautiful weld metal can always be formed.

なおこの効果は、直径1 、2mmφのワイヤを用いる
場合には、ピーク電流時の電流値は400A以上、ベー
ス電流値は100A以下が適正であり、溶滴4がベース
電流時に母材ヘスムーズに短絡移行させるには、シール
ドガス6として^「に5〜30VoL!にノCo 2ま
たは2〜1ovO交%ノ0□を混合したものを使用し、
パルス周波数は150〜300Hzの範囲が適正である
In addition, when using a wire with a diameter of 1 or 2 mm, the appropriate current value for this effect is 400 A or more at the peak current and 100 A or less for the base current, so that the droplet 4 can smoothly short-circuit to the base material at the base current. To make the transition, use a mixture of 5~30VoL! and 0Co2 or 2~1ovO exchange%0□ as the shield gas 6.
The appropriate pulse frequency is in the range of 150 to 300 Hz.

このように構成された本発明のパルスアーク溶接方法を
用いた亜鉛メッキ鋼板の溶接において、健全かつ美麗な
溶接ビードが得られる。
In welding galvanized steel sheets using the pulse arc welding method of the present invention configured as described above, a healthy and beautiful weld bead can be obtained.

以下に本発明の効果を実施例により、具体的に説明する
The effects of the present invention will be specifically explained below using Examples.

[実施例1] 第3表に示す化学組成のワイヤ(直径=1.2mmφ)
を用いて、第1図に示した結果を得た前述の場合と同じ
要領により溶接を行い、得られたビードのビット、ブロ
ホール発生状況を調べ、第3表の結果を得た。なお、ピ
ッドの発生個数は溶接ビード表面のビット数を計数して
、溶接ビード長さから、1m溶接長当たりの発生個数(
個/m)に換算し評価した。また、シールドガス組成は
第3表に併せて示す如く、ワイヤ毎に設定し、溶接電圧
もシールドガス組成に適した値を選定している。
[Example 1] Wire with chemical composition shown in Table 3 (diameter = 1.2 mmφ)
Welding was carried out in the same manner as in the above-mentioned case in which the results shown in FIG. 1 were obtained, and the resulting bead was examined for bits and blowhole formation, and the results shown in Table 3 were obtained. The number of pits generated is determined by counting the number of bits on the weld bead surface and calculating the number of pits generated per 1 m welding length from the weld bead length (
The evaluation was carried out in terms of number of particles/m). Further, as shown in Table 3, the shielding gas composition is set for each wire, and the welding voltage is also selected at a value suitable for the shielding gas composition.

第3表において、ワイヤN011〜N009は比較例N
o、10〜No、18本発明実施例のワイヤを示す。
In Table 3, wires N011 to N009 are comparative example N
o, 10 to No. 18 Wires according to embodiments of the present invention are shown.

N011〜9のワイヤはいずれもNi量が13!¥に満
たないため、ピットが発生し、ブロホール発生も多い。
All of the wires No. 011 to 9 have a Ni content of 13! Because it is less than ¥, pits and blowholes occur frequently.

特に、C[No、3] 、St [No、4] 、N[
No、5.No、7゜No、8]が限定範囲を越えてい
る各ワイヤはブロホール発生率も高い。
In particular, C[No, 3], St [No, 4], N[
No, 5. No. 7° No. 8] of each wire exceeds the limited range, the blowhole generation rate is also high.

一方、No、10〜No、18の本発明ワイヤでは、ビ
ット発生は皆無であり、ブロホール発生率も非常に低く
、健全な溶接金属が得られる。
On the other hand, in the wires of the present invention No. 10 to No. 18, no bits were generated, the blowhole generation rate was very low, and sound weld metal was obtained.

[実施例2] 第3表のNo、1.No、14.No、17のワイヤを
用い、実施例1と同じ要領により、亜鉛メッキ鋼板の溶
接を行った。電源の種類、電流、電圧、シールドガス組
成等の試験条件および得られた結果を第4表に示す。尚
、パルスアーク溶接の場合の条件は、パルスピーク電流
: 450A、ベース電流:50^、パルス周波数: 
240Hzに設定した。
[Example 2] No. 1 in Table 3. No, 14. Galvanized steel plates were welded using wire No. 17 in the same manner as in Example 1. Table 4 shows the test conditions such as the type of power source, current, voltage, and shielding gas composition, and the results obtained. The conditions for pulsed arc welding are: pulse peak current: 450A, base current: 50^, pulse frequency:
The frequency was set to 240Hz.

また、スパッタ量の測定は、銅製の捕集箱(2,Qmm
tX 200wX L5Qhx 3QOmmりに捕集し
たスパーツタを計量し、各3回の計量値の平均値と溶接
アーク、時間から発生量(g/m1n)を求めた。
In addition, the amount of spatter was measured using a copper collection box (2, Qmm).
The collected spatter was weighed at tX 200wX L5Qhx 3QOmm, and the generation amount (g/m1n) was determined from the average value of each three weighing values, welding arc, and time.

試験No、1−=No、6は比較例、試験No、7〜N
o、13は本発明の溶接方法実施例を示す。試験No、
1およびNo、2は従来ワイヤ (No、1)と直流電
源によるもので、シールドガスがC02(NO,1)で
は、ビット、ブロホール共に多発しており、しかもスパ
ッタ発生量も極めて多く、シールドガスをAr+ 20
’4COz (No、2)にしても、スパッタ発生量が
若干少なくなるものの、耐気孔性は改善されない、試験
No、3.No、4は従来ワイヤ(No、1)をパルス
電源によりアークパルスアーク溶接を行フたもので、ピ
ット、ブロホール、スパッタ発生量共に、直流電源の場
合より減少傾向はあるものの、いずれも満足するレベル
には至っていない。試験No、5.No、6は本発明の
ワイヤ(No。
Test No. 1-=No, 6 is a comparative example, Test No. 7-N
0 and 13 show examples of the welding method of the present invention. Exam No.
1, No. 2, and No. 2 are conventional wires (No. 1) and DC power supplies. When the shielding gas is CO2 (NO. 1), bits and blowholes occur frequently, and the amount of spatter is also extremely large. Ar+20
Even with '4COz (No, 2), although the amount of spatter generated is slightly reduced, the porosity resistance is not improved. Test No. 3. No. 4 is the conventional wire (No. 1) that has been subjected to arc pulse arc welding using a pulse power source, and although the amount of pits, blowholes, and spatter generated tends to decrease compared to when using a DC power source, all are satisfied. It has not reached the level. Test No.5. No. 6 is the wire of the present invention (No.

14)でパルスアーク溶接を行った例であるが、シール
ドガス組成が本発明の限定範囲外のため、ビット、ブロ
ホール、スパッタ量共に、従来ワイヤを用いた試験No
、3.4の場合と大差ない。
This is an example in which pulsed arc welding was performed in step 14), but since the shielding gas composition was outside the limited range of the present invention, both the bit, blowhole, and spatter amount were compared to test No. 1 using conventional wire.
, not much different from the case of 3.4.

一方、試験NO67〜No、13の本発明の場合では、
ピット発生は全く認められず、ブロホール発生率も極め
て少なく、またスパッタ発生量も、普通鋼板の場合と同
じレベルまで低減した溶接が可能となった。
On the other hand, in the case of the present invention of Test No. 67 to No. 13,
No pits were observed, the blowhole rate was extremely low, and the amount of spatter was reduced to the same level as with ordinary steel sheets.

[発明の効果] 以上のように本発明のワイヤおよび溶接方法によれば、
亜鉛メッキ鋼板など防錆処理を施した鋼材を溶接しても
、ビット発生がなく、ブロホールの非常に少ない健全な
溶接金属が得られるため、溶接金属部の断面欠損になら
ず構造物の強度を劣化させない。また、ピットの発生が
ないため外観的にも好ましい溶接ビードが得られる。
[Effects of the Invention] As described above, according to the wire and welding method of the present invention,
Even when welding anti-corrosion treated steel materials such as galvanized steel sheets, a healthy weld metal with very few blowholes and no bits is generated, which increases the strength of the structure without causing cross-sectional defects in the weld metal. Do not deteriorate. Furthermore, since no pits are generated, a weld bead that is pleasing in appearance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi量とブロホール発生重陽)との関係を示す
説明図、第2図は試験板形状を示す斜視図、第3図は亜
鉛メッキ鋼板のパルスアーク溶接におけるピーク電流時
のアーク状態と溶滴移行状態を示す模式図、第4図は第
3図と同じくベース電流時のアーク状態と溶滴の移行状
態を示す模式図である。 1・・・直流電源の溶接トーチ 2・・・ソリッドワイヤ 3・・・ピーク電流時のアーク柱 4・・・溶滴      5・・・溶接金属6・・・シ
ールドガス  7・・・亜鉛メッキ層8・・・母材  
    W−・・溶接方向第1図 Ni(%)
Figure 1 is an explanatory diagram showing the relationship between Ni content and blowhole generation (double positive), Figure 2 is a perspective view showing the shape of the test plate, and Figure 3 is the arc state at peak current in pulsed arc welding of galvanized steel sheets. FIG. 4 is a schematic diagram showing the droplet transfer state. Like FIG. 3, it is a schematic diagram showing the arc state and the droplet transfer state at the base current. 1... Welding torch of DC power source 2... Solid wire 3... Arc column at peak current 4... Droplet 5... Weld metal 6... Shielding gas 7... Galvanized layer 8...Base material
W-...Welding direction Fig. 1 Ni (%)

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.02〜0.20%、Si:0.
10〜0.70%、Mn:0.20〜2.0%、Ni:
13〜80%であり、P:0.02%以下、S:0.0
2%以下、N:0.040%以下に制限され、残部がF
eおよび不可避不純物からなることを特徴とする亜鉛メ
ッキ鋼板のガスシールドアーク溶接用ソリッドワイヤ。 2 請求項1記載のワイヤと、Ar中に5〜30Vol
%のCO_2または2〜10Vol%のO_2を混合し
たシールドガスを用いて、該ワイヤを正極とするパルス
直流電流のピーク電流時に溶滴を母材側に移行させず、
ベース電流時に溶滴移行を行いながら溶接することを特
徴とする亜鉛メッキ鋼板のガスシールドアーク溶接方法
[Claims] 1% by weight, C: 0.02-0.20%, Si: 0.
10-0.70%, Mn: 0.20-2.0%, Ni:
13-80%, P: 0.02% or less, S: 0.0
2% or less, N: limited to 0.040% or less, the remainder being F
A solid wire for gas-shielded arc welding of galvanized steel sheets, characterized by comprising e.g. and inevitable impurities. 2. The wire according to claim 1 and 5 to 30 Vol in Ar.
Using a shielding gas mixed with % CO_2 or 2 to 10 Vol% O_2, droplets are not transferred to the base metal side at the peak current of the pulsed DC current using the wire as the positive electrode,
A gas-shielded arc welding method for galvanized steel sheets, which is characterized by welding while performing droplet transfer during base current.
JP2416888A 1988-02-04 1988-02-04 Solid wire for gas shielded arc welding of galvanized steel and its welding method Pending JPH01202394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416888A JPH01202394A (en) 1988-02-04 1988-02-04 Solid wire for gas shielded arc welding of galvanized steel and its welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416888A JPH01202394A (en) 1988-02-04 1988-02-04 Solid wire for gas shielded arc welding of galvanized steel and its welding method

Publications (1)

Publication Number Publication Date
JPH01202394A true JPH01202394A (en) 1989-08-15

Family

ID=12130818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416888A Pending JPH01202394A (en) 1988-02-04 1988-02-04 Solid wire for gas shielded arc welding of galvanized steel and its welding method

Country Status (1)

Country Link
JP (1) JPH01202394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081724A (en) * 2015-11-10 2018-07-17 엔브이 베카에르트 에스에이 Transmission cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081724A (en) * 2015-11-10 2018-07-17 엔브이 베카에르트 에스에이 Transmission cable
JP2018536257A (en) * 2015-11-10 2018-12-06 エンベー ベカルト ソシエテ アノニムNV Bekaert SA Power cable

Similar Documents

Publication Publication Date Title
CA2204339C (en) Metal-core weld wire for welding galvanized steels
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
US6784402B2 (en) Steel wire for MAG welding and MAG welding method using the same
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP2002239725A (en) Gas-shielded arc welding for steel sheet
JP3433891B2 (en) Gas shielded arc welding wire for P-added sheet steel and MAG welding method
CN113001057B (en) High-strength pitting-resistant nitrogen-containing austenitic stainless steel flux-cored wire and preparation method thereof
JP2008161899A (en) Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
CN107262960A (en) High intensity high corrosion resistance austenitic stainless steel flux-cored wire
JPH07232294A (en) Welding wire for galvanized steel sheet and welding method
JP2801161B2 (en) Solid wire for pulse MAG welding
JPH01202394A (en) Solid wire for gas shielded arc welding of galvanized steel and its welding method
JPH08103884A (en) Steel wire for gas shielded metal arc welding
JP3718323B2 (en) Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel
JPH0521677B2 (en)
JP2528341B2 (en) Solid wire for gas shield arc welding
JPS6216747B2 (en)
KR100501984B1 (en) Steel wire for mag welding in dc-electrode and mag welding method using the same
JPH11197884A (en) Dual electrode electrogas arc welding method
JP3620974B2 (en) Pulsed Mag Welding Method for Corrosion Resistant Steel Sheet
JPH09285891A (en) Electro gas arc welding fluxed core wire
JP2022102850A (en) SOLID WIRE FOR GAS SHIELD ARC WELDING USED FOR WELD OF LOW Si STEEL, JOINTING METHOD OF LOW Si STEEL, AND REPAIR METHOD OF LOW Si STEEL
JPH06262362A (en) Welding process for zinc-plated steel sheet