JPH01201025A - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JPH01201025A
JPH01201025A JP63026128A JP2612888A JPH01201025A JP H01201025 A JPH01201025 A JP H01201025A JP 63026128 A JP63026128 A JP 63026128A JP 2612888 A JP2612888 A JP 2612888A JP H01201025 A JPH01201025 A JP H01201025A
Authority
JP
Japan
Prior art keywords
alkaline earth
elements
crystal phase
superconducting material
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63026128A
Other languages
Japanese (ja)
Other versions
JP2629771B2 (en
Inventor
Koichi Kugimiya
公一 釘宮
Seiji Adachi
成司 安達
Osamu Inoue
修 井上
Shunichiro Kawashima
俊一郎 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63026128A priority Critical patent/JP2629771B2/en
Priority to EP89301057A priority patent/EP0331292B2/en
Priority to EP93201456A priority patent/EP0560464B1/en
Priority to DE68915578T priority patent/DE68915578T3/en
Priority to DE68925294T priority patent/DE68925294T2/en
Publication of JPH01201025A publication Critical patent/JPH01201025A/en
Application granted granted Critical
Publication of JP2629771B2 publication Critical patent/JP2629771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title material outstanding in temperature difference, stability and economy, predominant in alkaline earth element-Bi-Cu-O, by further incorporating a crystal phase consisting of specified ratio of these elements. CONSTITUTION:The objective material constituted mainly of ABiCuO (A is at least one kind of alkaline earth element), incorporated with such a crystal phase that the atom. ratio A/Bi/Cu is such as to be 1.9-2.5, 1.1-1.7 and 2 for A, Bi and Cu, respectively (approximately 5/3/5). For higher quality of said superconducting material, a mixture of the two kinds of the element A with the respective ion radii of >=1Angstrom and <1Angstrom should be used. Also, great quantities of such rare earth elements and alkaline earth elements as to cause instability in the final superconducting material are not present in unstable forms in said material, thus protecting said material from erosion or the like due to water.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化物超伝導材料に関する。[Detailed description of the invention] Industrial applications The present invention relates to oxide superconducting materials.

従来の技術 近年超伝導材としてYBaCuO系の材料か報告され、
色々な試験研究が行われている。その結果、この材料は
非常に不安定であり、又超伝導状態の開始温度と完了温
度との差が大きいといった大きな欠点がある事が知られ
てきた。さらに希土類元素を多量に使用する為に価格も
たかく市況変動に左右されやすいといった経済的にも不
安定な要素を抱えている。これらすべてについての改良
がのぞまれている。
Conventional technology In recent years, YBaCuO-based materials have been reported as superconducting materials.
Various experimental studies are being conducted. As a result, it has become known that this material is very unstable and has major drawbacks such as a large difference between the starting temperature and the completion temperature of superconducting state. Furthermore, since it uses large amounts of rare earth elements, it is expensive and susceptible to market fluctuations, making it economically unstable. Improvements in all of these areas are desired.

さらに極く最近、5rBiCuO系の新材料が報告され
ている。しかし、これらについては詳しいことは現在の
所不明である。
Furthermore, very recently, new materials based on 5rBiCuO have been reported. However, details regarding these are currently unknown.

発明が解決しようとする課題 本発明はE述のような温度差、安定性、さらには経済性
に問題のない材料を提供することを目的とする。
Problems to be Solved by the Invention The object of the present invention is to provide a material that does not have the problems of temperature difference, stability, and economy as described in E.

課題を解決するための手段 AB i CuO(Aはアルカリ王族より成る元素の少
なくとも一種以上を含む)を主とした構成元素よりなり
、さらにA / B i / Cuの原子比がCUを2
としたときにAが1.9〜2.5、Biが1.1〜1.
7にあり、ほぼ5/315ないしは3/2/3と記載さ
れうる結晶相を少なくとも含有せしめる。さらに高特性
を得るために、Aのイオン半径が1オングストローム以
上の元素とそれ以下の元素が混在せしめる。
Means for Solving the Problem AB i consists of constituent elements mainly consisting of CuO (A contains at least one or more elements of the alkali royal family), and further has an atomic ratio of A / B i / Cu of 2
When A is 1.9 to 2.5 and Bi is 1.1 to 1.
7 and contains at least a crystalline phase that can be described as approximately 5/315 to 3/2/3. In order to obtain even higher characteristics, elements with an ionic radius of A of 1 angstrom or more and elements with an ionic radius of 1 angstrom or less are mixed.

作   用 不安定性の原因となる希土類元素やアルカリ土族元素を
不安定な形で多量に含まない為に水による浸食等が生じ
ない。また固溶範囲が広いと推定され、その為と思われ
るが不純物相を余り含有せずこれも安定性に役立ってい
ると思われる。さらにこの事が上述の温度差を小さ(す
るのに役立っていると思われる。アルカリ土族元素を先
ずイオン半径1オンゴストローム以上と以下を混在させ
る事により適切なる元素間距離を実現している為に優れ
た特性が得られていると推定される。
It does not contain large amounts of rare earth elements or alkaline earth elements, which can cause operational instability, in an unstable form, so it does not suffer from water erosion. In addition, it is presumed that the solid solution range is wide, and this may be because it does not contain many impurity phases, which also seems to be helpful for stability. Furthermore, this seems to help reduce the above-mentioned temperature difference. By first mixing the alkaline earth elements with ionic radii of 1 angstrom or more and those with ion radius of 1 angstrom or less, an appropriate distance between the elements is achieved. It is estimated that excellent characteristics have been obtained.

さらに明白なように高価な供給の不安定な希土類元素を
全(含まない事からも分かるように経済性にも優れてい
る。
Furthermore, it is also excellent in economical efficiency as it does not contain any rare earth elements that are expensive and unstable in supply.

実施例 一般的な最近のYBaCuO系の材料について追試を行
った所、所謂123 (Y/Ba/Cuの比〉の最適な
組成でも本発明者らの検討によれば、転移温度は約90
度にであったが、上述の温度差は杓10度近く有り非常
に大きい事が示され、又少し組成を変動させれば不純物
相が生成し特性が変動する事が示された。
EXAMPLE When conducting additional tests on common recent YBaCuO-based materials, we found that even with the optimum composition of 123 (Y/Ba/Cu ratio), the transition temperature is approximately 90.
However, it was shown that the above-mentioned temperature difference was very large, nearly 10 degrees, and it was also shown that if the composition was slightly changed, an impurity phase would be generated and the characteristics would change.

これに対して本発明者らの検討によれば新材料は以下に
示したように安定した優れた特性を有している。
On the other hand, according to studies conducted by the present inventors, the new material has stable and excellent properties as shown below.

イオン半径1オンゴストローム以下のMgCaの一群と
Sr、Baの一群の各々から少なくとも一種以上と、B
i、Cuを含む酸化物を王者の比A / B i / 
Cuがほぼ5/315.3/2/3ないしはその近傍に
なるように秤量し、次に均一に混合した後に800から
850度で仮焼、さらに粉砕、成型した後に焼成を83
0から870度で行った。得られた結果を第−表に示す
A group of MgCa having an ionic radius of 1 angstrom or less, at least one kind from each of the groups Sr and Ba, and B.
i, Cu-containing oxide has the king ratio A/B i/
Weigh the Cu so that it is approximately 5/315.3/2/3 or close to it, then mix it uniformly, calcinate it at 800 to 850 degrees, and then crush it, mold it, and then bake it at 83 degrees Celsius.
It was done from 0 to 870 degrees. The results obtained are shown in Table 1.

第  1  表 同表より明らかな様に上述の温度差は全て5度以下と小
さ(、転移温度も約100度に以上と安定している事が
示された。さらに上記二群の元素を混在せしめる事によ
って、単独の場合には転移温度が20から30度にのも
のが100度に以上と成っている事が示されている。さ
らに高温高湿下(60度60%)に1ケ月放置する耐湿
テストでは所謂YBaCu系材料では全体が白色に変化
しかなり崩壊したのに対して、本材料は表面が僅かに白
色化したのみであり非常に安定している事が示された。
As is clear from Table 1, all of the temperature differences mentioned above are small, below 5 degrees (and the transition temperatures are stable at about 100 degrees or above).Furthermore, when elements from the two groups mentioned above are mixed, It has been shown that the transition temperature is 20 to 30 degrees when used alone, but it is more than 100 degrees.Furthermore, it is left in a high temperature and high humidity environment (60 degrees and 60%) for one month. In the moisture resistance test, the so-called YBaCu material turned white and collapsed considerably, whereas the surface of this material only slightly turned white, indicating that it is very stable.

第1表からも分かる様に基本的には組成2.3.4.5
(その中の15)でほぼ囲まれた範囲で特に優れている
事が示されている。
As can be seen from Table 1, basically the composition is 2.3.4.5
It has been shown that the range approximately surrounded by (15) is particularly excellent.

又、11.12.13の様にアルカリ土族元素の置き換
わった物でも良い特性を示している。
In addition, even those in which alkaline earth group elements are replaced, such as Nos. 11, 12, and 13, show good characteristics.

又、X線による解析の結果ではかなり広い範囲で単一の
3/2/3ないしは5/315の組成比からなる結晶相
(現在検討中であるが格子定数がa=5.4オンゴスト
ローム、b=27.0オンゴストローム、c=15.3
オンゴストロームの斜方晶と表面上記述され、透過電子
顕微鏡の結果と合わせれば単位胞5.4オンゴストロー
ムの疑似正方品の超格子より成ると推定される。)を形
成しており、0面で非常に壁間し易い事が確認された。
Furthermore, the results of X-ray analysis show that crystal phases with a single composition ratio of 3/2/3 or 5/315 exist over a fairly wide range (currently under investigation, but the lattice constant is a = 5.4 angostroms, b=27.0 Ongostrom, c=15.3
It is superficially described as an angostromal orthorhombic crystal, and when combined with the results of transmission electron microscopy, it is estimated to consist of a pseudo-tetragonal superlattice with a unit cell of 5.4 angostroms. ), and it was confirmed that it is very easy to intersect between walls on the 0 side.

発明の効果 本発明によれば、耐湿性に優れた、且つ、固溶範囲の広
(上述の温度差の小さな安定性再現性の優れた材料を提
供することができ、広く超伝導機器に適用され得る。
Effects of the Invention According to the present invention, it is possible to provide a material that has excellent moisture resistance and a wide solid solution range (the above-mentioned temperature difference is small) and has excellent stability and reproducibility, and is widely applicable to superconducting devices. can be done.

Claims (3)

【特許請求の範囲】[Claims] (1)ABiCuO(Aはアルカリ土族より成る元素の
少なくとも一種以上を含む)を主とした構成元素よりな
り、さらにA/Bi/Cuの原子比が、Cuを2とした
ときにAが1.9〜2.5、Biが1.1〜1.7にあ
り、ほぼ5/3/5と記載されうる結晶相を少なくとも
含有する事を特徴とする酸化物超伝導材料。
(1) Consists of constituent elements mainly consisting of ABiCuO (A contains at least one type of element of the alkaline earth group), and furthermore, the atomic ratio of A/Bi/Cu is 1. 9 to 2.5, Bi in the range of 1.1 to 1.7, and containing at least a crystal phase that can be described as approximately 5/3/5.
(2)ABiCuO(Aはアルカリ土族より成る元素の
少なくとも一種以上を含む)を主とした構成元素よりな
り、さらにA/Bi/Cuの原子比が、Cuを2とした
ときにAが1.9〜2.5、Biが1.1〜1.7にあ
り、ほぼ3/2/3と記載されうる結晶相を少なくとも
含有する事を特徴とした酸化物超伝導材料。
(2) Consists of constituent elements mainly consisting of ABiCuO (A contains at least one type of element of the alkaline earth group), and furthermore, the atomic ratio of A/Bi/Cu is 1. 9 to 2.5, Bi in the range of 1.1 to 1.7, and containing at least a crystal phase that can be described as approximately 3/2/3.
(3)Aのイオン半径が1オングストローム以上の元素
とそれ以下の元素が混在している事を特徴とする特許請
求の範囲第1項または第2項記載の酸化物超伝導材料。
(3) The oxide superconducting material according to claim 1 or 2, characterized in that A contains elements with an ionic radius of 1 angstrom or more and elements with an ionic radius of 1 angstrom or less.
JP63026128A 1988-02-05 1988-02-05 Oxide superconducting material Expired - Lifetime JP2629771B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63026128A JP2629771B2 (en) 1988-02-05 1988-02-05 Oxide superconducting material
EP89301057A EP0331292B2 (en) 1988-02-05 1989-02-03 Oxyde superconductive material
EP93201456A EP0560464B1 (en) 1988-02-05 1989-02-03 Superconductive oxide materials
DE68915578T DE68915578T3 (en) 1988-02-05 1989-02-03 Oxide superconducting material.
DE68925294T DE68925294T2 (en) 1988-02-05 1989-02-03 Superconducting oxide materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026128A JP2629771B2 (en) 1988-02-05 1988-02-05 Oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01201025A true JPH01201025A (en) 1989-08-14
JP2629771B2 JP2629771B2 (en) 1997-07-16

Family

ID=12184925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026128A Expired - Lifetime JP2629771B2 (en) 1988-02-05 1988-02-05 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2629771B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215722A (en) * 1988-02-25 1989-08-29 Sumitomo Electric Ind Ltd Superconducting material and compound thereof
JPH01242459A (en) * 1988-03-23 1989-09-27 Semiconductor Energy Lab Co Ltd Superconducting ceramics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU217018B (en) 1988-02-08 1999-11-29 E. I. Du Pont De Nemours And Co. Super conducting composition contain bismuth, strontium, copper and oxygen, process for producing this composition, and process for conducting an electrical current within a conductor material without electrical resistive losses and josephson-effect ...

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188456A (en) * 1988-01-20 1989-07-27 Natl Res Inst For Metals Oxide high temperature superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188456A (en) * 1988-01-20 1989-07-27 Natl Res Inst For Metals Oxide high temperature superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215722A (en) * 1988-02-25 1989-08-29 Sumitomo Electric Ind Ltd Superconducting material and compound thereof
JPH01242459A (en) * 1988-03-23 1989-09-27 Semiconductor Energy Lab Co Ltd Superconducting ceramics

Also Published As

Publication number Publication date
JP2629771B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US4045375A (en) Highly electron-conductive composition
Jorgensen et al. Superconducting phase of La 2 Cu O 4+ δ: A superconducting composition resulting from phase separation
Takada et al. Preparation and crystal structure refinement of Li4Mn5O12 by the Rietveld method
Blandeau et al. Transition-metal dichalcogenides from disintercalation processes. Crystal structure determination and Mossbauer study of Li2FeS2 and its disintercalates LixFeS2 (0.2⩽ x⩽ 2)
Pickering et al. An electron microscope study of tungsten oxides in the composition range WO2. 90 WO2. 72
González-Calbet et al. Prediction of novel BaMnO3-y (0< y< 0.1) perovskite related phases
CA1147945A (en) Oxide thermistor compositions
Zhai et al. Microwave dielectric properties of rock-salt structured Li7 (Nb1-xTix) 2O8-xF (0≤ x≤ 0.10) system with low sintering temperature
JPH01201025A (en) Oxide superconducting material
JP2506892B2 (en) Oxide superconducting material
Lundberg et al. Studies of phases in the KNbO3 Nb2O5 system by high-resolution electron microscopy and X-ray powder diffraction
Vannier et al. Electrical and structural investigations on a new bismuth lead vanadium oxide solid electrolyte
US4474686A (en) Lithium oxide-based amorphous ionic conductor
JPH01201024A (en) Oxide superconducting material
JP2604779B2 (en) Oxide superconducting material
Barrer et al. Probable structure of zeolite Ω
EP0560464B1 (en) Superconductive oxide materials
JPH01226733A (en) Oxide superconducting material
JPH01212228A (en) Oxide superconducting material and its production
Cherepanov et al. Phase Equilibria in the LaCoO3–LaMnO3–SrCoO2. 5–SrMnO3 System
Vallino et al. Influence of the size of RE3+ ions on the stability of new perovskite-like phases in the most basic region of the systems Ba RE Cu O (RE≡ Ln, Y)
JPH01201026A (en) Oxide superconducting material
Horyn et al. Constitution of Bi2 (Sr1-xCax) 2Cu2Oy and of Bi8 (Sr1-xCax) 8Ca4Cu10Oy type solid solutions
JP2747438B2 (en) Oxide superconducting material
Siruguri et al. Stability of Sr3Ti2O7 structure in La1. 2 (Sr1− xCax) 1.8 Mn2O7 and Ca3− yLayMn2O7

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term