JP2506892B2 - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JP2506892B2
JP2506892B2 JP63026130A JP2613088A JP2506892B2 JP 2506892 B2 JP2506892 B2 JP 2506892B2 JP 63026130 A JP63026130 A JP 63026130A JP 2613088 A JP2613088 A JP 2613088A JP 2506892 B2 JP2506892 B2 JP 2506892B2
Authority
JP
Japan
Prior art keywords
degrees
temperature
composition
oxide superconducting
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63026130A
Other languages
Japanese (ja)
Other versions
JPH01201027A (en
Inventor
公一 釘宮
成司 安達
修 井上
俊一郎 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63026130A priority Critical patent/JP2506892B2/en
Priority to EP93201456A priority patent/EP0560464B1/en
Priority to DE68925294T priority patent/DE68925294T2/en
Priority to DE68915578T priority patent/DE68915578T3/en
Priority to EP89301057A priority patent/EP0331292B2/en
Publication of JPH01201027A publication Critical patent/JPH01201027A/en
Application granted granted Critical
Publication of JP2506892B2 publication Critical patent/JP2506892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化物超伝導材料に関する。Description: TECHNICAL FIELD The present invention relates to an oxide superconducting material.

従来の技術 近年超伝導材としてYBaCuO系の材料が報告され、色々
な試験研究が行われている。その結果、この材料は非常
に不安定であり、又超伝導状態の開始温度と完了温度と
の差が大きいといった大きな欠点がある事が知られてき
た。さらに希土類元素を多量に使用する為に価格もたか
く市況変動に左右されやすいといった経済的にも不安定
な要素を抱えている。これらすべてについての改良がの
ぞまれている。
2. Description of the Related Art In recent years, YBaCuO-based materials have been reported as superconducting materials, and various test studies have been conducted. As a result, it has been known that this material is very unstable and has a big defect that the difference between the starting temperature and the completion temperature of the superconducting state is large. In addition, since it uses a large amount of rare earth elements, it has an economically unstable element that the price is high and it is easily affected by market fluctuations. Improvements in all of these are desired.

さらに極く最近、SrBiCuO系の新材料が報告されてい
る。しかし、これらについては詳しいことは現在の所不
明である。
Even more recently, new SrBiCuO-based materials have been reported. However, the details of these are currently unknown.

発明が解決しようとする課題 本発明は上述のような温度差、安定性、さらには経済
性に問題のない材料を提供する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention provides a material having no problem in temperature difference, stability, and economical efficiency as described above.

課題を解決するための手段 ABiCuO(Aはアルカリ土族より成る元素の少なくとも
一種以上を含む)を主とした構成元素よりなり、さらに
A/Bi/Cuの原子比が、5/5/4、6/4/5、4/2/3、6/3/4、9/6
/5の各点に囲まれる範囲にあり、3/2/2よりなる相を少
なくとも含有し、かつ、Aとしてイオン半径が1オング
ストロームより大きい元素とそれ以下の元素を混在させ
る。
Means for Solving the Problems ABiCuO (A contains at least one element of alkaline earth group)
A / Bi / Cu atomic ratio is 5/5/4, 6/4/5, 4/2/3, 6/3/4, 9/6
/ 5 is contained in a range surrounded by each point, contains at least a phase of 3/2/2, and as A, an element having an ionic radius larger than 1 angstrom and an element having a smaller ion radius are mixed.

作用 不安定性の原因となる希土類元素やアルカリ土族元素
を不安定な形で多量に含まない為に水による浸食等が生
じない。また固溶範囲が広いと推定され、その為と思わ
れるが不純物相を余り含有せずこれも安定性に役立って
いると思われる。さらにこの事が上述の温度差を小さく
するのに役立っていると思われる。アルカリ土族元素を
先ずイオン半径1オングストローム以上と以下を混在さ
せる事により適切なる元素間距離を実現している為に優
れた特性が得られていると推定される。
Action Rare earth elements and alkaline earth elements that cause instability are not contained in large amounts in an unstable form, so corrosion by water does not occur. Further, it is presumed that the solid solution range is wide, which is considered to be due to the fact that it does not contain much impurity phase, which also contributes to stability. Furthermore, this seems to be useful for reducing the above-mentioned temperature difference. It is presumed that excellent characteristics are obtained because an appropriate inter-element distance is realized by first mixing an alkaline earth element with an ionic radius of 1 angstrom or more and the following.

さらに明白なように高価な供給の不安定な希土類元素
を全く含まない事からも分かるように経済性にも優れて
いる。
Furthermore, as is apparent, it does not contain expensive rare earth elements, which are unstable, and it has excellent economic efficiency.

実 施 例 一般的な最近のYBaCuO系の材料について追試を行った
所、所謂123(Y/Ba/Cuの比)の最適な組成でも本発明者
らの検討によれば、転移温度は約90度Kであったが、上
述の温度差は約10度近く有り非常に大きい事が示され、
又少し組成を変動させれば不純物相が生成し特性が変動
する事が示された。
Example When a general recent YBaCuO-based material was supplemented, a transition temperature of about 90 was found to be obtained even with the optimum composition of so-called 123 (Y / Ba / Cu ratio). Although it was K, it was shown that the above-mentioned temperature difference was about 10 degrees and was very large.
It was also shown that if the composition was changed slightly, an impurity phase was generated and the characteristics changed.

これに対して本発明者らの検討によれば新材料は以下
に示したように安定した優れた特性を有している。
On the other hand, according to the study by the present inventors, the new material has stable and excellent characteristics as shown below.

イオン半径1オングストローム以下のMg,Caの一群と
それよりも大きなイオン半径のSr,Baの一群の各々から
少なくとも一種以上と、Bi,Cuを含む酸化物を三者の比A
/Bi/Cuがほぼ3/2/2なるように秤量し、次に均一に混合
した後に800から850度で仮焼、さらに粉砕、成型した後
に焼成を850度で行った。得られた結果を第1表に示
す。
An oxide containing Bi, Cu and at least one or more members from each group of Mg, Ca having an ionic radius of 1 Å or less and a group of Sr, Ba having an ionic radius larger than that, and an oxide containing Bi, Cu have a ratio A
/ Bi / Cu was weighed so that it was approximately 3/2/2, and then uniformly mixed, then calcined at 800 to 850 degrees, further pulverized and molded, and then fired at 850 degrees. The results obtained are shown in Table 1.

第1表に於いて、転移温度は超伝導の開始点を示す抵
抗温度曲線での屈曲点(外挿点)の温度と零抵抗になる
終了点の温度の中間の値を示す。また、温度差はこれら
開始点と終了点の温度差を示す。同表に於いて、組成14
の試料以外は全てアルカリ土族元素のイオン半径が1オ
ングストローム以下の元素とそれより大きい元素を混在
させたものを示す。また、同表の組成1〜5、9〜13の
各試料データより明らかな様にそれらは組成9と13を除
き全て単相が得られその温度差は10度以下(特に組成1
〜5、10、11は温度差が5度以下と優れている。組成9
と13は複相となったので温度差が10度前後となっている
が)と小さく、転移温度も約80から85度Kと安定してい
る(組成13の試料では、X線回折結果で3/2/2相を多く
含んだ試料ではこの様に77度K程度を呈するが、同じ組
成の試料でも3/2/2相の少ない試料では100度K程度を呈
する試料も見られる)ことが示された。
In Table 1, the transition temperature is an intermediate value between the temperature at the inflection point (extrapolation point) on the resistance temperature curve indicating the start point of superconductivity and the end point temperature at which the resistance becomes zero. The temperature difference indicates the temperature difference between the starting point and the ending point. In the table, composition 14
All of the samples other than the sample of 1 are mixed with an element having an ionic radius of an alkaline earth element of 1 angstrom or less and a larger element. Further, as is clear from the sample data of the compositions 1 to 5 and 9 to 13 in the table, all of them except the compositions 9 and 13 have a single phase, and the temperature difference is 10 degrees or less (particularly composition 1
-5, 10, and 11 are excellent in that the temperature difference is 5 degrees or less. Composition 9
And 13 became a double phase, so the temperature difference was about 10 degrees), and the transition temperature was stable at about 80 to 85 degrees K (in the sample of composition 13, the X-ray diffraction results show that Thus, a sample containing a large amount of 3/2/2 phase exhibits a temperature of about 77 degrees K. However, even a sample having the same composition may exhibit a temperature of about 100 degrees K with a small amount of 3/2/2 phase.) It has been shown.

さらに同表の組成9、13の試料に示すように上記二群
の元素を混在せしめる事によって、同表の組成14の試料
に示すがごとく単独の群に属する元素の組合せの場合に
は転移温度が20から30度Kのものが80度K前後と成って
いる事が示されている。さらに高温高湿下(60度60%)
に1ケ月放置する耐湿テストでは所謂YBaCu系材料では
全体が白色に変化しかなり崩壊したのに対して、本材料
は同表の組成8、9、13、14のものだけに於いて、表面
が僅かに白色化したのみであり非常に安定している事が
示された。第1表からも分かる様に基本的には組成2、
3、4、5、9で囲まれた範囲で特に優れている事が示
されている。又、11、12、13の様にアルカリ土属元素の
置き換わった物でも良い特性を示している。
Furthermore, by mixing the elements of the above two groups as shown in the samples of compositions 9 and 13 in the same table, in the case of the combination of elements belonging to a single group as shown in the sample of composition 14 in the table, the transition temperature It is shown that those with 20 to 30 degrees K are around 80 degrees K. Further high temperature and high humidity (60 degrees 60%)
In a moisture resistance test that was left for 1 month, the so-called YBaCu-based material turned white and collapsed considerably, whereas this material only had the composition 8, 9, 13 and 14 in the table and the surface was It was shown to be very stable with only a slight whitening. As you can see from Table 1, basically composition 2,
It is shown that it is particularly excellent in the range surrounded by 3, 4, 5, and 9. In addition, the materials in which alkaline earth elements are replaced, such as 11, 12, and 13, also show good characteristics.

又、X線による解析の結果ではかなり広い範囲で単一
の3/2/2の組成比からなる相(現在検討中であるが格子
定数がa=15.3オングストローム,b=c=22.9オングス
トロームの正方晶と表面上記述され、透過電子顕微鏡の
結果と合わせれば単位胞5.4オングストロームの疑似立
力晶の超格子より成ると推定される。)を形成している
ことが確認された。但し、第1表の組成6、7に付いて
は同じ組成比のものを作製しても臨界温度や温度差等の
特性がかなりばらつく現象が観測された。
In addition, the result of X-ray analysis shows that a phase consisting of a single 3/2/2 composition ratio in a fairly wide range (currently under investigation, the lattice constant is a = 15.3 angstrom, b = c = 22.9 angstrom square Crystal and surface, and combined with the results of transmission electron microscopy, it is presumed to be composed of a pseudolattice superlattice with a unit cell of 5.4 angstroms.). However, with respect to the compositions 6 and 7 in Table 1, a phenomenon was observed in which the characteristics such as the critical temperature and the temperature difference varied considerably even when the same composition ratio was prepared.

発明の効果 本発明によれば、耐湿性に優れた、且つ、固溶範囲の
広く上述の温度差の小さな安定性再現性の優れた材料を
提供することができ、広く超伝導機器に適用され得る。
Advantageous Effects of the Invention According to the present invention, it is possible to provide a material having excellent moisture resistance, a wide solid solution range, and a small temperature difference and excellent stability reproducibility, and is widely applied to superconducting equipment. obtain.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ABiCuO(Aはアルカリ土族より成る元素の
少なくとも一種以上を含む)を主とした構成元素よりな
り、さらにA/Bi/Cuの原子比が、5/5/4、6/4/5、4/2/3、
6/3/4、9/6/5の各点に囲まれる範囲にあり、3/2/2より
なる相を少なくとも含有する事を特徴とし、Aとしてイ
オン半径が1オングストロームより大きい元素とそれ以
下の元素が混在していることを特徴とする酸化物超伝導
材料。
1. A constituent element mainly composed of ABiCuO (A includes at least one element of alkaline earth elements), and the atomic ratio of A / Bi / Cu is 5/5/4, 6/4. / 5, 4/2/3,
It is characterized by containing at least a phase consisting of 3/2/2 within the range surrounded by the points 6/3/4 and 9/6/5, and the element with an ionic radius larger than 1 angstrom as A and that An oxide superconducting material, characterized in that the following elements are mixed.
JP63026130A 1988-02-05 1988-02-05 Oxide superconducting material Expired - Lifetime JP2506892B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63026130A JP2506892B2 (en) 1988-02-05 1988-02-05 Oxide superconducting material
EP93201456A EP0560464B1 (en) 1988-02-05 1989-02-03 Superconductive oxide materials
DE68925294T DE68925294T2 (en) 1988-02-05 1989-02-03 Superconducting oxide materials
DE68915578T DE68915578T3 (en) 1988-02-05 1989-02-03 Oxide superconducting material.
EP89301057A EP0331292B2 (en) 1988-02-05 1989-02-03 Oxyde superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026130A JP2506892B2 (en) 1988-02-05 1988-02-05 Oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01201027A JPH01201027A (en) 1989-08-14
JP2506892B2 true JP2506892B2 (en) 1996-06-12

Family

ID=12184981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026130A Expired - Lifetime JP2506892B2 (en) 1988-02-05 1988-02-05 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2506892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2850310B2 (en) 1988-02-08 1999-01-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Superconductive metal oxide composition and method for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2067489T5 (en) * 1988-02-05 1998-08-16 Hoechst Ag SUPERCONDUCTORS AND PROCEDURE FOR ITS PRODUCTION.
US4880771A (en) * 1988-02-12 1989-11-14 American Telephone And Telegraph Company, At&T Bell Laboratories Bismuth-lead-strontium-calcium-cuprate superconductors
JPH01242459A (en) * 1988-03-23 1989-09-27 Semiconductor Energy Lab Co Ltd Superconducting ceramics
US5238911A (en) * 1990-04-04 1993-08-24 Hitachi Chemical Company Ltd. Oxide superconductor Bi--Sr--Ca--Mg--Ba--Cu--O

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS=1987 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2850310B2 (en) 1988-02-08 1999-01-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Superconductive metal oxide composition and method for producing the same

Also Published As

Publication number Publication date
JPH01201027A (en) 1989-08-14

Similar Documents

Publication Publication Date Title
Najib et al. Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors
Jorgensen et al. Superconducting phase of la 2 cu o 4+ δ: A superconducting composition resulting from phase separation
Blandeau et al. Transition-metal dichalcogenides from disintercalation processes. Crystal structure determination and Mossbauer study of Li2FeS2 and its disintercalates LixFeS2 (0.2⩽ x⩽ 2)
Datta et al. Structural studies of Sr-and Mg-doped LaGaO3
Hahakura et al. New barium-free mercury-based high-Tc superconductors (Hg, Mo) Sr2 (Ca, Y) n-1CunOy and HgSr2 (Ca, Y) n-1 (Cu, Re) nOy (n= 1 and 2)
JP2506892B2 (en) Oxide superconducting material
Awana et al. Effect of Zn substitution on para-to ferromagnetic transition temperature in La 0.67 Ca 0.33 Mn 1− x Zn x O 3 colossal magnetoresistance materials
Watanabe et al. Formation of perovskite solid solutions and lithium-ion conductivity in the compositions, Li2xSr1− 2xMIII0. 5− xTa0. 5+ xO3 (M= Cr, Fe, Co, Al, Ga, In, Y)
JP2629771B2 (en) Oxide superconducting material
JP2604779B2 (en) Oxide superconducting material
EP0732430B1 (en) Manganese oxide-based single crystal having a laminar structure and method for the preparation thereof
JP2815360B2 (en) Oxide superconducting material and manufacturing method thereof
JPH01201024A (en) Oxide superconducting material
EP0560464B1 (en) Superconductive oxide materials
JPH01226733A (en) Oxide superconducting material
JP2747438B2 (en) Oxide superconducting material
Wu et al. Structural study on high-pressure synthesized Pb Sr Ca Cu O system
Klein et al. Thermoelectric [Sr2 (Bi, Co) n− 2On] RS [CoO2] 1.8 layer cobaltites: The role of the intergrowth between the n= 3 and n= 4 terms
JPH085672B2 (en) Method for producing oxide superconductor
Grenthe et al. High-pressure tungsten bronzes, RExWO3 with RE= La and Nd, studied by X-ray diffraction and Electron Microscopy
Tao et al. Electron microscopy of the infinite-layer superconducting oxide phase and related compounds
Lue et al. THE EFFECT OF Ag-DOPING ON THE CRITICAL CURRENT DENSITY OF YBa 2 Cu 3O7− δ SUPERCONDUCTORS
JPH0442816A (en) Superconducting material of oxide
JPH02296766A (en) Ceramic composite containing tin
JP2778100B2 (en) Oxide superconducting material and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term