JPH085672B2 - Method of manufacturing an oxide superconductor - Google Patents

Method of manufacturing an oxide superconductor

Info

Publication number
JPH085672B2
JPH085672B2 JP63026129A JP2612988A JPH085672B2 JP H085672 B2 JPH085672 B2 JP H085672B2 JP 63026129 A JP63026129 A JP 63026129A JP 2612988 A JP2612988 A JP 2612988A JP H085672 B2 JPH085672 B2 JP H085672B2
Authority
JP
Japan
Prior art keywords
manufacturing
oxide superconductor
method
composition
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63026129A
Other languages
Japanese (ja)
Other versions
JPH01201026A (en
Inventor
修 井上
成司 安達
俊一郎 河島
公一 釘宮
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP63026129A priority Critical patent/JPH085672B2/en
Priority claimed from EP19890301057 external-priority patent/EP0331292B2/en
Publication of JPH01201026A publication Critical patent/JPH01201026A/en
Publication of JPH085672B2 publication Critical patent/JPH085672B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment or power systems integrating superconducting elements or equipment
    • Y02E40/64Superconducting transmission lines or power lines or cables or installations thereof

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化物超超伝導材料に関する。 FIELD OF THE DETAILED DESCRIPTION OF THE INVENTION Industry The present invention relates to oxide ultrafine superconducting material.

従来の技術 近年超伝導材としてYBaCuO系の材料が報告され、色々な試験研究が行われている。 The prior art In recent years reporting YBaCuO-based material as a superconducting material have been made various research. その結果、この材料は非常に不安定であり、又超伝導状態の開始温度と完了温度との差が大きいといった大きな欠点がある事が知られてきた。 As a result, this material is very unstable, and that the difference between the starting temperature and the ending temperature of the superconducting state is a big drawback greater have been known. さらに希土類元素を多量に使用する為に価格もたかく市況変動に左右されやすいといった経済的にも不安定な要素を抱えている。 Have had an unstable element in economic, such as the price is also high likely to be affected by the market fluctuations in order to further large amount of use of the rare earth elements. これらすべてについての改良がのぞまれている。 Improvements have been desired for all these.

さらに極く最近、SrBiCuO系の新材料が報告されている。 In addition More recently, new materials SrBiCuO system have been reported. しかし、これらについては詳しいことは現在の所不明である。 However, it detailed that these about is unknown at present.

発明が解決しようとする課題 本発明は上述のような温度差、安定性、さらには経済性の問題のない材料を提供することを目的とする。 INVENTION An object present invention is a temperature difference as described above to be solved, stability, and further aims to provide a no material economic issues.

課題を解決するための手段 ABiCuO(Aはアルカリ土族よりなる元素の少なくとも一種以上を含む)を主とした酸化物超伝導体の製造方法であって、A/Bi/Cuの比が3/2/2よりなる第1の結晶相成分と、ACuOを主とした第2の結晶相成分とを別々に用意し、その後これらをスパッタにより多層に積層することを特徴とする酸化物超伝導体の製造方法である。 (The A including at least one or more kind of element consisting of alkaline earth group) means ABiCuO for Solving the Problems A method of manufacturing an oxide superconductor which mainly the ratio of A / Bi / Cu is 3/2 the first crystalline phase component consisting of / 2, the second is prepared separately and crystalline phase component mainly containing ACuO, subsequent oxide superconductor, which comprises laminating them in multiple layers by sputtering it is a manufacturing method.

また、Aのイオン半径が1オングストロームより大きい元素とそれ以下の元素が混在していることを特徴とする酸化物超伝導体の製造方法である。 Further, a method of manufacturing an oxide superconductor, characterized in that the ionic radius of A is mixed a large element and lower element than 1 angstrom.

作用 不安定性の原因となる希土類元素やアルカリ土族元素を多量に含まず、安定している為に水による浸食等が生じない。 Not included in the large amount of rare earth elements and alkaline earth group elements that cause of action instability, erosion, etc. with water in order to have stable does not occur. また上述の2結晶相の各々の固溶範囲はかなり広いと推定され、その為と思われるが不純物相を殆ど含有せず、これも安定性に役立っていると思われる。 The solid solution range of each of the above 2 crystal phase is fairly wide estimated, although Therefore seems hardly contains impurity phases, which also seems to help the stability. さらにこの事が上述の温度差を小さくするのに役立っていると思われる。 Further this it appears to help to reduce the temperature difference described above. 現在の所理由は良く分からないが上記2結晶相の界面に於いて特異な事が生じているの2点が超伝導転移温度の向上の原因と推定される。 Reason At present is not sure, but two points that specific at the interface of the two crystalline phases has occurred is estimated to cause improvement in the superconducting transition temperature.

さらに明白なように高価な供給の不安定な希土類元素を全く含まない事からも分かるように経済性にも優れている。 It is also excellent in economy as can be seen from the fact that do not contain further apparent as completely unstable rare earth element of the expensive supply.

実施例 一般的な最近のYBaCuO系の材料について追試を行った所、所謂123(Y/Ba/Cuの比)の最適な組成でも本発明者らの検討によれば、転移温度は約90度Kであったが、上述の温度差は10度近く有り非常に大きい事が示され、又少し組成を変動させれば不純物相が生成し特性が変動する事が示された。 Was subjected to additional tests for Example typical recent materials YBaCuO system, according to even the studies by the present inventors in optimum composition of the so-called 123 (the ratio of Y / Ba / Cu), transition temperature of about 90 degrees Although there was a K, the temperature difference mentioned above is shown that very large there nearly 10 degrees, and the impurity phase are generated characteristics when brought into varied slightly composition was shown to vary.

これに対して本発明者らの検討によれば新材料は以下に示したように安定した優れた特性を有している。 New material according to the study of the present inventors have stable excellent properties as shown below thereto.

イオン半径1オングストローム以下のMg,Caの一群と、それよりも大きなイオン半径のSr,Baの一群から少なくとも一種以上と、Bi,Cuを含む酸化物を三者の比がほぼ3/2/2なるように秤量し、次に均一に混合した。 Ionic radius 1 Angstrom following Mg, a group of Ca, it than the ionic radius larger Sr, and at least one or more from a group of Ba, Bi, the ratio of an oxide containing Cu tripartite nearly 3/2/2 It was weighed such that, and then uniformly mixed. これを甲原料とする。 This is referred to as instep raw materials. 次に同様に三者の比が1/0/2に配合し乙原料とする。 The ratio of the next similarly tripartite is to Otsu material formulated to 1/0/2. 甲乙の原料を混合して各種の組成の物を作成した。 Created things various compositions by mixing party hereto ingredients. 良く混合した後に800から850度で仮焼、さらに粉砕、成型した後に焼成を850度6時間行った後に8 Calcined at 800 to 850 degrees after well mixed, further ground, after 850 degrees 6 hours calcination after molding 8
20度に保持し、50度/時間で除冷した。 Maintained at 20 °, it was gradually cooled at 50 ° / hr. 得られた結果を第一表に示す。 The results obtained are shown in the first table.

第1表に於いて、転移温度は超伝導の開始点を示す抵抗温度曲線での屈曲点(外挿点)の温度と零抵抗になる終了点の温度の中間の値を示す。 In Table 1, the transition temperature indicates a temperature and an intermediate value of the temperature of the end point becomes zero resistance bending point in the resistor temperature curve indicating the starting point of the superconducting (extrapolation). また、温度差はこれら開始点と終了点の温度差を示す。 The temperature difference indicates the temperature difference between the end point and these starting points. また、同表の割合は試料の帯磁率・温度測定より算出したものである。 The ratio of the same table are those calculated from the magnetic susceptibility-temperature measurements of the sample. 具体的には、試料の完全反磁性(マイスナー効果)を示す遷移温度(転移温度にほぼ等しい)が80K付近と105から115K Specifically, (approximately equal to the transition temperature) transition temperature indicating the complete diamagnetism (Meissner effect) of the sample 115K from 80K and around 105
の2種類存在するため、両者の中間点の95Kでの完全反磁性量(体積分相当)を求めてV1とし、60K以下のそれを求めてV2とし、V1/V2×100(%)を「割合」と定めた。 Since there are two types, a complete diamagnetism amount at 95K of both the midpoint of the (volume fraction equivalent) to seek V1, and V2 asking for it follows 60K, V1 / V2 × 100 (%) "of It was defined as the proportion ". 同表に於いて、組成9の試料以外は全てアルカリ土族元素のイオン半径が1オングストローム以下の元素とそれより大きい元素を混在させたものを示す。 In the table, except the samples of composition 9 shows what is the ionic radius of all alkaline earth group elements were mixed following elements and larger elements than 1 angstrom. また、同表の組成1から8より明らかな様に上述の温度差は全て5度以下と小さく、転移温度も80Kのもの(組成5)と1 The temperature difference between the above As is clear from 8 Composition 1 of the same table is as small as less than all 5 degrees, transition temperature that of 80K (the composition 5) 1
05から115K(組成1〜4、組成6〜8)との2種が混在しているものの安定している事が示された。 From 05 115K (composition 1-4, composition 6-8) it was shown that two and is stable although a mix. 表には高温のものを記載してある。 The table are described ones hot. 100度K以上の物の割合は同表より明らかに上記組成比が2/1/2の時に最大になっている事が確認された。 Ratio of more than those 100 ° K was it was confirmed clearly above composition ratio than the table becomes a maximum when the 2/1/2. さらに同表の組成3、7〜9の試料の結果を比較すると判るように、上記二群の元素を混在せしめる事によって、単独の群に属する元素の組合せの場合には転移温度が20から30K(同表組成9ではSrのみ)のものが105K以上(組成3ではSrとCaの組合せ、組成7では(Sr,Ba)とCaの組合せ、組成8では(Sr,Ba) As can be seen further comparing the results of the sample of the composition of the same table 3,7~9, 30K By allowed to mix elements of the two groups, in the case of a combination of elements belonging to the group of sole from transition temperature 20 (same table composition 9, Sr only) is more than 105K ones (the combination of the composition 3, Sr and Ca, the composition 7 (Sr, Ba) and Ca in combination, the composition 8 (Sr, Ba)
と(Ca,Mg)の組合せ)となっている事が示されている。 And (Ca, Mg) it is shown that a combination) of the. さらに高温高湿下(60度60%)に1ケ月放置する耐湿テストでは所謂YBaCu系材料では全体が白色に変化しかなり崩壊したのに対して、本材料は同表の組成9を除き、表面が僅かに白色化したのみであり非常に安定している事が示された。 Against further the whole in the so-called YBaCu material in one month humidity test to expose it to high temperatures and high humidity (60 degrees 60%) changes only become collapse into white, the material except for the composition 9 of the same table, the surface that is only slightly whitened very stable showed.

又、X線による解析の結果ではかなり広い範囲で単一の3/2/2の組成比からなる結晶相(現在検討中であるが格子定数がa=15.3オングストローム,b=c=22.9オングストロームの正方晶と表面上記述され、透過電子顕微鏡の結果と合わせれば単位胞5.4オングストロームの疑似立方晶よりなると推定される。)と1/0/2の組成よりなる所謂CaCu 2 O 3の結晶相を形成しており、これらが焼結体を構成する粒子内に互いに重なり微細な薄い析出層を構成している事が確認された。 Further, analysis by X-ray results in the crystalline phase (although under consideration is a = 15.3 Å lattice constant of a single 3/2/2 composition ratio of a fairly wide range of b = c = 22.9 Å written on tetragonal and the surface, the crystal phase of the result of transmission electron microscope to consist pseudo cubic unit cell 5.4 angstroms, combined estimated.) and made of the composition of 1/0/2 called CaCu 2 O 3 and formed and, it was confirmed that they constitute a mutually overlapping microscopic thin deposit in the particles constituting the sintered body. 上述の様に組成比2/1/ The composition as described above ratio 2/1 /
2で最適に成るのはこれらの結晶相が1/1になる事に対応しており、これら二結晶相の界面で特異な事が生じていると推定される。 Become optimal 2 corresponds to that of these crystal phases is 1/1, that specific at the interface of these two crystalline phases is estimated to have occurred.

次にマグネトロンスパッタリング法を用い人為的に多層の積層を行った。 Then magnetron sputtering method was artificially multilayer laminated using. ターゲットとしては上記の甲乙両原料単独で製造した物を用い、酸素を4%含むArガス中で、基板温度を550度に保ち各々の薄膜を交互に積層した。 As a target used those produced by the above Party A and Party B both raw material alone, with Ar gas containing oxygen 4%, by laminating each of the thin film alternately keeping the substrate temperature at 550 degrees. 1層の厚さを200から1000オングストロームに変えて種々のものを形成した所、一部には転移温度80度をもつ不純物相が認められたがいずれも100度K以上を示した。 Where it forms a variety of changing the thickness of one layer to 200 to 1000 angstroms, although the part was observed impurity phase having a transition temperature of 80 ° showed one more than 100 degrees K. 低温に保持している事から積層間の拡散は小さいと推定される。 Diffusion between stacked from that held in the low temperature is estimated to be small. 又電子顕微鏡による断面の観察結果でも拡散は小さい事が示されている。 The diffusion also sectional observations by an electron microscope is shown smaller it is. 又上述の様に厚さの比がほぼ1/1の時に、同様に最適に成る事も確認された。 Further, when the ratio of the thickness of approximately 1/1 as described above, was also confirmed to be a similarly optimized.

発明の効果 本発明によれば、耐湿性に優れた、且つ、固溶範囲の広く上述の温度差の小さな安定性再現性の優れた材料を提供することができ、広く超伝導機器に適用され得る。 According to the present invention, excellent moisture resistance, and can provide a small stability reproducibility of the material excellent in a wide temperature difference between the above-mentioned solid solution range, it is widely applied to superconducting devices obtain.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河島 俊一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭63−10084(JP,A) JAPANESE JOURNAL O F APPLIED PHYSICS,26 (12)1987 L2080−2081 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Shunichiro Kawashima Osaka Prefecture Kadoma Oaza Kadoma 1006 address Matsushita Electric industrial Co., Ltd. in the (56) reference Patent Sho 63-10084 (JP, a) JAPANESE JOURNAL O F APPLIED PHYSICS , 26 (12) 1987 L2080-2081

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】ABiCuO(Aはアルカリ土族よりなる元素の少なくとも一種以上を含む)を主とした酸化物超伝導体の製造方法であって、A/Bi/Cuの比が3/2/2よりなる第1 1. A ABiCuO (A includes at least one or more kind of element consisting of alkaline earth group) A method of manufacturing an oxide superconductor which mainly the ratio of A / Bi / Cu is 3/2/2 become more first
    の結晶相成分と、ACuOを主とした第2の結晶相成分とを別々に用意し、その後これらをスパッタにより多層に積層することを特徴とする酸化物超伝導体の製造方法。 Of a crystalline phase component, a second and a crystalline phase component were prepared separately and then method of manufacturing an oxide superconductor, characterized by laminating these multilayer by sputtering was mainly ACuO.
  2. 【請求項2】Aのイオン半径が1オングストロームより大きい元素とそれ以下の元素が混在していることを特徴とする特許請求の範囲第1項に記載の酸化物超伝導体の製造方法。 2. A method of manufacturing an oxide superconductor according to patent claim 1, wherein the ionic radius of A is characterized in that a large element and lower element than 1 angstrom are mixed.
JP63026129A 1988-02-05 1988-02-05 Method of manufacturing an oxide superconductor Expired - Lifetime JPH085672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026129A JPH085672B2 (en) 1988-02-05 1988-02-05 Method of manufacturing an oxide superconductor

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP63026129A JPH085672B2 (en) 1988-02-05 1988-02-05 Method of manufacturing an oxide superconductor
EP19890301057 EP0331292B2 (en) 1988-02-05 1989-02-03 Oxyde superconductive material
DE1989625294 DE68925294D1 (en) 1988-02-05 1989-02-03 Superconducting oxide materials
EP93201456A EP0560464B1 (en) 1988-02-05 1989-02-03 Superconductive oxide materials
DE1989615578 DE68915578T3 (en) 1988-02-05 1989-02-03 Oxydisches superconducting material.
DE1989625294 DE68925294T2 (en) 1988-02-05 1989-02-03 Superconducting oxide materials
DE1989615578 DE68915578D1 (en) 1988-02-05 1989-02-03 Oxydisches superconducting material.

Publications (2)

Publication Number Publication Date
JPH01201026A JPH01201026A (en) 1989-08-14
JPH085672B2 true JPH085672B2 (en) 1996-01-24

Family

ID=12184953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026129A Expired - Lifetime JPH085672B2 (en) 1988-02-05 1988-02-05 Method of manufacturing an oxide superconductor

Country Status (1)

Country Link
JP (1) JPH085672B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242459A (en) * 1988-03-23 1989-09-27 Semiconductor Energy Lab Co Ltd Superconducting ceramics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643268B2 (en) * 1988-01-20 1994-06-08 科学技術庁金属材料技術研究所長 Oxide high-temperature superconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESEJOURNALOFAPPLIEDPHYSICS,26(12)1987L2080−2081

Also Published As

Publication number Publication date
JPH01201026A (en) 1989-08-14

Similar Documents

Publication Publication Date Title
Presland et al. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors
EP0332291B1 (en) Devices and systems based on novel superconducting material
Retoux et al. Valence state for bismuth in the superconducting bismuth cuprates
JP2567460B2 (en) A manufacturing method thereof superconducting thin film
Browning et al. The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO 3
Murphy et al. New superconducting cuprate perovskites
EP0449161B1 (en) Method of preparing bismuth oxide superconductor
Goldschmidt et al. Tetragonal superconducting family (Ca x La 1− x)(Ba 1.75− x La 0. 2 5+ x) Cu 3 O y: The effect of cosubstitution on the transition temperature
Paulus et al. Neutron diffraction studies of stoichiometric and oxygen intercalated La2NiO4 single crystals
FR2626715A1 (en) Thin film device of superconducting material and method of making same
EP0301525B2 (en) Superconductor structure
EP0430737B1 (en) A superconducting thin film
JP2002527345A (en) Mixed rare earth barium - superconducting structure comprising a copper composition
Hahakura et al. New barium-free mercury-based high-Tc superconductors (Hg, Mo) Sr2 (Ca, Y) n-1CunOy and HgSr2 (Ca, Y) n-1 (Cu, Re) nOy (n= 1 and 2)
US8688181B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
EP0301646B1 (en) Superconductive thin layer
US5317007A (en) High-Tc oxide superconductor and method for producing the same
Gilbert et al. Superconducting BaPb1− xBixO3 ceramic films prepared by RF Sputtering
JPH0725640B2 (en) Superconductor device having an epitaxial structure
CN1027329C (en) Super conducting ceramics
EP0336621B1 (en) Metal oxide material
EP0356722A1 (en) Oxide superconductor and method of producing the same
HU209531B (en) Process for manufacture of above 90k critical temperature superconducting composition containing a crystalline phase of the formula tl2ba2cuo6+x
US5300482A (en) Oxide superconductors
EP0377359B1 (en) Oxide superconducting material, process for preparing the same and applications thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 13