JPH01200101A - Double floor type fluidized bed boiler - Google Patents

Double floor type fluidized bed boiler

Info

Publication number
JPH01200101A
JPH01200101A JP2375788A JP2375788A JPH01200101A JP H01200101 A JPH01200101 A JP H01200101A JP 2375788 A JP2375788 A JP 2375788A JP 2375788 A JP2375788 A JP 2375788A JP H01200101 A JPH01200101 A JP H01200101A
Authority
JP
Japan
Prior art keywords
steam
temperature
heat recovery
fluidized
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2375788A
Other languages
Japanese (ja)
Other versions
JPH0756363B2 (en
Inventor
Tsutomu Higo
勉 肥後
Takahiro Oshita
孝裕 大下
Hajime Kawaguchi
川口 一
Shigeru Kosugi
茂 小杉
Naoki Inumaru
犬丸 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP63023757A priority Critical patent/JPH0756363B2/en
Publication of JPH01200101A publication Critical patent/JPH01200101A/en
Publication of JPH0756363B2 publication Critical patent/JPH0756363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To recover heat from a fluid medium with high efficiency, by a method wherein two revolving flow type fluidized boilers are provided, the heat recovering part of the one furnace forms a liquid heater to generate steam of a steam drum, and the heat recovering part of the other furnace forms a steam superheater and/or steam reheater. CONSTITUTION:In a right fluidized bed boiler 1 of a steam drum 19, a pressure controller 31 outputs a control signal according to 8 deviation between the steam pressure of a steam outlet pipe 14 detected by a pressure detector 23 and a set value. A signal from a steam flow rate detector 14a is computed by a computer 34 to add it, and the number of revolutions of a motor 16 of a combustion substance feed device 18 is variably controlled. A control signal from a pressure controller 31 is compared with temperature in a fluidized bed, detected by a temperature detector 25, by means of a comparator 32, according to a difference therebetween, a diffusing air flow controller 33 opens and closes a valve 11a, and controls a heat recovery amount of a heat recovery part 9. Meanwhile, a left boiler 1' performs similar control by means of a steam temperature controller 31' serving as a main control system. This constitution prevents increase of a pressure in the steam drum to an excessively high value, and enables the feed of steam having a desired temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、旋回流型流動床ボイ2を複数個設け、夫々の
ボイラの熱回収部を夫々独立して蒸気発生部並びに蒸気
加熱部及び/又は蒸気再熱部として利用する複床式旋回
流型流動床ボイラに関するものでろる〇 〔発明の技術的背景〕 本発明者らは、以前、流動媒体として径1m程度の粒状
面体を用いる旋回流型流動床式焼却炉において、流動媒
体から熱を回収する方法について槙々研究を行ってい九
ところ、従来炉壁の一部を構成していた反射壁の代シに
反射仕切を炉内に独立して設け、且つ、該反射仕切背面
と炉壁の間を熱回収室とし、該熱回収室内に流動層から
の加熱媒体による移動層を形成させ、該熱回収室内に受
熱流体を加熱するための伝熱面を配置することにより、
伝熱面の摩耗を起すことなく、且つ効率良く流動媒体か
ら熱を回収し、また熱回収量をコントロールしうろこと
を見いだし特許を出願した(特願昭62−9057号)
0 また、従来の焼却炉においては燃焼物の量が増加した場
合、或いは燃焼物の熱量が大となった場合%流動媒体の
温度上昇に伴う流動媒体の焼結や溶融によるトラブルを
防ぐため流動媒体に水を注入して流動媒体を冷却してい
たが、前述の如く炉内に熱回収室を設けることにニジ流
動媒体から効率良く熱を回収することができるようにな
ったため、即ち熱を回収することにより流動媒体を冷却
することができるようになつ九ため、例えば石炭ボイラ
の燃焼部として利用することも可能となった。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a plurality of swirl flow type fluidized bed boilers 2, and the heat recovery section of each boiler is independently connected to a steam generation section, a steam heating section, and a steam heating section. /Or relates to a double-bed swirling flow type fluidized bed boiler used as a steam reheating section〇 [Technical Background of the Invention] The present inventors previously reported that We have been conducting extensive research on a method for recovering heat from the fluidized medium in a fluidized bed incinerator, and found that a reflective partition was installed inside the furnace in place of the reflective wall that conventionally formed part of the furnace wall. Provided independently, a heat recovery chamber is formed between the back surface of the reflective partition and the furnace wall, a moving layer is formed by a heating medium from a fluidized bed in the heat recovery chamber, and a heat-receiving fluid is heated in the heat recovery chamber. By arranging a heat transfer surface for
We discovered a way to efficiently recover heat from a fluidized medium without causing wear on the heat transfer surface, and to control the amount of heat recovery, and filed a patent application (Japanese Patent Application No. 62-9057).
0 In addition, in conventional incinerators, when the amount of combustibles increases or the calorific value of the combustibles increases, the flow The fluidized medium was cooled by injecting water into the medium, but as mentioned above, it has become possible to efficiently recover heat from the fluidized medium by providing a heat recovery chamber in the furnace. By collecting it, the fluidized medium can be cooled, making it possible to use it, for example, in the combustion section of a coal boiler.

更に、熱回収部を燃焼部と区分し、かつ、燃焼部は旋回
流動床であるため、不燃物を含んだ燃焼物の専焼及び石
炭等との混焼もできるようになった。即ち、あらゆる燃
焼物を燃料として用いることができるようになった。
Furthermore, since the heat recovery section is separated from the combustion section, and the combustion section is a swirling fluidized bed, it has become possible to burn combustible materials containing incombustibles exclusively and to co-combust them with coal, etc. In other words, it has become possible to use any combustible material as fuel.

以下、肉面に基いて炉内に熱回収室を設けた旋回に型流
動層ボイラについて説明する0第5図は、炉内に熱回収
室を設けfc流動層ボイラの一実施例を示すものでろっ
て%特開昭57−124608号公報記載の流動層炉に
熱回収室?設は友ものでるる。
Below, we will explain a swirl type fluidized bed boiler with a heat recovery chamber inside the furnace based on the meat surface.0 Figure 5 shows an example of an FC fluidized bed boiler with a heat recovery chamber inside the furnace. Is there a heat recovery chamber in the fluidized bed furnace described in JP-A-57-124608? The setting is a friend.

第5図において、炉51円底部にはプロワ57により流
動用ガス導入管53から導入される流動化ガスの分散&
52が備えられ、この分散板52は両11111縁部が
中央部より低く、炉51の中心線に対してほぼ対称的な
山形#面状(屋根状ンに形成されている。そして、プロ
ワ57から送られる流動用ガスは、空気室54.55%
 56を経て分散板52から上方に噴出せしめるように
なっており、両側縁部の空気室54.56から噴出する
流動化ガスの買置速度は、F51内の流動媒体の流動/
II k形成するのに十分な速度とするが、中央部の空
気室55から噴出する流動化ガスのlX1ii速度は前
者よりも小さく選ばれている。
In FIG. 5, at the bottom of the furnace 51, the fluidizing gas introduced from the fluidizing gas introduction pipe 53 by the blower 57 is dispersed and
52, this dispersion plate 52 has both edges lower than the center, and is formed into a chevron-shaped surface (roof-like shape) that is almost symmetrical with respect to the center line of the furnace 51. The fluidizing gas sent from the air chamber is 54.55%
The flow rate of the fluidizing gas ejected from the air chambers 54 and 56 on both side edges is determined by the flow rate of the fluidizing medium in F51.
The velocity of the fluidizing gas ejected from the central air chamber 55 is selected to be smaller than the former.

両@縁部の空気室54% 56の上部には、流動化ガス
の上向′@流路をさえぎり、空気室54%56から噴出
される流動化ガスを炉51内中央に向けて反射転向させ
る反射壁として、上部を内側に折シまげた板状の反射仕
切58が設けられ、この反射仕切58と噴出する流動化
ガスのlxt速夏の差にニジ図面中矢印で示す方向の旋
回流が生ずる。−万この反射仕切58の背面と炉壁間に
熱回収室59が形成され、運転中に流動媒体の一部が反
射仕切58の上部を越えて熱回収室59に入シ込むよう
に構成されている。
The upper part of the air chamber 54% 56 at both edges blocks the upward flow path of the fluidizing gas and directs the fluidizing gas ejected from the air chamber 54% 56 toward the center of the furnace 51. A plate-shaped reflective partition 58 whose upper part is folded inward is provided as a reflecting wall, and due to the difference in lxt velocity between this reflective partition 58 and the ejected fluidizing gas, a swirling flow in the direction shown by the arrow in the figure is generated. occurs. - A heat recovery chamber 59 is formed between the back surface of the reflective partition 58 and the furnace wall, and is configured such that a part of the fluid medium passes over the top of the reflective partition 58 and enters the heat recovery chamber 59 during operation. ing.

この傾けられた反射仕切に工り1、反射仕切上端近傍に
て最も激しく流動化ガスが噴出する形となり、従ってそ
れに伴って流動!−から吹!!6けられ九流動媒体は容
易に反射仕切上端を越えて熱回収室側に入シこむことが
できる。
This tilted reflective partition is designed so that the fluidized gas ejects most violently near the top of the reflective partition, and therefore flows! - Karabuki! ! The fluid medium can easily pass over the upper end of the reflective partition and enter the heat recovery chamber.

また、熱回収室59の下部の炉底よりも高いレベルには
、プロワ60から導入′#61Q経てガスを導入する散
気装[62が設けられ、熱回収室59の散気装@62’
lz設置した近傍には開口部63が設けられ、熱回収室
59に入り込んだ流動媒体は、運転状態によって固定層
のまま保持され、あるいは連続的又は断続的に移動層な
いし弱い流動18 k形成しつつ沈降し、散気装置の間
tすり抜けてその下方より燃焼部へ循環する。
In addition, at a level higher than the bottom of the furnace at the lower part of the heat recovery chamber 59, there is provided an aeration system [62] that introduces gas from the blower 60 through the air diffuser @62' of the heat recovery chamber 59.
An opening 63 is provided near where the heat recovery chamber 59 is installed, and the fluidized medium that has entered the heat recovery chamber 59 is maintained as a fixed layer depending on the operating conditions, or is continuously or intermittently formed as a moving layer or a weak fluid 18k. The air then settles down, slips through the air diffuser, and circulates from below to the combustion section.

この沈降量は、熱回収室への散気風量、燃焼部の流動化
ガス風量によっておる程度制御される。すなわち、流動
媒体が熱回収室59に入シ込む量Gl  は、第8図に
示すように燃焼部全流動させるために分散板52から噴
出する流動化ガス、特に端部の空気室54.56から噴
出する流動化ガスのtを増やすと、増加する。また、第
9図に示すように熱回収室吹込風を全0〜1Gmf未満
の移動層の範囲で変化させると、熱回収室内を沈降する
流動媒体量は、はぼ比例して変化し、熱回収室風量がI
 Gmf以上の流動層の場合にはぼ一定となる。この一
定となる流動媒体量は熱回収室に入り込む流動媒体量G
1  にほぼ等しい。なお、熱回収室内全沈降する流動
媒体量はG! に応じ次量となる。この両風量を調節す
ることに工り熱回収室59内を沈降する流動媒体の沈降
量は制御される。熱回収室において流動ないし高速流動
やI!#j流により上方に吹き飛ばすことなしに流動媒
体過熱抑制や熱回収に有効なGs  ’に確保するため
には、極力流動層燃焼部より噴出するガス流が最大とな
る近傍において、落下する流動媒体を熱回収室に入れて
やる◆が必要でろシ、この九めには燃焼部側にせシ出さ
れた反射仕切は燃焼部の上昇するガス流加速機能とせり
出して流動媒体を受ける機能を兼ねた最適形状を持って
いる。
The amount of sedimentation is controlled to some extent by the amount of air diffused into the heat recovery chamber and the amount of fluidized gas in the combustion section. That is, the amount Gl of the fluidized medium entering the heat recovery chamber 59 is determined by the amount of fluidizing gas ejected from the dispersion plate 52, especially the air chambers 54 and 56 at the ends, in order to completely fluidize the combustion section, as shown in FIG. If you increase t of the fluidizing gas ejected from the t, it will increase. Furthermore, as shown in Fig. 9, when the air blowing into the heat recovery chamber is changed within the range of 0 to less than 1 Gmf, the amount of fluidized medium that settles in the heat recovery chamber changes approximately proportionally, and the Collection chamber air volume is I
In the case of a fluidized bed of Gmf or more, it becomes almost constant. The amount of fluidized medium that becomes constant is the amount of fluidized medium that enters the heat recovery chamber G
Almost equal to 1. In addition, the amount of fluidized medium that completely settles in the heat recovery chamber is G! The following amount will be obtained depending on: The amount of settling of the fluidized medium that settles inside the heat recovery chamber 59 can be controlled by adjusting these air volumes. In the heat recovery chamber, flow or high-speed flow or I! In order to maintain Gs' that is effective for suppressing overheating of the fluidized medium and recovering heat without blowing it upwards due to #j flow, the falling fluidized medium should be kept as close as possible to the vicinity where the gas flow ejected from the fluidized bed combustion section is at its maximum. It is necessary to introduce the heat recovery chamber into the heat recovery chamber.In this ninth step, the reflective partition protruded on the side of the combustion section has the function of accelerating the rising gas flow of the combustion section and the function of protruding to receive the fluidized medium. It has an optimal shape.

熱回収N59内には第6図に示すように配管64で廃熱
ボイラ67に連通された内部に受熱流体を通じた伝熱管
65が配置され、熱回収室を下方に移動する流動媒体と
熱交換を行なうことにエル流#課体から熱を回収するよ
うになっている。この熱回収部での伝熱係数は熱回収室
散気風址を0〜2 Gmfまで変化させると第29図に
示す1例のように大きくなだらかに変化する。なお5.
@29図は第21図に示す原理の散気装置で、流動媒体
は平均粒径t2型温度850℃前後における値である。
As shown in FIG. 6, inside the heat recovery N59, a heat transfer tube 65 through which heat-receiving fluid passes is disposed inside the heat recovery tube 65, which is connected to a waste heat boiler 67 through a pipe 64, and exchanges heat with a fluidized medium moving downward through the heat recovery chamber. In order to do this, heat is recovered from the body. The heat transfer coefficient in the heat recovery section changes greatly and gently as shown in an example shown in FIG. 29 when the heat recovery chamber diffuser air pressure is changed from 0 to 2 Gmf. Note 5.
Figure @29 is an aeration device based on the principle shown in Figure 21, and the fluidized medium has an average particle diameter t2 type at a temperature of around 850°C.

熱回収tを制御する九めには、前述のように、流動媒体
循環量を制御すると同時に伝熱係数を制御する0すなわ
ち、燃焼室の流動化ガス量を一足とすれば、熱回収室の
散気風量を増加させると、流動媒体循環量力j増加する
と同時に伝熱係数が増加し、相乗効果として熱回収il
−は大幅に増加する0この関係を示したのが第4図でb
る。このことは、流動層中の流動媒体の温度の面から考
えれば、流動媒体の温度が所定のは夏以上に上昇するの
t防ぐ効果にあたる。
As mentioned above, the ninth step in controlling the heat recovery t is to control the flow rate of the fluidized medium and at the same time control the heat transfer coefficient. When the diffuser air volume is increased, the heat transfer coefficient increases at the same time as the fluidized medium circulation volume increases, and as a synergistic effect, heat recovery
- increases significantly 0 This relationship is shown in Figure 4 b
Ru. Considering the temperature of the fluidized medium in the fluidized bed, this has the effect of preventing the temperature of the fluidized medium from rising above a predetermined temperature in summer.

熱回収室59にガスを導入する手段としては種々の装置
が考えられるが、一般的には第10図に示すように散気
装置lk−水平に設置する方法が採られる。第10図に
おいてに説8Aを簡略とし1部分流動化を明示するため
に燃焼部との流動媒体の循環を無視して移動層の現象を
省いている。この場合、ガスを尋人するための開口を全
炉床面に対し均一に設けると、散気装置へのガス供給故
に関係なく単位面積当シの供給ガス量は炉床全面にわた
って均一となる。そして散気装置へのガス供給量を徐々
に増やしてゆくと、最低流動化速度Gmfと呼ばれる成
る供給ガス量を境にして熱回収室内の流動媒体が固定層
から流動層へと変化する。
Various devices can be considered as means for introducing gas into the heat recovery chamber 59, but generally a method is adopted in which the air diffuser lk is installed horizontally as shown in FIG. In FIG. 10, theory 8A is simplified and the circulation of the fluidized medium with the combustion section is ignored and the phenomenon of the moving bed is omitted in order to clarify the partial fluidization. In this case, if the openings for discharging gas are uniformly provided over the entire hearth surface, the amount of gas supplied per unit area will be uniform over the entire hearth surface regardless of the gas supply to the diffuser. When the amount of gas supplied to the diffuser is gradually increased, the fluidized medium in the heat recovery chamber changes from a fixed bed to a fluidized bed when the amount of gas supplied is called the minimum fluidization speed Gmf.

この工つな場合における熱回収室での伝熱蓋について考
えると、本発明に係る熱回収室においては、伝熱面と流
動媒体の間の伝熱体i!xは供給されるガスの流動化質
量速度I Gmfを越えた近傍で急激に変化するため、
この流動化質量速度七境にして流動媒体と接した面にお
ける伝熱係数が著るしく変化し、従って熱回収室におけ
る全伝熱皺も急激に変化することとなる。
Considering the heat transfer lid in the heat recovery chamber in this simple case, in the heat recovery chamber according to the present invention, the heat transfer body i! between the heat transfer surface and the fluid medium! Since x changes rapidly near the fluidization mass velocity I Gmf of the supplied gas,
At this point in time, the heat transfer coefficient on the surface in contact with the fluidized medium changes significantly, and the total heat transfer wrinkles in the heat recovery chamber also change rapidly.

このような状況の下で散気装置へのガス供給故によって
伝flp4tの制御全行なう場合、実質的には流動化質
量速度がI Gmf近傍工り大で伝熱量が大きい状態、
流動化質量速度がI Gmfより小で伝熱量が小さい状
態、及び散気装置へのガス供給を止めて伝熱量が極端に
小さい状態の何れかの状態を選択する段階的な制御とな
ってしまう。
Under such circumstances, if the transfer flp4t is completely controlled by the gas supply to the diffuser, the fluidization mass velocity is substantially in the vicinity of I Gmf and the amount of heat transfer is large,
This results in stepwise control that selects either a state where the fluidization mass velocity is lower than I Gmf and the amount of heat transfer is small, or a state where the gas supply to the diffuser is stopped and the amount of heat transfer is extremely small. .

これに対し、散気装vItを第17図に示すように傾斜
させて設置したり、散気装置の熱回収室59へのガス噴
出口の開口径を場所により変化させることにより、或い
は開口径は同一であってもその密度を変化させることに
より通ガス圧損に変化を与え次すすると、熱回収室中へ
尋人されるガスのtは場所に19J!なる状態となるば
かりでなく、散気装置に供給されるガス量の大小に19
この状態は助長されることになる。
On the other hand, by installing the diffuser vIt at an angle as shown in FIG. 17, by changing the opening diameter of the gas outlet to the heat recovery chamber 59 of the diffuser depending on the location, Even if is the same, the gas pressure drop is changed by changing its density.Then, the amount of gas flowing into the heat recovery chamber is 19 J! Not only will this condition occur, but the amount of gas supplied to the diffuser may also vary.
This situation will be exacerbated.

例えば散気装置に供給するガス量を徐々に増やして行く
と、相対的に通ガス圧損の小さいガス噴出口(開口)か
ら流動媒体層へ供給されるガス量の増加IKは相対的に
大となり、逆に相対的に通ガス圧損の大きいガス噴出口
(開口)から流動媒体層へ供給されるガス量の増加″4
は相対的に小となる。
For example, if the amount of gas supplied to the aeration device is gradually increased, the increase IK in the amount of gas supplied to the fluidized medium layer from the gas outlet (opening) with relatively small pressure loss through gas flow will become relatively large. , conversely, an increase in the amount of gas supplied to the fluidized medium layer from the gas outlet (opening) with relatively large gas flow pressure loss''4
is relatively small.

このため、相対的に通ガス圧損が小さいガス導入口上部
の流動媒体層のみ流動層となり、それ以外の部分は固定
層のままの状態、逆にいえば相対的に通ガス圧損が大き
いガス導入口近傍の流動媒体層のみが固定層でめシ、そ
れ以外の部分が流動層となる状態が生ずる。
For this reason, only the fluidized medium layer above the gas inlet, where the pressure drop during gas flow is relatively small, becomes a fluidized bed, and the rest remains as a fixed bed, or conversely, the gas is introduced, where the pressure loss during gas flow is relatively large. A situation arises in which only the fluidized medium layer near the mouth is a fixed bed and the rest is a fluidized bed.

すなわち、散気装置へ供給するガス量の増加に伴なIA
1熱回収室中の流動媒体層が、導入ガスの流動化質量速
度I Gmf未溝の場合における固定層の状態から、一
部が流動化質重速度1Gmf以上で形成される流動層の
状態、他が固定層の状態となり、これら両者の占める炉
床面積の割合に次第に流!1E17層状態の部分が多く
なり、遂に流動媒体層全体が流動層状態へと移行する。
In other words, as the amount of gas supplied to the diffuser increases, the IA
1. From a fixed bed state in which the fluidized medium bed in the heat recovery chamber has no grooves at the fluidized mass velocity I Gmf of the introduced gas, to a fluidized bed state in which a part of the fluidized media bed is formed at a fluidized mass velocity I Gmf or more, The other becomes a fixed layer, and the ratio of the hearth area occupied by these two gradually changes! The portion in the 1E17 layer state increases, and finally the entire fluidized medium layer shifts to the fluidized bed state.

この結果、熱回収室中における伝熱量についてみれば、
散気装置へ供給するガス量の増加に伴ない、当初熱回収
室中に吹きこまれる流動化質量速度I Gmf未満の伝
熱量が小さい状態から、一部が流動化質量速度I Gm
f以上の伝熱量が大きい状態で、他がI Gmf未溝の
伝熱蓋が小さい状態のままとなシ、両状態におる伝熱面
の面積割合は次第に伝熱量の大きい部分が増大し、遂に
は全体が流動化質量速度I Gmf以上の伝熱量の大き
い状態へと移行する。熱回収室内における全体の伝熱量
はこれら谷部の伝熱蓋の和であるため、散気装置へのガ
ス供給緻の増減に基く伝熱量の増減はなだらかな増減を
示すこととなり、伝熱蓋の連続的な制御が容易にできる
こととなる。
As a result, regarding the amount of heat transferred in the heat recovery chamber,
As the amount of gas supplied to the air diffuser increases, from a state where the amount of heat transferred is initially less than the fluidized mass velocity I Gmf blown into the heat recovery chamber, a part of the fluidized mass velocity I Gm is blown into the heat recovery chamber.
In the state where the amount of heat transfer is larger than f, and the other part is I Gmf, the ungrooved heat transfer lid remains small, and the area ratio of the heat transfer surface in both states gradually increases in the area where the amount of heat transfer is large, Eventually, the entire system shifts to a state where the amount of heat transfer is greater than the fluidization mass velocity I Gmf. Since the total amount of heat transfer in the heat recovery chamber is the sum of the heat transfer lids in these valleys, the amount of heat transfer will show a gentle increase or decrease based on the increase or decrease in the gas supply to the diffuser. This makes it easy to continuously control.

この工うな散気装置の例全第19図、第20図及び第2
1図に示す。
Examples of this air diffuser are shown in Figures 19, 20, and 2.
Shown in Figure 1.

g/JJ19図は、水平に設置した散気管に開口径の!
Aなるガス噴出口を複数個設けた例であり、噴出口をガ
スが通過する時の抵抗が異なる次め、6噴出口の通ガス
量が異なる。すなわち、噴出口の開口径の大きさが、第
19図に示すようにA)B)Cでろるとすると、通ガス
11はA)B〉Cとなる。
Figure g/JJ19 shows the opening diameter of a diffuser pipe installed horizontally!
This is an example in which a plurality of gas ejection ports A are provided, and the resistance when gas passes through the ejection ports is different, and the amount of gas passing through the six ejection ports is different. That is, if the opening diameter of the ejection port is A)B)C as shown in FIG. 19, then the gas passage 11 will be A)B>C.

第20図は、開口径が同一の噴出口を有する散気管を傾
斜させて設置し比例でろって、流動媒体層に吹き出す次
めの吐出圧力は流動媒体層の深さに比例するため、各噴
出口から噴出される通ガス皺は異なる。すなわち、流動
媒体層の深さの深い順に噴出口をA%B、Cとすると、
通ガス置はA(B(Cの順となる。
Figure 20 shows that diffuser pipes with jet ports with the same opening diameter are installed at an angle and are proportional. The gas passage jetted from the nozzle is different. That is, if the ejection ports are A%B and C in descending order of the depth of the fluidized medium layer,
The gas flow position is A(B(C).

第21図は開口径の異なる噴出口を備えた散気W′に傾
斜して設置した例であシ、流動媒体層の深さの深い部分
に位置する噴気口径を大とし、流動媒体層の深さの浅い
部分に位置する噴出口の開口径を小として流動媒体ノー
の深さによる通ガス圧損の差を開口径により修正したも
のである。
Fig. 21 shows an example in which the diffuser W' is installed at an angle with jet ports having different opening diameters. The opening diameter of the jet nozzle located in the shallow part is made small to correct the difference in gas passing pressure loss due to the depth of the fluid medium no. by adjusting the opening diameter.

すなわち、開口径の大きさをA)B)Cとすることによ
り任意の設計点における谷間口の通ガスii’1A=B
=cとすることができ、この場合、該設計点以下で通ガ
ス1はA(B(Cと、設計点以上では通ガスIn−A>
B>Cとすることができる。
That is, by setting the opening diameter to A)B)C, the gas passage through the valley opening at any design point ii'1A=B
= c, and in this case, below the design point, the gas passage 1 is A(B(C), and above the design point, the gas passage In-A>
B>C can be satisfied.

この以前に提案した発明は、今までに説明した流動1−
を反射仕切58で仕切って流動層主燃焼部(流動旋回1
一部]と熱回収部(循環14部)59を設けた流動層ボ
イラにおける循環層部(熱回収部)の熱回収t′?r:
無段階的にしかも桁違いの大きな範囲で、循環層部の流
動媒体内への吹込風t(散気1!t)によって容易に―
節しうることに看目し、循環層部(PP4回収部)に挿
入された伝熱管に蒸気を通して蒸気過熱管とし、該蒸気
の出口側温度を検知し、該出口温度に基いて循環層部の
散気管への供給風tX節ダンパの開度′に調節すること
により得られる過熱蒸気温度を所定の温度となるように
制御するものである。
This previously proposed invention is based on the flow 1-
The main combustion section of the fluidized bed (fluidized swirl 1
Heat recovery t'? r:
steplessly and over an order of magnitude larger range, easily by blowing air t (diffusion 1!t) into the fluidized medium of the circulating layer section.
In view of this, steam is passed through a heat transfer tube inserted in the circulation layer section (PP4 recovery section) to form a steam superheating tube, and the outlet side temperature of the steam is detected, and based on the outlet temperature, the circulation layer section The temperature of the superheated steam obtained by adjusting the opening degree of the damper at the node tX of the supply air to the diffuser pipe is controlled to a predetermined temperature.

即ち、蒸気の出口側温度が設定値よりも低い側に変化し
た時はダンパを開き蒸気過熱前の挿入された部分の熱回
収室における散気ガスtv増加させて伝熱量を増加する
ことにより蒸気の出側温度を高め、設定値よりも高い側
に変化した時はその逆を行なう。このようにすることに
より過熱蒸気温度は容易に設定温度近傍の温度となる。
That is, when the steam outlet temperature changes to a lower side than the set value, the damper is opened and the diffuser gas tv in the heat recovery chamber of the inserted part before the steam is superheated is increased to increase the amount of heat transfer. The temperature at the outlet side is increased, and when the temperature changes to a higher side than the set value, the opposite is done. By doing so, the superheated steam temperature easily becomes close to the set temperature.

これらの散気装置[−用いて散気装置に供給するガスt
を変化させた時の各噴出口から流動媒体層中に吹き出さ
れるガス量のINを第22図、第23図及び第24図に
示す。
These air diffusers [-gas t supplied to the air diffusers using
FIGS. 22, 23, and 24 show the amount IN of gas blown out from each outlet into the fluidized medium layer when changing the amount of gas.

第22図は第19図に示す如き散気装置を用いた場合の
図、集23図は第20図に示す如さ散気装置IILを用
い友場合の図、第24図は第21図に示す、如き散気装
置itt用いた場合の図である。
Figure 22 is a diagram using the air diffuser shown in Figure 19, Figure 23 is a diagram using the air diffuser IIL as shown in Figure 20, and Figure 24 is the same as Figure 21. It is a diagram when using the air diffuser itt as shown in FIG.

第22図、第23図及び第24図においては、横軸に噴
出口Bから吹き出されるガスの質量速度t1縦棚に各噴
出口から吹出されるガスの質量速度を示す。
In FIGS. 22, 23, and 24, the horizontal axis shows the mass velocity t1 of the gas blown out from the outlet B. The vertical shelf shows the mass velocity t1 of the gas blown out from each outlet.

これらの図から、噴出口Bから吹き出るガスの質量速度
がI Gmf未満であっても他の噴出口から吹き出され
るガスの質量速度がI Gmf以上となる場合、あるい
は噴出口Bかも吹き出されるガスの質量速度がI Gm
f以上となっていても他の噴出口から吹き出されるガス
の質量速度がI Gmf未満となる場合がめることが明
らかである◎ 第25図%m26図及び第27図は、夫々第22図、第
23図及び第24図に示した各噴出口から吹き出される
ガスの質量速度の関係を1横軸に噴出口を、縦軸に各噴
出口から吹き出されるガスの質量速度を示したものでめ
る〇第25図は第19図に示す如き散気装置を設けた場
合に対応する図%第26図は第20図に示す如き散気装
置l’に設けた場合に対しする図。
From these figures, even if the mass velocity of gas blown out from nozzle B is less than I Gmf, if the mass velocity of gas blown out from other nozzles is greater than I Gmf, or nozzle B is also blown out. The mass velocity of the gas is I Gm
It is clear that even if the gas velocity is greater than f, the mass velocity of the gas blown out from other nozzles may be less than I Gmf. The relationship between the mass velocity of gas blown out from each nozzle shown in Figures 23 and 24. The horizontal axis shows the nozzle, and the vertical axis shows the mass velocity of gas blown out from each nozzle. Figure 25 is a diagram corresponding to the case where the air diffuser as shown in FIG. 19 is installed. % FIG. 26 is a view corresponding to the case where the air diffuser l' as shown in FIG. 20 is installed.

第27図は第21図に示す如き散気装置を設けた場合に
対応する図である。
FIG. 27 is a diagram corresponding to the case where a diffuser as shown in FIG. 21 is provided.

これらの図においては、散気装置への同一供給ガス漱下
の各プロットヲ折れ線で結んでいる。
In these figures, each plot under the same supply gas to the diffuser is connected by a polygonal line.

この様に各噴出口によって互いに異なるガス質量速度と
なる場合、総伝熱tは、それら各噴出口に対応する領域
での伝熱面積と各fLwJ化質量速度に応じた伝熱係数
の積の和となる。例えば、第25図乃至第27図におい
て流動化賞波速度がI Gmfとなる散気装置への供給
ガスtは噴出口により互いに異なり従って総伝熱鷺では
急激な伝熱係数の変化に応じた変化は起こらないO 各噴出口に対応する領域の伝熱面は散気装置への供給ガ
ス量を増加する場合においては漸次I Gmf強におけ
る尚い伝熱面へと変化することになル%また供i11方
ス量を減少する場合には逆の現象がおこる。従って、第
19図乃至第21図に示す3′)の例のいずれの方@を
用いた場合にも前述のように散気装置へ供給するガス量
の増減に対する伝熱量の増減の特性をなだらかにするこ
とができる。第21図に示し比例では、例えば第24図
に示すように質量速度2 Gmfで各ノズルから吹出さ
れるガス量が均一となるように設計できる。
In this way, when the gas mass velocities differ depending on each ejection port, the total heat transfer t is the product of the heat transfer area in the region corresponding to each ejection port and the heat transfer coefficient according to each fLwJ mass velocity. It becomes peace. For example, in Figures 25 to 27, the gas t supplied to the diffuser at which the fluidization wave velocity becomes I Gmf differs depending on the ejection port. No change occurs. When the amount of gas supplied to the diffuser is increased, the heat transfer surface in the area corresponding to each nozzle will gradually change to a heat transfer surface at I Gmf. Moreover, when the amount of supplied i11 direction is decreased, the opposite phenomenon occurs. Therefore, when using either of the examples 3') shown in FIGS. 19 to 21, the characteristics of the increase and decrease in the amount of heat transfer with respect to the increase and decrease in the amount of gas supplied to the diffuser are gentle as described above. It can be done. In the case of proportionality as shown in FIG. 21, for example, as shown in FIG. 24, the design can be such that the amount of gas blown out from each nozzle at a mass velocity of 2 Gmf becomes uniform.

このようにする仁とにより、第4図に示すような質量速
度2 Gmf以上の領域、即ち伝熱量に関してはかえっ
てマイナスとなり、かつ伝熱面の摩耗速度が質量速度に
応じて急激に大きくなる部分の生じる運転点が生じない
ように設計することができる〇 すなわち、噴出口Bを例えば2 Gmfとすると第22
図の噴出口A及び第23図の噴出口Cは2 Gmf以上
となるが、第24図に示す例においては噴出口B f 
2 Gmfとすれば他の全てのノズルも2 Gmfと均
一な通ガス皺となる。すなわち、熱回収室の全ての伝熱
面の摩耗速度が小さくて最鍋の熱回収筺を得ることがで
きることとなる。
By doing this, as shown in Fig. 4, the area where the mass velocity is 2 Gmf or more, that is, the area where the amount of heat transfer becomes negative and the wear rate of the heat transfer surface increases rapidly depending on the mass velocity. It can be designed so that the operating point where the
The jet nozzle A in the figure and the jet nozzle C in FIG. 23 are 2 Gmf or more, but in the example shown in FIG.
If it is 2 Gmf, all other nozzles will also have uniform gas flow wrinkles of 2 Gmf. In other words, the wear rate of all the heat transfer surfaces of the heat recovery chamber is small, and it is possible to obtain the heat recovery box with the lowest potency.

なお、この通ガス量の合致点は、噴出口の口径、噴出口
密度並びに熱回収室の砂の表面からノズルまでの深さ等
にニジ容易に設計できるものである。
Note that the matching point for the amount of gas passing can be easily designed based on the diameter of the jet port, the density of the jet port, the depth from the surface of the sand in the heat recovery chamber to the nozzle, etc.

この理由から、第21図に示すように散気装置を斜めに
設置すると共に%深い位置の噴出口はと開口径乃至Fi
噴出口密度を大とするのが好ましい〇 この↓うな散気装置上用いた場合の供給ガス質量速度と
伝熱面との関係を、散気装置を水平に設け、かつ噴出口
の開口を均一になるように設けた場合との比較において
第28図に示す。
For this reason, as shown in Fig. 21, the diffuser is installed diagonally, and the outlet at a deep position is
It is preferable to increase the nozzle density 〇The relationship between the supply gas mass velocity and the heat transfer surface when used on a diffuser like this ↓ is that the diffuser is installed horizontally and the openings of the nozzles are uniform. FIG. 28 shows a comparison with a case in which it is provided so that

なお%@28図において曲線yは均一な噴出口金有する
散気装置を水平に設けた場合を1曲線Xは第21図に示
す如き散気装置を設けた場合を示す。
In %@28, the curve y shows the case where the air diffuser having a uniform outlet metal is installed horizontally, and the curve X shows the case where the air diffuser as shown in FIG. 21 is installed.

第28図に示す曲線より、散気装aを斜めに設け、かつ
ガス導入部に近いもの程ノズルの開口径を大とすること
により、供給ガス量の増減による伝熱面の増減の特性が
なだらかになり(曲線X)%従って供給ガスJl@:1
i11整することにより伝熱量を谷容易かつ連続的に制
御できることが明らかである。
From the curve shown in Figure 28, by installing the diffuser a diagonally and increasing the opening diameter of the nozzle closer to the gas introduction part, the characteristics of increase and decrease in the heat transfer surface due to increase and decrease in the amount of supplied gas can be controlled. Slope (curve X)% Therefore, supply gas Jl@:1
It is clear that by adjusting i11, the amount of heat transfer can be easily and continuously controlled.

このような流動七不均−化する効果に加え。In addition to this disproportional effect on flow.

本発明の如くガスの吹き込みにより、燃焼部から流入し
てくる流動媒体G1  の作用でズリ落ちる形で下降す
る移1m層にあっては、平均散気ガス址i、 50〜f
前後以下では移動JfI11%有の効果でさらになだら
かなものとなる。
As in the present invention, in a 1 m layer that descends in a shearing manner due to the action of the fluidized medium G1 flowing in from the combustion section by blowing gas, the average diffused gas area i, 50 to f
Below the front and back, the effect of moving JfI of 11% makes it even more gradual.

即ち、 I 0〜f以下における伝熱係数は固足層に対
して数倍と大きくかつ散気ガス量に比例して増加し、ま
た、10〜f’i越えた散気ガス量においても移動の効
果で流動化しにくくなる。1〜f、 50〜fにおいて
両次流動化する結果、第29図のグロく0〜2 Gmf
まで画壇する伝熱係数と熱回収室平均散気ガス量の関係
が得られる。
That is, the heat transfer coefficient below I0~f is several times larger than that of the solid foot layer and increases in proportion to the amount of diffused gas, and even when the amount of diffused gas exceeds 10~f'i, the heat transfer coefficient The effect of this makes it difficult to liquefy. As a result of the two-dimensional fluidization at 1~f and 50~f, the grooves in Figure 29 are 0~2 Gmf.
The relationship between the heat transfer coefficient and the average amount of gas diffused in the heat recovery chamber can be obtained.

この熱回収室散気風量による熱回収量の制御は、後述の
ように急速に行なうことができる。
The amount of heat recovery can be rapidly controlled by the amount of air diffused in the heat recovery chamber, as will be described later.

つぎに流動層高と流動媒体循環量の関係についてより詳
しく説明する。
Next, the relationship between the height of the fluidized bed and the amount of circulating fluidized medium will be explained in more detail.

流動)−表面が反射仕切上端より低いかないしははソ同
じ位置にある場合反射仕切に沿って下ニジ上昇するガス
流は反射仕切によって方向性を与えられ、反射仕切に沿
って流動層より噴出し、それに伴ない流11tJJ媒体
も方向性を与えられて主に反射仕切近傍の流動#表面ニ
ジ噴出する。
Flow) - When the surface is lower than or at the same position as the top of the reflective partition, the gas flow that rises downward along the reflective partition is given direction by the reflective partition and ejects from the fluidized bed along the reflective partition. However, along with this, the flow 11tJJ medium is also given direction and ejects mainly on the flow # surface near the reflective partition.

噴出したガス流は流動l−内と異なり流路円に充填され
ていた流動媒体が無くなり流路断面が急激に広がるとこ
ろから噴流も攪散し1m/秒以下の流速のゆるやかな流
れとなって上方に排気され、従って同伴されていた流動
媒体は、その流速によって運ばれるには粒径が1ms+
前後と大きいなめ、重力や排ガスとの岸擦により運動エ
ネルギーを失ない落下する。そして一部の粒子は慣性に
より燃焼部全飛びこえて熱回収部に飛び込むことになる
0しかしながら、流動層表面より噴出した流動媒体の飛
距離は、粒径ろるいは比重との関係から1〜2m以下で
らシ、炉の幅が1〜2m以下の場合しか熱回収室におい
て熱回収や流動媒体過熱防止に必要な流動媒体量を確保
できない。
The ejected gas flow differs from inside the flow 1-, where the fluid medium filled in the flow path circle disappears and the cross section of the flow path widens rapidly, so the jet also becomes agitated and becomes a gentle flow with a flow velocity of 1 m/sec or less. The fluid medium that was evacuated upwards and thus entrained must have a particle size of 1 ms+ to be carried by the flow velocity.
It licks back and forth and falls without losing kinetic energy due to gravity and the friction with the exhaust gas. Due to inertia, some of the particles will jump over the combustion section and into the heat recovery section. However, the flight distance of the fluidized medium ejected from the fluidized bed surface is 1 to 1 due to the relationship with the particle size or specific gravity. Only when the width of the furnace is 1 to 2 m or less can the amount of fluidized medium necessary for heat recovery and prevention of overheating of the fluidized medium in the heat recovery chamber be secured.

ところで、流動層表面が、反射仕切の上端より上にるる
場合には、 R,m層高が高ければ高い程仕切によって
寄せ集められた流動化ガスは反射仕切上端よりほぼ直上
に噴きあげる様にガス噴出方向が変化し、それに伴なう
形で流動媒体が主に反射仕切上端近傍の流動層表面より
第5図に矢印aで示すように吹き上げられた後落下する
こととなり、容易に反射仕切の背面、即ち熱回収室へ大
量にはいりこむことになる。
By the way, when the surface of the fluidized bed is above the top of the reflective partition, the higher the R,m layer height, the more the fluidized gas gathered by the partition will be blown up almost directly above the top of the reflective partition. As the gas ejection direction changes, the fluidized medium is blown up from the surface of the fluidized bed mainly near the top of the reflective partition as shown by arrow a in Figure 5, and then falls down, making it easy to damage the reflective partition. In other words, a large amount of heat will enter the back side of the engine, that is, the heat recovery chamber.

即ち、流動l−高が大きい程反射仕切による噴出ia媒
体の方向性は真上方向に近くなり、流動層高が大きくな
るに従って多くの流動媒体が熱回収室へはいり込むこと
になり、その増加割合は流動層高の反射仕切上端からの
距離が小さい根太である。
In other words, the larger the flow l-height, the closer the directionality of the ejected ia medium due to the reflective partition is to the directly upward direction, and as the height of the fluidized bed increases, more fluid medium enters the heat recovery chamber, resulting in an increase in the flow rate. The ratio is the joist whose distance from the top of the reflective partition to the height of the fluidized bed is small.

第5図において、66は炉51上部に設けられた燃焼物
投入口、67は排ガス出口68付近に設けられた気水ド
ラムで、熱回収室59内の伝熱w65と傭環路を形成し
ている。ま九、69は炉51底部の分散板520両側縁
部外側に接続された不燃物排出口で、70は逆ねじ方向
に配設されたスクリュー71を有するスクリューコンベ
アでめる。
In FIG. 5, 66 is a combustion material inlet provided at the top of the furnace 51, and 67 is an air/water drum provided near the exhaust gas outlet 68, which forms a circular path with the heat transfer w65 in the heat recovery chamber 59. ing. 9, 69 is an incombustible material discharge port connected to the outside of both side edges of the distribution plate 520 at the bottom of the furnace 51, and 70 is a screw conveyor having a screw 71 disposed in a reverse thread direction.

しかして、燃焼物投入口66よυ炉51内に投入された
燃焼物Fは、流動化ガスにより旋回流動している流動媒
体と共に流動しながら燃焼する。この時、空気室55の
上方中央部付近の流動媒体は激しい上下動は伴わず、弱
い流動ないし移動状態におる下降移動1ifを形成して
いる。
The combustible material F introduced into the υ furnace 51 through the combustible material inlet 66 is combusted while flowing together with the fluidized medium swirled by the fluidizing gas. At this time, the fluid medium near the upper center of the air chamber 55 does not move violently up and down, but forms a downward movement 1if in a weak flowing or moving state.

この移動層の幅は、上方は狭いが裾の方は分散板52の
傾斜の作用も相俟ってやや広がっておシ、裾の一部は両
側縁部の空気室54.56の上方に達しているので、こ
の内空気室からの大きな質量速度の流動化ガスの噴射を
受けて吹き上げられる。すると、裾の一部の流動媒体が
除かれるので、空気室55の直上のIil#は自重で下
降する。
The width of this moving layer is narrow at the top, but becomes slightly wider at the bottom due to the effect of the slope of the dispersion plate 52, and a part of the bottom is above the air chambers 54 and 56 on both side edges. Since the inner air chamber reaches the inner air chamber, it is blown up by the injection of fluidizing gas at a large mass velocity. Then, part of the fluid medium at the hem is removed, so Iil# directly above the air chamber 55 descends under its own weight.

この層の上方には、後述のように流動層からの流動媒体
が補給されて堆積し、これを繰シ返して空気室55の上
方の流動媒体は徐々に連続的に下降する移動層を形成す
る0 空気室54.56上に移動した流動媒体は上方に吹き上
げられるが、反射仕切5Bに当って反射転向して炉51
の中央に向かって旋回せしめられ、中央部の移動層の頂
部に洛下し、再び前述のように循環されると共に、fL
動媒体の一部は反射仕切58の上部を越えて熱回収室5
9円に入シ込む。そして熱回収室59に堆積した流動媒
体の沈降速度がおそい場合には、熱回収室の上部には安
息角を形成し余剰の流動媒体は反射仕切上部から燃焼部
に落下する〇 熱回収室59円に入り込んだ流動媒体は、散気装置IL
62から吹き込まれるガスによって流動せずズリ落ちる
形の移動ないし壷やかな流動が行われつつ徐々に下降す
る流動媒体の循環層が形成され、伝熱面との熱交換が行
われたのち、反射仕切下端の開口部63から燃焼部へ還
流される。
Above this layer, the fluidized medium from the fluidized bed is replenished and deposited as described later, and by repeating this, the fluidized medium above the air chamber 55 forms a moving layer that gradually and continuously descends. 0 The fluidized medium that has moved above the air chambers 54 and 56 is blown upward, but it hits the reflective partition 5B and is reflected and turned into the furnace 51.
fL is rotated toward the center of
A part of the moving medium passes over the top of the reflective partition 58 and enters the heat recovery chamber 5.
Enter 9 yen. If the sedimentation speed of the fluidized medium deposited in the heat recovery chamber 59 is slow, an angle of repose is formed in the upper part of the heat recovery chamber, and the excess fluidized medium falls from the upper part of the reflective partition to the combustion section. Heat recovery chamber 59 The fluid medium that has entered the circle is transferred to the air diffuser IL.
A circulating layer of the fluidized medium is formed, which gradually descends while moving without flowing or sliding down due to the gas blown from the 62, and after heat exchange with the heat transfer surface, reflection occurs. It is returned to the combustion section through the opening 63 at the lower end of the partition.

仁の熱回収室59円で散気装置62から導入される散気
ガスの質量速度は0〜30mf、好ましくは15〜2 
Gmfの範囲内の値から選はれる。
The mass velocity of the diffused gas introduced from the diffuser 62 in the heat recovery chamber 59 is 0 to 30 mf, preferably 15 to 2 mf.
It is selected from values within the range of Gmf.

七の理由は、第4図に示される如(30mf以下の場合
、伝熱係数も大きく、且つ、摩耗速度が小さいからであ
る。
The reason for the seventh reason is that, as shown in FIG. 4, (when the diameter is 30 mf or less, the heat transfer coefficient is large and the wear rate is small.

また、熱回収室59内の散気ガスの質量速度を0〜I 
Gmfと変化させると、第9図に示すように熱回収室内
の移動層の沈降速度かはぼi[嶽的に変化し、必要量の
高温媒体の量を任意にコントロールできる。しかし、蒸
気等の不要、あるいは燃焼物の発熱量が小さいためにR
動媒体から熱回収を行うと流動1−@度が低下して良好
な燃焼ができなくなる時にはこの部分の流動化ガスtを
0とすれは、流動媒体からの熱回収tやめて運転を行う
こともできる。また、熱回収部は炉51円の主燃焼領域
外でろシ%酸化還元’!kfi#)返す雰凹気のような
強い腐食性を持たないために、従来のものと比べて伝熱
管65が腐食を受けに〈<、また、前述のようにこの部
分では流動速度も低いため、伝熱管65の摩耗も極めて
少ない。
Further, the mass velocity of the diffused gas in the heat recovery chamber 59 is set from 0 to I.
When Gmf is changed, the settling velocity of the moving layer in the heat recovery chamber changes dramatically as shown in FIG. 9, and the required amount of high-temperature medium can be arbitrarily controlled. However, R
When heat is recovered from the fluidizing medium, the flow rate decreases and good combustion is no longer possible.If the fluidizing gas t in this part is set to 0, the heat recovery from the fluidizing medium may be stopped and the operation performed. can. In addition, the heat recovery section is filtered outside the main combustion area of the furnace 51 yen. kfi #) Since the heat exchanger tube 65 does not have strong corrosive properties like the returning atmosphere, it is less susceptible to corrosion than the conventional one, and as mentioned above, the flow velocity is low in this part. , wear of the heat exchanger tubes 65 is also extremely small.

流動化ガスの質量速度15〜2 Gmfの範囲において
、実際には流動媒体温度例えば800℃において流動媒
体の粒径にもよるが、ガス速度はα1〜14m/秒(空
塔速度ンと極めて低速度である。
In the range of the mass velocity of the fluidizing gas from 15 to 2 Gmf, the gas velocity is actually extremely low at a fluidizing medium temperature of, for example, 800°C, depending on the particle size of the fluidizing medium, α1 to 14 m/s (superficial velocity of It's speed.

燃焼物中に流動媒体より大きな径の不燃物がある場合に
は、燃焼残渣は一部の流動媒体と共にf底部のスクリュ
ーコンベア70より排出される。
If there is a non-combustible material with a diameter larger than the fluidized medium in the combustion material, the combustion residue is discharged from the screw conveyor 70 at the bottom of f along with a part of the fluidized medium.

また、熱回収室59内の伝熱は、流動媒体と伝熱w65
との直接接触による伝熱に加えて、流動媒体の流動によ
り激しく不規則に振動しながら上昇するガスを媒体とし
た伝熱がある。後者は、通常のガス−固体間の接触状態
に対し、伝熱の妨げとなる一体表面の境界層がtlとん
ど存在せず、また流動媒体同志が流動によってよく攪拌
されるために、静止媒体と異なり粉体の中での伝熱が無
視できるようになシ、極めて大きな伝熱特性七本す。
In addition, the heat transfer inside the heat recovery chamber 59 is conducted between the fluidized medium and the heat transfer w65.
In addition to heat transfer through direct contact with the gas, there is also heat transfer through the medium of gas, which rises while vibrating violently and irregularly due to the flow of the fluid medium. In the latter case, in contrast to the normal gas-solid contact state, there is almost no boundary layer on the solid surface that impedes heat transfer, and the fluidized medium is well stirred by the flow, so it is stationary. Unlike a medium, heat transfer in powder can be ignored, and it has seven extremely large heat transfer properties.

したがって、本発明の熱回収室においては、通常の燃焼
ガスからの熱回収に比較して最大時にFi10倍近い伝
熱係数をとることができる。
Therefore, in the heat recovery chamber of the present invention, compared to normal heat recovery from combustion gas, the heat transfer coefficient can be nearly 10 times Fi at the maximum.

このように、流動媒体と伝熱面との伝熱現象は吹込ガス
量に大きく依存しておシ、散気装置62から導入するガ
ス量の調節にニジ流動媒体循環量も調節でき、且つ、移
動層による熱回収室59を炉内において主燃焼室から独
立させる仁とで、コンパクトでかつターンダウン比が大
きくて制御容易な流動層熱回収装置とすることができる
In this way, the heat transfer phenomenon between the fluidized medium and the heat transfer surface largely depends on the amount of blown gas, and the amount of fluidized medium circulation can also be adjusted by adjusting the amount of gas introduced from the diffuser 62. By making the heat recovery chamber 59 using the moving bed independent from the main combustion chamber in the furnace, it is possible to provide a fluidized bed heat recovery device that is compact, has a large turndown ratio, and is easy to control.

石炭や石油コークスのように燃焼速度の遅い燃焼物を燃
料として用いたボイラーにおいては、通常蒸発量を急に
変化させたくとも燃焼速度に見合った速度でしか変化で
きない場合が多く、−膜流動床ボイラにおいては燃焼速
度自体は改善されているものの流動N1會介して熱回収
を行なうためにそれより更に劣る。
In boilers that use combustible materials with a slow burning rate such as coal or petroleum coke as fuel, even if you want to change the evaporation rate suddenly, it is often only possible to change it at a rate commensurate with the burning rate. - Membrane fluidized bed In the boiler, although the combustion rate itself has been improved, it is still worse because heat is recovered through the flow N1.

しかしながら、第5図に関しa明した方法においては熱
回収室における伝熱aを、ガス散気tを変化させること
により、瞬時に数倍ないし数分の−に変化させることが
できる。従って、燃焼物供給液の変化による流動層への
入熱量変化は燃焼速度に左右されるため、時間遅れを生
じるけれども、本発明の熱回収室における流動媒体から
の熱回収部は熱回収室散気筺で急速に変化させることが
でき、入熱皺と熱回収量の15答速度の差を流動媒体の
温度の一時的な温度変化として、流動層を形成する流動
媒体の顕熱蓄熱能により吸収できる。このため熱を無駄
なく利用することができ、従来の石炭だきボイラーの類
にはなかった追従性の高い蒸発量制御が可能となる。
However, in the method described in connection with FIG. 5, the heat transfer a in the heat recovery chamber can be instantaneously changed from several times to several minutes by changing the gas diffusion t. Therefore, although a change in the amount of heat input to the fluidized bed due to a change in the combustion material supply liquid depends on the combustion rate and causes a time delay, the heat recovery section from the fluidized medium in the heat recovery chamber of the present invention is It can be rapidly changed in an air chamber, and the difference between the heat input wrinkle and the heat recovery rate can be treated as a temporary temperature change in the temperature of the fluidized medium due to the sensible heat storage capacity of the fluidized medium that forms the fluidized bed. It can be absorbed. As a result, heat can be used without waste, and it is possible to control the amount of evaporation with a high degree of followability, which was not possible with conventional coal-fired boilers.

なお、前記の不燃物排出口69の位置は、例えば図示例
のように熱回収室59の反射仕切5Bの下部の開口部6
3並びに炉51内の空気分散板の両側縁部に接するよう
に位置せしめるのがよいが、これに限定されるものでは
ない。
The position of the incombustible material discharge port 69 is, for example, the lower opening 6 of the reflective partition 5B of the heat recovery chamber 59 as shown in the figure.
3 and both side edges of the air distribution plate in the furnace 51, but the present invention is not limited thereto.

また、熱回収室59から不燃物排出口69への流動媒体
の短絡による排出を防止し、伝熱後の媒体を有効に燃焼
室でおる流IJ!7層へ戻すために、仕切り50を設け
ることも好ましく、この仕切5soは第10図及び第1
1図に示すように散気装置i62を形成する散気管にバ
ンドなどで取付けた板状のものでもよく、するいは第5
図の図示例のように炉壁を利用して形成させることもで
きる。
In addition, the flow IJ prevents discharge of the fluidized medium from the heat recovery chamber 59 to the incombustible material discharge port 69 due to a short circuit, and effectively allows the medium after heat transfer to pass through the combustion chamber! In order to return to seven layers, it is also preferable to provide a partition 50, and this partition 5so is shown in FIGS. 10 and 1.
As shown in FIG.
It can also be formed using the furnace wall as shown in the example shown in the figure.

第5図においては、空気分散板52を山形とし、空気室
を王室(54,55,56)とし。
In FIG. 5, the air dispersion plate 52 has a chevron shape, and the air chambers have a royal air chamber (54, 55, 56).

空気室54及び56から噴出する流動化ガスの質量速度
を空気室55から噴出する流動化ガスの質量速度よりも
大とする場合について説明したが、流動層下部ニジ吹き
込まれる空気の質量速度は同一であっても反射仕切の作
用により、即ち、反射仕切に沿った部分の空気流速が中
央部に比し大となり流動層に旋回流全形成せしめること
が可能であるので、各空気室から噴出させる流動化ガス
の質量速度は同一としてもよく、ま几同じ理由から第7
図に示すように空気分散板52は水平にし、且つ、単一
の空気室56′としてもよい。ま九、この場合空気室5
6′は一′)の室とすることなく、数室に区分してもよ
い。
Although the case has been described in which the mass velocity of the fluidizing gas ejected from the air chambers 54 and 56 is higher than the mass velocity of the fluidizing gas ejected from the air chamber 55, the mass velocity of the air blown into the lower part of the fluidized bed is the same. However, due to the action of the reflective partition, the air flow velocity in the part along the reflective partition is higher than that in the center, and it is possible to completely form a swirling flow in the fluidized bed, so that air is ejected from each air chamber. The mass velocity of the fluidizing gas may be the same, and for the same reason, the seventh
As shown, the air distribution plate 52 may be horizontal and may have a single air chamber 56'. Nine, in this case air chamber 5
6' may be divided into several chambers instead of one chamber.

空気室を数室に区分する場合、室毎に流動化ガスの質量
速度′kwJ5図について説明したように異なる速度と
してもよいのは当然である。
When the air chamber is divided into several chambers, it is natural that each chamber may have a different velocity as explained with respect to the mass velocity 'kwJ5 diagram of the fluidizing gas.

また、石炭のような不燃物排出口の少ない燃焼物を燃焼
させる場合には不燃物排出口は第7図に示す工うに省略
できる。
Furthermore, when burning a combustible material such as coal that has few incombustible discharge ports, the noncombustible discharge port can be omitted as shown in FIG.

つぎに、他の実施例を第12図に示す。第12図に示す
旋回流動床式熱回収装置は、第5図に示す旋回流動層2
つを同一の炉中に設け、従って、中央部の熱回収室59
は中央部の2′)の反射仕切58の背面間に設けると共
に中央部の熱回収室59の下部仕切りを第11図に示す
構造のものとした以外は全く同じである。
Next, another embodiment is shown in FIG. The swirling fluidized bed type heat recovery apparatus shown in FIG. 12 includes a swirling fluidized bed 2 shown in FIG.
two are provided in the same furnace, therefore, the heat recovery chamber 59 in the central part
is exactly the same except that it is provided between the back and rear surfaces of the reflective partition 58 in the central part 2') and that the lower partition of the heat recovery chamber 59 in the central part has the structure shown in FIG.

つぎに、更に他の実施例全第13図、第14図、第15
図及び第16図に示す。
Next, further other embodiments are shown in FIGS. 13, 14, and 15.
It is shown in FIG.

これらの実施列においては、主として反射仕切5Bの形
状並びにその取シ付は方が第5図、第7図及び第12図
に示す実施例とは相違するのみでめシ、また、第13囚
及び第14図に示す実施例は、1′)の旋回流動層′?
r:有する炉に熱回収部を設は友場合の実m例を示す図
面である。
In these embodiments, the only difference is mainly in the shape of the reflective partition 5B and its mounting. And the embodiment shown in FIG. 14 is 1') swirling fluidized bed'?
This is a drawing showing an actual example of a case where a heat recovery section is installed in a furnace with r:.

なお、第14図は第13図に示す旋回流型流動床炉にお
いてガス分散板52を水平にし、且つ空気室56′を単
一の部屋とすると共に不燃物排出口を省略した例七示す
図でろって、その作用は第7図に関し説明し友のと同様
である。なお第14図において符号69′は流動媒体排
出ノズルを示す。
In addition, FIG. 14 is a diagram showing an example 7 in which the gas distribution plate 52 is made horizontal in the swirling flow type fluidized bed furnace shown in FIG. Therefore, its operation is similar to that described with reference to FIG. In FIG. 14, reference numeral 69' indicates a fluidized medium discharge nozzle.

第13図、第14図、第15図及び第16図において符
号50〜71は第5図及び第12図で説明したのと同じ
意味を有し、符号80は水管、81,82は外壁に設け
られた管寄せ、83.84は炉中に設けられ友管寄せを
示す。
In FIGS. 13, 14, 15, and 16, symbols 50 to 71 have the same meanings as explained in FIGS. The provided header 83.84 indicates a friend header provided in the furnace.

第13図、第14図、第15図、第16図に示す例にお
いては炉壁がメンブレン外壁で構成されておシ、このメ
ンブレン外壁の上下に設は次管寄せ81,82及び炉中
に設けた管寄せ86.84(第16図に示す例のみ)か
ら水’1i80を分岐して、夫々の下方斜めの部分にメ
ンブレ/壁の仕切金#斜させて設は反射仕切58とじた
ものでらる〇 これらの図面に示す水雷群は1ケ所又は2ケ所で曲げ加
工されてお9、熱膨張を吸収でき、また上下管寄せで固
定されているので流動媒体の激しい運動にも十分に耐え
ることができるO1次水t80の垂直部分は、流動媒体
の頂部を貫いて十分に長くしであるので、上部傾斜部に
不燃物が堆積することがなく、また、通過抵抗を小とし
、不燃物等による目詰り1i−防止するために、水雷8
0のi![部分及び熱回収室59の下部開口部63の部
分は、第18図に示す如く、千鳥状に互違いに配列する
のが好ましい。
In the examples shown in Figures 13, 14, 15, and 16, the furnace wall is composed of a membrane outer wall. The water is branched from the headers 86 and 84 (example shown in Figure 16 only) provided, and reflective partitions 58 are attached to the lower diagonal portions of each membrane/wall partition. The torpedo groups shown in these drawings are bent at one or two places9 to absorb thermal expansion, and are fixed with upper and lower headers, so they can withstand intense movements of the fluid medium. The vertical part of the O primary water t80 that can withstand it is long enough to penetrate the top of the fluid medium, so incombustibles do not accumulate on the upper slope, and the passage resistance is small, making it non-combustible. To prevent clogging 1i-by objects, etc., torpedo 8
0 i! [The portions and the portions of the lower opening 63 of the heat recovery chamber 59 are preferably arranged in a staggered manner as shown in FIG.

また、第17図に示すように、伝熱w65も同様に千鳥
状に配列するのが好ましく、また散気装置(散気’#)
 62は、伝熱管と平行に熱回収室の下部に配列するの
ではなく、第13図乃至第16図に示すように熱回収室
の下部に反射仕切58の背向に沿って設けるのが好まし
い。
Further, as shown in FIG. 17, it is preferable that the heat transfer w65 is similarly arranged in a staggered manner, and the air diffuser (air diffuser '#)
62 are preferably provided at the bottom of the heat recovery chamber along the back side of the reflective partition 58, as shown in FIGS. 13 to 16, instead of being arranged parallel to the heat transfer tubes at the bottom of the heat recovery chamber. .

散気管のガス尋人口に近い部分のガス噴出口を大きくシ
、先端に向い漸次小さくすることにより、流動媒体の深
さに関係なく、はぼ均一に散気することができる。
By making the gas outlet in the part of the diffuser tube near the gas outlet large and gradually decreasing it toward the tip, it is possible to diffuse air more uniformly regardless of the depth of the fluidizing medium.

反射仕切58の下端部は、分散板52の端部より外側の
流動媒体が敏しい流動状態にない部分に位置せしめるの
が好ましい。その理由は熱回収室が激しい流動層の影響
を受けるのを防ぎ、熱回収室内の流動媒体の沈降速度の
制御を容易にするためでろる。
The lower end of the reflective partition 58 is preferably located outside the end of the dispersion plate 52 in a region where the fluid medium is not in a rapid flow state. The reason for this is to prevent the heat recovery chamber from being affected by the intense fluidized bed and to facilitate control of the sedimentation rate of the fluidized medium within the heat recovery chamber.

また、燃焼部の移動層下部からの流動化ガスの買置速度
は15z50m!、好ましくは1へz5Gmfで且つ、
流動層部下部からの吹込み量の50−以下の量が好まし
い。
Also, the purchasing speed of fluidized gas from the lower part of the moving bed in the combustion section is 15 x 50 m! , preferably 1 to z5Gmf, and
The amount blown from the lower part of the fluidized bed section is preferably 50 or less.

また、第15図及び第14図に示す如く、燃焼物投入装
f166により燃焼物を直接下向きの移動層中に供給す
る場°合、燃焼物等に粉炭等の供給が流動媒体のかき取
り作用により連続的となシ、また供給装置からの空気の
リークが少なく、また粉炭等の燃焼効率が大となり、且
つ運転停止時において炉中の流動媒体で空気のIJ −
りをしゃ断してしまい、炉内の熱で供給部に残つ友燃焼
物が発火して供給部が焼けてしまうようなことがないの
で、供給部と炉の間tダンパで閉め切る必要はない。
In addition, as shown in Figs. 15 and 14, when the combustible material is directly fed into the downward moving bed by the combustible material input device f166, the supply of powdered coal etc. to the combustible material has a scraping effect on the fluidized medium. This allows for continuous operation, less air leakage from the feeder, higher combustion efficiency of powdered coal, etc., and even when the operation is stopped, the IJ-
It is not necessary to close off the gap between the supply section and the furnace with a T-damper to prevent the heat inside the furnace from igniting the remaining combustible materials in the supply section and burning the supply section. do not have.

また、都市ごみや雑芥等粗大物を含む燃焼物は第5図、
第7崗、第12図、第15図及び第16図に示す如く天
井に設けられ次設入口から投入することで無理なく運転
できるが、石炭等数十ミ’)メートル程度以下の固体燃
料を燃焼せしめる場合には、天井部から投入せずに、燃
焼部側壁の流動層表面よりは高いが低目の位置から回転
羽根によりはね飛ばす形式等スプレッダにより燃焼部に
投入する方法が好ましい0従って、石炭等固体燃料専焼
炉として用いる場合には、天井投入口は設けずに上述の
スプレッダのみとしてもよく、また粗大物を含む燃焼物
は天井の投入口から投入し、固体燃料は上述のスプレッ
ダから供給して混焼したシすることも出来る0 以上説明した熱回収室を備えた旋回fi型流動層ボイラ
においては、散気装置に通気する通気tをコントロール
することにより熱回収t’tコントロールすることが出
来るため、本発明者らは更にこのボイラの利用の一環と
して、熱回収室を区分し、区分けされた該熱回収室の一
部において少くとも一部の伝熱管中に受熱流体として蒸
気を通し該蒸気の該熱回収室の後流側温度により当該散
気装置に供給するガス量を調節し、それ以外の散気装置
に供給されるガス量は、流動層温度に基いて当該散気装
置に供給するガス量を調節することにより所定の温度の
過熱蒸気を得ると共に流動NI温度を一定の温度に制御
する流動層ボイラの蒸気温度昇鑞装置を提案した(特願
昭62−159707号)。
In addition, combustible materials including bulky items such as municipal waste and garbage are shown in Figure 5.
As shown in Fig. 7, Fig. 12, Fig. 15, and Fig. 16, it is installed in the ceiling and can be operated without difficulty by inputting it from the next installation inlet. In the case of combustion, it is preferable to introduce the material into the combustion section from a position higher than but lower than the surface of the fluidized bed on the side wall of the combustion section using a spreader such as a rotating blade. When used as a dedicated combustion furnace for solid fuel such as coal, the above-mentioned spreader alone may be used without providing a ceiling inlet, or the combustible materials including coarse materials are injected through the ceiling inlet, and the solid fuel is injected into the above-mentioned spreader. In the swirling FI-type fluidized bed boiler equipped with the heat recovery chamber described above, heat recovery can be controlled by controlling the airflow to the air diffuser. Therefore, as part of the utilization of this boiler, the present inventors further divided the heat recovery chamber and injected steam as a heat-receiving fluid into at least some of the heat transfer tubes in a part of the divided heat recovery chamber. The amount of gas supplied to the diffuser is adjusted based on the temperature on the downstream side of the heat recovery chamber of the steam, and the amount of gas supplied to other diffusers is adjusted based on the temperature of the fluidized bed. proposed a steam temperature raising device for a fluidized bed boiler that obtains superheated steam at a predetermined temperature and controls the fluidized NI temperature to a constant temperature by adjusting the amount of gas supplied to the steam device (Japanese Patent Application No. 159,707/1982) issue).

即ち、この装置を@50図に基いて説明する。That is, this device will be explained based on Figure @50.

第30図において、炉1の底部にはプロワ7によ)流動
用ガス導入管3から導入される流動化ガスの分散板2が
備えられ、この分散板2は第5図に示されているのと同
様、炉1の中心に対してほぼ対称的な屋根状に形成され
ている。
In FIG. 30, the bottom of the furnace 1 is equipped with a dispersion plate 2 for fluidizing gas introduced from the fluidizing gas inlet pipe 3 by the blower 7, and this dispersion plate 2 is shown in FIG. Like the furnace 1, it is formed into a roof shape that is almost symmetrical with respect to the center of the furnace 1.

そしてプロワ7から送られる流動用ガスは、空気室4,
5.6を経て分散板2から上方に噴出させるようになっ
ておジ、両9JJI縁部の空気室4゜6から噴出する流
動化ガスの質量ガス速度(質量ガス速度1は流動媒体′
に流動化させるに必要な最少の風量〕は炉1内の流動媒
体の流動層を形成するのに十分な速度とするが、中央部
5から噴出する流動化ガスの置数速度Fi前者より小さ
く選ばれる。
The fluidizing gas sent from the blower 7 is sent to the air chamber 4,
The mass gas velocity of the fluidizing gas (mass gas velocity 1 is the fluidizing medium'
The minimum air volume required to fluidize the fluidized medium in the furnace 1 is set to a velocity sufficient to form a fluidized bed of the fluidized medium in the furnace 1, but the velocity Fi of the fluidizing gas ejected from the central portion 5 is smaller than the former. To be elected.

内側縁部の空気室4,6の上部には、流動化ガスの上向
流路をさえぎり、空気室4,6から吹出される流動化ガ
スを炉1内の中央部に向けて反射転向させる反射壁仕切
8が設けられ、この反射壁仕切8と噴出する流動化ガス
の質量速度との差により第5図に矢印で示される方向と
同じ方向の旋回流が生ずる。−万この反射仕切8と炉壁
間に流動媒体の循環1一部(熱回収部ン9.9′が形成
され、運転中に流動媒体の一部が反射仕切8の上端部上
越えて循環層部9,9′に入り込む。また、循環層部9
.9′の下部の炉底エリも高いレベルにはプロワ10か
ら導入管11゜11′を経てガスを導入する散気装置1
2.12’が反射仕切の背面に沿ってf+めに設けられ
、導入管11.11’上には散気装置へ導入される散気
風tを制御する次めの流量調節ダンパ24゜24′が設
けられている。また、循環層部9,9′の散気装置12
.12’i設置した近傍には、開口部13.13’が設
けられ%循環層部9,9′に入り込んだ流動媒体は運転
状態により連続的又#続的に移動層上形成しつつ沈降し
、開口部15゜15′會経て燃焼部へ循環する。
The upper part of the air chambers 4 and 6 at the inner edge blocks the upward flow path of the fluidizing gas, and reflects and diverts the fluidizing gas blown out from the air chambers 4 and 6 toward the center of the furnace 1. A reflecting wall partition 8 is provided, and the difference between this reflecting wall partition 8 and the mass velocity of the ejected fluidizing gas causes a swirling flow in the same direction as indicated by the arrow in FIG. - A part of the circulation of the fluidized medium (a heat recovery section 9.9' is formed between the reflective partition 8 and the furnace wall, and during operation, a part of the fluidized medium circulates over the upper end of the reflective partition 8). It enters the layer parts 9, 9'. Also, the circulation layer part 9
.. At a high level in the bottom area of the furnace at the bottom of 9', there is an aeration device 1 that introduces gas from the blower 10 through the introduction pipe 11°11'.
2.12' is provided at the f+ position along the back surface of the reflective partition, and on the introduction pipe 11.11' there is a next flow rate regulating damper 24°24' for controlling the diffused air t introduced into the diffuser. is provided. In addition, the air diffuser 12 of the circulation layer section 9, 9'
.. Openings 13 and 13' are provided in the vicinity of the 12'i installation, so that the fluidized medium that has entered the circulating bed portions 9, 9' is continuously formed on the moving bed and sedimented depending on the operating conditions. , and circulates through the openings 15° and 15' to the combustion section.

また、循環層部9,9′には配管14及び2゜で廃熱ポ
イン17に連通された内部に蒸気及び加熱ボイラ水を通
じた伝熱管15及び15′が配置され、循環層部を下方
に移動する流動媒体と熱交換を行なうことにより、配g
14′より過熱蒸気を得ると共に、配管20′ニジはよ
り加熱され発生した蒸気の混じったボイラ水を廃熱ボイ
ラ17へ循環させ熱を回収するように構成されている。
In addition, heat transfer tubes 15 and 15' for passing steam and heating boiler water are arranged in the circulation layer sections 9 and 9', which are connected to the waste heat point 17 through pipes 14 and 2 degrees, and are connected to the circulation layer section downward. By exchanging heat with the moving fluid medium, the distribution of g
The pipe 20' is configured to obtain superheated steam from the boiler 14' and to circulate boiler water mixed with heated and generated steam to the waste heat boiler 17 to recover heat.

そして、配置W14’より抜き出される蒸気の温度全温
度測定器21で測定し、この温度に基いて温度制御器2
2に、、cシ流量調節ダンパ24の開度全i!11節し
て循環層部の流動化ガス風量を調節することにニジ過熱
蒸気の温度を所定の温度に制御する。即ち、過熱蒸気の
温度が所定の温度より低い場&、流i−調調節ダンク4
の開度を大とし、循環層への散気風量全通常、Gmfα
5〜3の範囲内で増加させることにより流動媒体循環量
全増加させると共に伝熱係数を増加させ熱回収tを大と
す″ることにより過熱蒸気の温度1’i定の温度まで昇
温せしめる。過熱蒸気の温度が所定の温度より高い場合
には上記と逆に制御される。
Then, the temperature of the steam extracted from the arrangement W14' is measured by the total temperature measuring device 21, and based on this temperature, the temperature controller 2
2, the opening degree of the flow rate adjustment damper 24 is all i! In Section 11, the temperature of the superheated steam is controlled to a predetermined temperature by adjusting the flow rate of the fluidizing gas in the circulation layer section. That is, when the temperature of the superheated steam is lower than the predetermined temperature, the flow adjustment dunk 4
By increasing the opening degree of
By increasing it within the range of 5 to 3, the total amount of fluidized medium circulation is increased, the heat transfer coefficient is increased, and the heat recovery t is increased, thereby raising the temperature of superheated steam to a constant temperature of 1'i. .If the temperature of the superheated steam is higher than a predetermined temperature, the control is reversed to the above.

一方、流動層主燃焼部の温度が該燃焼部の最、、M温度
、例えは都市ごみの場合600℃へ800℃、石炭やコ
ークスの場合800℃へ850℃のll@I2!1円の
一定の温度または一定巾の温度範囲より低くなった場合
、流動層主燃焼部中の温度測定器25で測定された温度
に基いて温度制御器26にエフ流量調節ダンパ27の開
度を小として循環層への散気重勿小とすることにより流
動媒体循環m’!!r減少させると共に伝熱係数ケ小と
することにニジ、熱回収t′(f−小として流動1−生
燃焼部の温度が上昇するよう制御される。また、流動層
主燃焼部の温度が所定の温度より上昇した場合には上記
と逆に制御され、流動媒体の温度が所定の温度以上に上
昇し、流動媒体が焼結する等のトラブルを回避するもの
である。
On the other hand, the temperature of the main combustion part of the fluidized bed is the maximum temperature of the combustion part, for example, 600°C to 800°C for municipal waste, and 800°C to 850°C for coal and coke. When the temperature is lower than a certain temperature or a certain width temperature range, the temperature controller 26 is used to reduce the opening degree of the F flow rate adjustment damper 27 based on the temperature measured by the temperature measuring device 25 in the main combustion section of the fluidized bed. The fluidized medium is circulated by reducing the amount of air diffused into the circulation layer. ! By decreasing r and making the heat transfer coefficient small, the temperature of the fluidized bed main combustion part is controlled so that the temperature of the fluidized bed main combustion part is increased by making the heat recovery t' (f - small). When the temperature rises above a predetermined temperature, the control is performed in the opposite manner to the above to avoid problems such as the temperature of the fluidizing medium rising above the predetermined temperature and causing sintering of the fluidizing medium.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第50図に示される蒸気井は装置においては、■ 蒸気
過熱器(又は蒸気再熱器)と蒸発器とを同一炉内に設け
ているため、過熱器又は再熱器の回収熱量の変化を蒸発
器で吸収する必要がらるため蒸発器の負荷が増し、また
回収熱量のallllllik蒸発器で行わせるため回
収熱量の約半分程度しか蒸気の昇@(過熱や再熱ンに使
用できない。
The steam well shown in Figure 50 has the following features: ■ A steam superheater (or steam reheater) and an evaporator are installed in the same furnace, so changes in the amount of heat recovered by the superheater or reheater are not affected. The load on the evaporator increases because it needs to be absorbed by the evaporator, and because all of the heat is recovered by the evaporator, only about half of the recovered heat can be used for steam rise (superheating or reheating).

■ 層内熱回収量には限度が6勺、蒸気過熱温度が高く
なったり蒸気再熱温度が上昇したすすると熱量が不足し
、この几め第3a図に示されるガス式過熱装置118を
併用しなければならず、このガス式過熱装ft’&−無
くしようとする利点を失うこととなる。
■ There is a limit to the amount of heat recovery in the layer, and if the steam superheating temperature rises or the steam reheating temperature rises, the amount of heat will be insufficient. The benefits of eliminating this gas superheater would be lost.

■ 蒸気過熱器又は再熱器の伝熱面の温度は蒸発器の伝
熱面に比し大とな9、蒸気出口温度を高温にする場合、
過熱器又は再熱器の伝熱面はCL、 Na、 K、 8
04基等による高温腐食域(第3図の約300℃以上の
区域ンに入ってしまうため、これら成分を含む廃棄物を
燃料とする場合、伝熱面の材質としては耐高温腐食性の
高ニッケル・クロム合金等を用いる必要があった@ 〔発明の構成〕 本発明は、上記問題点を解決するためのボイラ及び該ボ
イラの運転を効率良く行うための制御装置を提供するも
のであって、 1、 炉底部より上方に向けて流動化ガスを噴出させる
空気分散板を1組又は2組以上備えると共に、該空気分
散板端部上方に、該流動化ガスの上向流路をさえぎり、
且つ、該流動化ガスを、上向き流路をさえぎられていな
いガス噴出部上部に向けて、反射転向せしめる反射仕切
を設けることにより、上向流路をさえぎられていない噴
出部上部に流動媒体が固定層ないし流動層状態で沈降す
る移動層を形成すると共に、上向流路をさえぎられた噴
出部近傍上部においては流動媒体が活発に流動化し、且
つ前記反射仕切の作用によりこの部分の流動媒体を前記
移動層上部に向って旋回せしめることにより旋回型流動
!−ヲ形成し、且つ、該反射仕切背部と炉壁又は反射仕
切背部と反射仕切背部の間に熱回収室を形成せしめ、運
転中流動媒体の一部が前記反射仕切の上部を越えて熱回
収室に入シ込む工うに構成し、該熱回収室下部で且つ反
射仕切の背面側に熱回収室内の流動媒体を固定層から弱
い流動層状態の範囲で変化させるための通気用ガス散気
装置を設けると共に、熱回収室の下部に炉底の上方に通
ずる開口を設けると共に熱回収室内に受熱流体を通じた
伝熱面を配備した熱回収室を備え・た旋回流溢流動床ボ
イラを2箇設け、−万の炉1の熱回収部を、気水ドラム
 。
■ The temperature of the heat transfer surface of the steam superheater or reheater is higher than the heat transfer surface of the evaporator9, and when the steam outlet temperature is made high,
The heat transfer surface of the superheater or reheater is CL, Na, K, 8
If waste containing these components is used as fuel, the heat transfer surface should be made of a material with high resistance to high temperature corrosion. It was necessary to use a nickel-chromium alloy, etc. [Structure of the Invention] The present invention provides a boiler for solving the above problems and a control device for efficiently operating the boiler. 1. Equipped with one or more sets of air distribution plates that eject fluidization gas upward from the bottom of the furnace, and blocking the upward flow path of the fluidization gas above the ends of the air distribution plates,
In addition, by providing a reflective partition that reflects and diverts the fluidized gas toward the upper part of the gas jetting part where the upward flow path is not blocked, the fluidized medium is directed toward the upper part of the jetting part where the upward flow path is not blocked. A moving bed that settles in a fixed bed or a fluidized bed state is formed, and the fluidized medium is actively fluidized in the upper part near the spout where the upward flow path is blocked, and the fluidic medium in this part is A swirling flow is created by swirling the fluid toward the top of the moving bed! - forming a heat recovery chamber between the back of the reflective partition and the furnace wall or between the back of the reflective partition and the back of the reflective partition, and during operation, a part of the fluid medium passes over the top of the reflective partition and recovers heat; A gas diffuser for ventilation configured to enter the chamber, and located at the lower part of the heat recovery chamber and on the back side of the reflective partition, for changing the fluidized medium in the heat recovery chamber from a fixed bed state to a weak fluidized bed state. At the same time, two swirling flow overflow bed boilers were installed, each having a heat recovery chamber with an opening communicating above the hearth bottom at the bottom of the heat recovery chamber, and a heat transfer surface through which the heat-receiving fluid passed inside the heat recovery chamber. , - The heat recovery part of the furnace 1 is an air-water drum.

で蒸気を発生せしめる九めの液体加熱器とし、他方の炉
1′の熱回収部を前記気水ドラムで発生した蒸気又はタ
ービン等ニジ回収した低温の蒸気を通ずることにより過
熱蒸気を生成せしめるための蒸気過熱器及び/又は蒸気
再熱器とした複床式旋回流型流動床ボイラ。
In order to generate superheated steam by passing the steam generated in the steam-water drum or the low-temperature steam collected by a turbine or the like through the heat recovery section of the other furnace 1'. A double-bed swirling flow fluidized bed boiler with a steam superheater and/or steam reheater.

2 前記第1項記載の複床式旋回流型流動床ボイラにお
いて、蒸気過熱器及び/又は蒸気再熱器の出口蒸気温度
を検出して該蒸気温度に相当する蒸気温度信号を出力す
る蒸気温度検出手段と該蒸気温度信号に応答して該蒸気
過熱器及び/又は蒸気再熱器を備えたボイラ1′の流動
床燃焼部への可燃物供給量1−制御する手段を設け、且
つ、気水ドラムの蒸気圧力を検出して該蒸気圧力に相当
する蒸気圧力信号を出力する蒸気圧力検出手段と、該蒸
気圧力(Fr号に応答してボイラ1の流動床燃焼部への
可燃物供給量を制御する手段とを設は九複床式旋回流&
流動床ボイラ 五 前記第1項記載の複床式旋回流型流動床ボイラにお
いて、蒸気過熱器及び/又は蒸気再熱器の出口蒸気温度
を検出して該蒸気温度に相当する蒸気温度信号を出力す
る蒸気温度検出手段と、蒸気過熱器及び/又は蒸気再熱
器を備えたボイラ1′の流動床燃焼部の流動媒体温度を
検出して該流動媒体温度に相当する流動媒体温度信号を
出力する流動媒体温度検出手段とを具え、前記蒸気温度
信号に基いて前記ボイラ1′へ供給する可燃物供給量並
びにボイラ1″の流動媒体温度設定器の設定温度を制御
する手段並びに前記流動媒体温度信号に基いてボイ21
″の熱回収部への散気用ガスの通気速度を制御する手°
段を備え、更に、気水ドラムの蒸気圧力全検出して該蒸
気圧力に相当する蒸気圧力信号を出力する蒸気圧力検出
手段と、蒸気発生器を備えたボイラ1の流動媒体温度を
検出して流動媒体の温度に相当する流動媒体温度信号を
出力する流動媒体温度検出手段とを備え、更に、該蒸気
圧力信号に基いてボイラ1の流動媒体温度設定器の設定
温度を制御する手段及び該蒸気圧力信号に基いてボイラ
1への可燃物供給量を制御する手段’に備えると共に、
前記流動床媒体温度信号に基いてボイラ1の熱回収部へ
の散気用ガスの通気tk制御する手段を備えた複床式旋
回流型流動床ボイラ。
2. In the double-bed swirling flow type fluidized bed boiler described in item 1 above, the steam temperature at which the outlet steam temperature of the steam superheater and/or steam reheater is detected and a steam temperature signal corresponding to the steam temperature is outputted. means for controlling the amount of combustible material supplied to the fluidized bed combustion section of the boiler 1' comprising the steam superheater and/or the steam reheater in response to the detection means and the steam temperature signal; Steam pressure detection means detects the steam pressure of the water drum and outputs a steam pressure signal corresponding to the steam pressure; Nine multi-bed swirling flow &
Fluidized bed boiler 5 In the double-bed swirling flow type fluidized bed boiler described in item 1 above, the outlet steam temperature of the steam superheater and/or steam reheater is detected and a steam temperature signal corresponding to the steam temperature is outputted. Detecting the temperature of the fluidized medium in the fluidized bed combustion section of the boiler 1' equipped with a steam temperature detection means and a steam superheater and/or a steam reheater, and outputting a fluidized medium temperature signal corresponding to the fluidized medium temperature. fluidized medium temperature detection means, and means for controlling the amount of combustible material supplied to the boiler 1' and the set temperature of the fluidized medium temperature setter of the boiler 1'' based on the steam temperature signal; and the fluidized medium temperature signal. Based on Boi 21
″Hands to control the ventilation rate of the aeration gas to the heat recovery section
further comprising a steam pressure detecting means for detecting the total steam pressure of the steam-water drum and outputting a steam pressure signal corresponding to the steam pressure, and detecting the fluidizing medium temperature of the boiler 1 equipped with the steam generator. A fluidized medium temperature detection means for outputting a fluidized medium temperature signal corresponding to the temperature of the fluidized medium, further comprising means for controlling a set temperature of a fluidized medium temperature setting device of the boiler 1 based on the steam pressure signal, and the steam In addition to providing means for controlling the amount of combustible material supplied to the boiler 1 based on the pressure signal,
A double-bed swirling flow type fluidized bed boiler, comprising means for controlling the ventilation tk of the aeration gas to the heat recovery section of the boiler 1 based on the fluidized bed medium temperature signal.

4、 前記謁1項又は第3項記載の夜尿式旋回流型流動
床ボイラにおいて、気水ドラムの蒸気圧力を検出して該
蒸気圧力に相当する蒸気圧力信号を出力する蒸気圧力検
出手段のほか、更に気水ドラムから供給される蒸気流量
を検卸し、該蒸気量にろじ比信号音出力する蒸発量検知
手段を設け、該蒸気圧力信号並びに蒸気量信号に基いて
ポイ21への可燃物供給量全制御する手段を設けた複床
式旋回流型流動床ボイラ。
4. In the enuresis type swirling flow fluidized bed boiler described in the above paragraph 1 or 3, a steam pressure detection means for detecting the steam pressure of the steam-water drum and outputting a steam pressure signal corresponding to the steam pressure. In addition, an evaporation amount detection means is provided which detects the flow rate of steam supplied from the steam drum and outputs a logarithmic signal sound based on the steam amount, and detects combustible gas to the poi 21 based on the steam pressure signal and the steam amount signal. A double-bed swirling flow type fluidized bed boiler equipped with a means to fully control the amount of material supplied.

及び、 5 前記第1項、第2項、第3項又は第4項記載の複床
式旋回流型流動床ボイ2において、更に、ボイラ1及び
/又は1′への可燃物供給量を検知し%該夫々の供給量
にろじた信号を出力する可燃物供給量信号に基いて、ボ
イラ1及び/又は1′に供給する燃焼用空気量を制御す
る手段を設けた複床式旋回流型流動床ボイラ である。
and 5. In the double-bed swirling flow type fluidized bed boiler 2 described in item 1, 2, 3, or 4, the amount of combustible material supplied to the boiler 1 and/or 1' is further detected. A double-bed swirling flow system equipped with a means for controlling the amount of combustion air supplied to the boiler 1 and/or 1' based on a combustible material supply amount signal that outputs a signal that is a percentage of each supply amount. This is a type fluidized bed boiler.

つぎに図面に基いて本発明の詳細な説明する。Next, the present invention will be explained in detail based on the drawings.

第1図は本発明の1実施例を示す概略図であって、夫々
熱回収室9及び9′を有する旋回流型流動床ボイ21及
び1′が設けられている。流動床の動′@、熱回収室等
に関しては前に説明したとおりであるが、本発明におい
ては炉1の熱回収部9の伝熱IW15中に気水ドラム1
9より配W20’i経て缶水が供給され、加熱された後
配管20′金経て気水ドラム19に傭環され蒸気を発生
する0該伝熱管15中には前述の通り缶水が供給されて
いるのでその伝熱面が高温にさらされることはないため
、炉1に燃料供給装置17全経て供給される燃料として
はCt、Na、K。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, in which swirling fluidized bed voids 21 and 1' having heat recovery chambers 9 and 9', respectively, are provided. The movement of the fluidized bed, the heat recovery chamber, etc. are as explained above, but in the present invention, the air-water drum 1 is
Canned water is supplied from 9 through the pipe W20'i, and after being heated, it is transferred to the steam drum 19 through the piping 20' to generate steam.Canned water is supplied into the heat transfer tube 15 as described above. Because the heat transfer surface is not exposed to high temperatures, the fuels supplied to the furnace 1 through the fuel supply device 17 are Ct, Na, and K.

so4基等の含有量の多い都市とみ等全供給しても差支
えない。従って炉1はごみ専焼炉或いはごみと石炭等と
の混焼炉として用いケれる〇なお、熱回収部9の伝熱管
へ供給される缶水の1部又は全部上ボイラ給水に替えて
もよい。
There is no problem in supplying all the cities, such as those with a high content of SO4 groups, etc. Therefore, the furnace 1 can be used as a garbage-only furnace or a mixed combustion furnace of garbage and coal, etc. Note that part or all of the canned water supplied to the heat transfer tubes of the heat recovery section 9 may be replaced with upper boiler water.

つぎに気水ドラム19において発生した蒸気は配管14
を経て炉1′の熱回収部9′の伝熱f15′に供給され
、過熱蒸気となシ管14′を経て引出される。高温の蒸
気を発生させる場合伝熱管15′は比較的高温にさらさ
れるので、燃料供給装置17′から炉1′に供給される
燃料としては高温腐食の原因となるCt、 Na 、 
K 、 804基等の含有量の少ない石炭等を供給する
のが好ましい。このようにすることにより伝熱管15′
の材質としてN1及びCr を含有する高価な合金を用
いる必要はない。
Next, the steam generated in the air/water drum 19 is transferred to the pipe 14
The steam is then supplied to the heat transfer f15' of the heat recovery section 9' of the furnace 1', where it becomes superheated steam and is drawn out through the pipe 14'. When generating high-temperature steam, the heat exchanger tube 15' is exposed to relatively high temperatures, so the fuel supplied from the fuel supply device 17' to the furnace 1' is Ct, Na, or Ct, which causes high-temperature corrosion.
It is preferable to supply coal with a low content of K, 804 groups, etc. By doing this, the heat exchanger tube 15'
There is no need to use an expensive alloy containing N1 and Cr as the material.

ツtlvc、it図に示すボイラの制御方法について説
明する0 先づ、ボイラーに関しては、気水ドラム1の蒸気引出管
14上に蒸気圧力検出器25を設は該蒸気圧力検出器ぶ
りの蒸気圧力信号を圧力制御器31において設定値と比
較し、該比較値及び蒸気引出管14上に設けられた蒸気
流量検出器14aよりの蒸気流量信号全演算器34に入
力し、演算を行ない蒸気圧力及び蒸気流量が所定値より
低い場合には演lE値に基いて燃焼物供給装置のモータ
16の回転数を上げ燃料供給量を増加するように制御し
、蒸気圧力及び蒸気流量が所定[より大きい場合には演
算値に基いて燃料供給量が小となるように制御する。こ
の場合、求められる制御精度が低くてもよいときには、
蒸気圧のみによる制御全行なつもよい。
First, regarding the boiler, a steam pressure detector 25 is installed on the steam extraction pipe 14 of the steam drum 1, and the steam pressure detected by the steam pressure detector is measured. The signal is compared with a set value in the pressure controller 31, and the comparison value and the steam flow rate signal from the steam flow rate detector 14a provided on the steam extraction pipe 14 are inputted to the full computing unit 34, and calculations are performed to determine the steam pressure and When the steam flow rate is lower than a predetermined value, the rotation speed of the motor 16 of the combustion material supply device is increased based on the calculated value and the fuel supply amount is increased. The fuel supply amount is controlled to be small based on the calculated value. In this case, when the required control accuracy may be low,
It is also possible to perform all control based only on steam pressure.

1次、蒸気圧力検出器23は気水ドラム1上に直接設け
てもよい。
The primary steam pressure detector 23 may be provided directly on the steam/water drum 1.

また、一方、圧力制御器31からの圧力の比較イ直を比
較器52に入力し、比較器32の設定値全変更する0即
ち例えば圧力検知器23で検知され九圧力が所定値より
高い場合比較器32の設定値を大とすると共に、該流動
層内の温度検値器25よりの温度信号と比較し、該温度
信号と設定値との比較を行ない、該比較信号に基いて熱
回収部9への散気風量制御器33により散気用空気送入
管上のパルプ11aを閉じる方向に制御し、散気管12
よりの散気風量を小として熱回収部9における熱回収i
i′ft小とするように制御する。また、圧力検知器2
3で検知された圧力が所定値ニジ低い場合には、上記高
い場合と逆の制御を行ない熱回収部9における熱回収量
を大となるように制御し、水の蒸発量を大として、気水
ドラム1の蒸気引出管から引き出される蒸気圧力が大と
なるように制御する。
On the other hand, the pressure comparison signal from the pressure controller 31 is input to the comparator 52, and the set value of the comparator 32 is completely changed. The set value of the comparator 32 is increased, and it is compared with the temperature signal from the temperature reading device 25 in the fluidized bed, the temperature signal and the set value are compared, and the heat is recovered based on the comparison signal. The aeration air volume controller 33 to the aeration section 9 controls the pulp 11a on the aeration air supply pipe in the direction of closing, and the aeration pipe 12
Heat recovery i in the heat recovery section 9 by reducing the amount of diffused air
Control is performed so that i'ft is small. In addition, pressure detector 2
If the pressure detected in step 3 is lower than the predetermined value, the control is performed in the opposite manner to the case where the pressure is high, and the amount of heat recovered in the heat recovery section 9 is controlled to be large, increasing the amount of water evaporation, and reducing the amount of air. The steam pressure extracted from the steam extraction pipe of the water drum 1 is controlled to be high.

つぎに熱回収部を蒸気加熱器(又は蒸気再熱器)とした
旋回流型流動床ポイ21′の制御について説明する。
Next, control of the swirling flow type fluidized bed POI 21' in which the heat recovery section is a steam heater (or steam reheater) will be explained.

該ボイ2の制御においては、蒸気導入管14を経て流動
床ボイラ1″の熱回収部の伝熱管15′で加熱され九蒸
気の引出管14″上に設けられた蒸気温度検出器21よ
りの温度信号を温度制御器31′において設定値と比較
し、該比較値及び蒸気引出管14上に設けられた蒸気流
量検知器14aよりの蒸気流層信号を演算器34′に入
力し、演算を行ない、蒸気温度及び蒸気流量が所定値よ
り低い場合には演算値に基いて燃料供給装置17゛のモ
ータ16″の回転数を制御して燃料例えば石炭の供給t
′?1−pA節する。即ち、蒸気温度及び蒸気流量が所
定値より低い場合には演算値に基いて燃料供給装置17
′のモータ16′の回転数を上げ燃料供給量を増加する
ように制御し、蒸気温度及び蒸気R,tが所定値より高
い場合には、演算値に基いて燃料供給装置117’のモ
ータ16′の回転数を小とし、燃料供給tを小とするよ
うに制御する。
In controlling the steam boiler 2, the temperature of the steam heated by the heat exchanger tube 15' of the heat recovery section of the fluidized bed boiler 1'' through the steam introduction tube 14 is detected by the steam temperature detector 21 installed on the extraction tube 14'' of the nine steam. The temperature signal is compared with a set value in the temperature controller 31', and the comparison value and the steam flow layer signal from the steam flow rate detector 14a provided on the steam extraction pipe 14 are inputted to the calculator 34' to perform calculations. If the steam temperature and steam flow rate are lower than predetermined values, the rotation speed of the motor 16'' of the fuel supply device 17'' is controlled based on the calculated values to supply fuel, such as coal.
′? 1-pA clause. That is, when the steam temperature and steam flow rate are lower than predetermined values, the fuel supply device 17
The motor 16' of the fuel supply device 117' is controlled to increase its rotation speed and the amount of fuel supplied, and if the steam temperature and the steam R, t are higher than predetermined values, the motor 16 of the fuel supply device 117' is controlled to increase the rotation speed of the motor 16' of the ' is controlled to be small and the fuel supply t is small.

この場合、求められる制御精度が低くてもよいときには
、蒸気温度のみに基いて制御してもよい。
In this case, when the required control accuracy may be low, control may be performed based only on the steam temperature.

また一方、温度制御器31′からの比較値を比較器32
′に入力し、比較器32′の設定値を変更する。即ち、
例えば蒸気温度検知器21で検知された温度が所定値よ
り高い場合には、温度制御器31″からの信号に基いて
比較器32′の設定値を大とすると共に該流動層ボイラ
1′の流動層内の温度検知器25″よりの温度信号と比
較し、該温度信号と設定値との比較を行ない、該比較信
号に基いて熱回収部9′における散気風量制御器35′
により散気用空気導入管り1′上のパルプ11a’に閉
じる方向に制御して散気管12′よりの散気風tを小と
して熱回収部9′における熱回収tt小として蒸気温度
を下げるように制御する。また、蒸気温度検知器21に
より検知された温度が所定値より低い場合には、上記高
い場合と逆の制御を行ない熱回収部9′における熱回収
部を大となるように制御し、蒸気温度が高く−なるよう
に制御する。
On the other hand, the comparison value from the temperature controller 31' is transferred to the comparator 32.
' to change the set value of the comparator 32'. That is,
For example, if the temperature detected by the steam temperature detector 21 is higher than a predetermined value, the set value of the comparator 32' is increased based on the signal from the temperature controller 31'', and the temperature of the fluidized bed boiler 1' is increased. The temperature signal from the temperature sensor 25'' in the fluidized bed is compared, the temperature signal is compared with a set value, and the aeration air volume controller 35' in the heat recovery section 9' is activated based on the comparison signal.
The pulp 11a' on the diffuser air introduction pipe 1' is controlled in the direction of closing to reduce the diffused air t from the diffuser pipe 12', thereby reducing the heat recovery tt in the heat recovery section 9' and lowering the steam temperature. to control. Further, when the temperature detected by the steam temperature detector 21 is lower than a predetermined value, the opposite control to the above-mentioned case when the temperature is high is performed, and the heat recovery section in the heat recovery section 9' is controlled to be large, so that the steam temperature control so that it is high.

本発明においては、流動床ボイ21は気水ドラムから引
き出される蒸気の圧力に基いて制御を行なうので気水ド
ラムの圧力が所定値より大となるのt防止でき、ま九流
動床ボイラ1′は蒸気温度に基いて制御を行なうので、
ユーザーが要望する温度の蒸気の供給を行なうことが可
能である〇 つぎに、第1図に示した制御機構に、更に燃料供給量に
応じて流動層下部から供給する燃焼用空気を制御する手
段について第2図に基いて説明する。
In the present invention, since the fluidized bed boiler 21 is controlled based on the pressure of steam drawn from the steam/water drum, it is possible to prevent the pressure of the steam/water drum from becoming higher than a predetermined value. Since the control is based on the steam temperature,
It is possible to supply steam at the temperature desired by the user.Next, in addition to the control mechanism shown in Figure 1, there is a means for controlling the combustion air supplied from the bottom of the fluidized bed according to the amount of fuel supplied. will be explained based on FIG.

なお、燃焼用空気を制御する手&’に設けた以外は第1
図に示す手段と全く同じであるので、燃焼用空気の制御
手段についてのみ説明する。
In addition, except for the one installed in the hand &' that controls combustion air
Only the combustion air control means will be described, since they are exactly the same as the means shown in the figure.

前に説明したように、流動ノーボイラ1の燃焼物供給量
は演算器34から出力される演算値に基いて制御される
が、第2図に示す装置においては、更に、演算器35か
らの演算値の信号に基いて燃焼用空気量制御器35によ
り燃焼用突気配管3上のパルプ57を制御することによ
り燃焼物供給量に応じた量の燃焼用空気を供給するよう
に制御する。
As explained previously, the amount of fuel supplied to the fluidized no-boiler 1 is controlled based on the calculated value output from the calculating unit 34, but in the apparatus shown in FIG. Based on the value signal, the combustion air amount controller 35 controls the pulp 57 on the combustion gust pipe 3, thereby controlling the amount of combustion air to be supplied in accordance with the amount of combustibles supplied.

即ち、蒸気圧力及び蒸気流量が所定値より低い場合には
演算器54から出力される演算値に基いて燃料供給装置
のモータ16の回転数を上は燃料供給量を増加するよう
に制御すると共に、該演算値に基いて燃焼用空気量制御
器35により燃焼用窒気配管上のパルプ36を開の方向
に制御し、燃料供給量に見合った量の燃焼用空気を供給
するように制御する。蒸気圧力及び蒸気流波が所定値ニ
ジ高い場合VCは上記と逆の制御を行なうのは当然であ
る。
That is, when the steam pressure and the steam flow rate are lower than predetermined values, the rotation speed of the motor 16 of the fuel supply device is controlled to increase the amount of fuel supplied based on the calculated values output from the computing unit 54. Based on the calculated value, the combustion air amount controller 35 controls the pulp 36 on the combustion nitrogen pipe in the direction of opening, so as to supply an amount of combustion air commensurate with the amount of fuel supplied. . Naturally, when the steam pressure and the steam flow wave are higher than a predetermined value, the VC performs the opposite control to the above.

燃料供給量に応じて燃焼用空気を制御することに工υ、
流動床内の空気比を一定とする運転が可能となり、低空
気化運転、脱硫・脱硝効率の高い運転が可能となる。
Efforts are made to control the combustion air according to the amount of fuel supplied.
It becomes possible to operate with a constant air ratio in the fluidized bed, which enables operation with low aeration and high desulfurization and denitrification efficiency.

なお、流動床ボイラ1′への燃焼用空気の供給量も蒸気
引出管上の温度信号に基いて制御を行なう以外は流動床
ボイ21の制御と全く同様に制御される。
The amount of combustion air supplied to the fluidized bed boiler 1' is controlled in exactly the same manner as the fluidized bed boiler 21, except that it is controlled based on the temperature signal on the steam extraction pipe.

なお、第5図、第7図、第12図、第13図、第14図
、第15図、第16図に示される旋回流型流動床ボイラ
も上記第1図及び第2囚に基いて説明した如く、ボイラ
上2個設けることにニジ同様に運転できる。なおこの場
合、気水ドラム及び燃焼ガスからの熱回収装置は共用で
1個設けるとよい。
Note that the swirl flow fluidized bed boilers shown in Figures 5, 7, 12, 13, 14, 15, and 16 are also based on Figures 1 and 2 above. As explained above, if two units are installed on the boiler, it can be operated in the same way as the boiler. In this case, it is preferable to provide one heat recovery device from the air/water drum and the combustion gas for common use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複床式旋回光m爾動床ボイラ並びに燃
焼物(燃料ン供給量及び散気用望気を制御する手段を示
す概略図、第2図は第1図に示す装置に更に燃焼物(燃
料)供給量にルして燃焼用空気供給量制御手段を付加し
た本発明の複床式旋回流型流動床ボイラを示す概略図、
第3図は炉中の熱回収域における伝熱管の腐食速度の温
度による変化を示す図、第4図は流動化質量速度(Gm
f )と伝熱係数及び摩耗速度の関係を示す図、第5図
及び第7因は旋回流型流動床式熱回収装置の一実施?I
J ’を示す全体の縦断面図、第6図は第5図のボイラ
室のA−AMにおける矢視図、第8図は熱回収室の流動
空気量(Gmf )と熱回収室に循環される流動媒体循
環量との関係を示す図、第9図は熱回収室の散気ガス風
ii (Gmf )と下降移動層沈降速度の関係を示す
図、第10図は熱回収室下部の開口部に設は九仕切シを
説明するための断面図、第11図は第10図のD−D線
における矢視図、第12図、第15図、第14図、第1
5図及び第16図は、夫々旋(ロ)製型流動床式熱回収
装置の他の実施列を示す全体の断面図、第17図は第1
3図乃至第16図に示す実施例における熱回収室の伝熱
管並びに散気装置を説明するための図面、第18図は同
水管の垂直部分、及び開口部の配列を説明する次めの図
面、第19図、第20図及び第21図は、散気装置の設
置状態及び該散気装置に設けられたガス噴出口の開口の
状態を説明するための図面、第22図、第23図及び第
24図は、夫々第19図、第20図及び@21図に示す
如き散気装置を設けた場合における開口Bからの、ガス
質量速度と開口A% 3% Cからのガス質量速度の関
係を示す図面、第25図、第26図及び第27図は、夫
々第19図、第20図及び第21図に示す如き散気装w
Lヲ設は九場合における6噴出口から噴出されるガスの
質量速度の相関関係を示す図面、第28図は散気装置を
水平に設け、且つ噴出口を均一に設は友場合と、第21
図に示す如き散気装置1に設けた場合における平均散気
ガス質量速度と平均伝熱量との関係を示す図面、第29
図は熱回収室平均散気ガス量と伝熱係数との関係を示す
図面、第50図は熱回収部を2つに区分して使用する場
合を説明する九めの図面である。 1.51・・・炉、2,52・・・分散板、4゜5.6
,54,55,56.56’・・・空気量、8.58・
・・反射壁仕切% 9,59・・・循環I−部(熱回収
部)% 12.12’、62・・・散気装置、15.6
5・・・開口部、15.15’、65・・・伝熱管、1
9.67・・・気水ドラム、25・・・圧力検知器、2
1,25.25’・・・温度検知器、23・・・蒸気圧
力検知器、31・・・圧力制御器、151′・・・温度
制御器、52.52’・・・比較器、55.55’・・
・散気風歓制御器、64゜3’4’−−1演算器、55
.55’・・・燃焼用空気量制御器 lit遣頂(mm /Yeqγ〕 第8図 流動?気t tGmf) 矢E’   Gmf  HBAR;t!6比it’IG
+   1!流動・媒体J4環量 り、  +!熾動JX、C懺劾?気1改すr*lを+休
息で4士功ダ上呻i z−h 3扇合 Go  II L+ mUk−−r%’lh’l’At
3GmL=Er15流!l温沫浦環量 第9図 !六回おじ虻1文気力”ス尺士(Gmf)茅10図 第11図 第13図 第14図 第17図 第19図 茅、。、       第21図 第22図 関ロB力゛Snガス屓量遺良 第23回 0         1Gaf         2G
nf        3Gsprf騙口8a’Se力”
λ膚量遼嵐 茅24図 関口Bh・うのη゛ス鷹tm 第25図 OA          B           C
開口 第26図 OA          B          C第
27図 OAB         C O 第28図 乎均致気力°ス礪を逢屓
FIG. 1 is a schematic diagram showing a double-bed rotating light rotating bed boiler of the present invention and a means for controlling the supply amount of combustible material (fuel) and the desired air for aeration, and FIG. 2 is a schematic diagram showing the device shown in FIG. 1. A schematic diagram showing a double-bed swirling flow type fluidized bed boiler of the present invention in which a combustion air supply amount control means is further added to the combustible material (fuel) supply amount,
Figure 3 shows the change in corrosion rate of heat transfer tubes in the heat recovery zone in the furnace depending on temperature, and Figure 4 shows the fluidization mass velocity (Gm
f ), a diagram showing the relationship between the heat transfer coefficient and the wear rate, Figure 5 and the seventh factor are one implementation of the swirling flow fluidized bed heat recovery device? I
6 is a longitudinal cross-sectional view of the entire boiler room shown in FIG. 5, taken along arrow A-AM, and FIG. Figure 9 is a diagram showing the relationship between the aeration gas wind II (Gmf) in the heat recovery chamber and the descending moving bed sedimentation velocity, and Figure 10 is the relationship between the opening at the bottom of the heat recovery chamber. 11 is a cross-sectional view for explaining the nine partitions, FIG. 11 is a view taken along line D-D in FIG. 10, FIG. 12, FIG.
5 and 16 are overall cross-sectional views showing other implementation rows of the rotary type fluidized bed heat recovery device, respectively, and FIG. 17 is a cross-sectional view of the first
Drawings for explaining the heat exchanger tubes and air diffuser of the heat recovery chamber in the embodiment shown in FIGS. 3 to 16, and FIG. 18 is the next drawing for explaining the vertical portion of the water tube and the arrangement of the openings. , FIG. 19, FIG. 20, and FIG. 21 are drawings for explaining the installation state of the air diffuser and the state of the opening of the gas outlet provided in the air diffuser, FIG. 22, and FIG. 23. and Fig. 24 show the gas mass velocity from the opening B and the gas mass velocity from the opening A% C when the diffuser as shown in Figs. 19, 20, and 21 is provided, respectively. The drawings showing the relationships, FIGS. 25, 26 and 27, are for the diffuser w as shown in FIGS. 19, 20 and 21 respectively.
Figure 28 shows the correlation between the mass velocity of the gas ejected from the six nozzles in the case of L. 21
Drawing 29 showing the relationship between the average diffused gas mass velocity and the average amount of heat transfer when provided in the diffuser 1 as shown in the figure.
The figure shows the relationship between the average amount of diffused gas in the heat recovery chamber and the heat transfer coefficient, and FIG. 50 is the ninth figure illustrating the case where the heat recovery section is divided into two parts. 1.51...furnace, 2,52...dispersion plate, 4°5.6
, 54, 55, 56.56'... Air amount, 8.58.
...Reflection wall partition% 9,59...Circulation I-section (heat recovery section)% 12.12',62...Air diffuser, 15.6
5... Opening, 15.15', 65... Heat exchanger tube, 1
9.67...Air/water drum, 25...Pressure detector, 2
1, 25.25'... Temperature detector, 23... Steam pressure detector, 31... Pressure controller, 151'... Temperature controller, 52.52'... Comparator, 55 .55'...
・Diffusion wind controller, 64°3'4'--1 computing unit, 55
.. 55'...Combustion air amount controller lit top (mm/Yeqγ) Fig. 8 flow?t tGmf) Arrow E' Gmf HBAR;t! 6 ratio it'IG
+1! Flow/medium J4 ring weighing, +! Fierce JX, C attack? 1 change r*l + rest and 4 Shikou da upper groan i z-h 3 Ogiai Go II L+ mUk--r%'lh'l'At
3GmL=Er15 style! l Onshapo Ring Volume 9th figure! 6th Ojiji 1 Bun Kiryoku" Sushakushi (Gmf) 10 Figures 11 Figure 13 Figure 14 Figure 17 Figure 19 Kaya... Quantity 23rd 0 1Gaf 2G
nf 3Gsprf trick 8a'Se power"
Figure 24 Sekiguchi Bh/Uno η゛suhawktm Figure 25 OA B C
Opening Fig. 26 OA B C Fig. 27 OAB C O Fig. 28

Claims (1)

【特許請求の範囲】 1、炉底部より上方に向けて流動化ガスを噴出させる空
気分散板を1組又は2組以上備えると共に、該空気分散
板端部上方に、該流動化ガスの上向流路をさえぎり、且
つ、該流動化ガスを、上向き流路をさえぎられていない
ガス噴出部上方に向けて、反射転向せしめる反射仕切を
設けることにより、上向流路をさえぎられていない噴出
部上部に流動媒体が固定層ないし流動層状態で沈降する
移動層を形成すると共に、上向流路をさえぎられた噴出
部近傍上部においては流動媒体が活発に流動化し、且つ
前記反射仕切の作用によりこの部分の流動媒体を前記移
動層上部に向つて旋回せしめることにより旋回型流動層
を形成し、且つ、該反射仕切背部と炉壁又は反射仕切背
部と反射仕切背部の間に熱回収室を形成せしめ、運転中
流動媒体の一部が前記反射仕切の上部を越えて熱回収室
に入り込むように構成し、該熱回収室下部で且つ反射仕
切の背面側に熱回収室内の流動媒体を固定層から弱い流
動層状態の範囲で変化させるための通気用ガス散気装置
を設けると共に、熱回収室の下部に炉底の上方に通ずる
開口を設けると共に熱回収室内に受熱流体を通じた伝熱
面を配備した熱回収室を備えた旋回流型流動床ボイラを
2箇設け、一方の炉(1)の熱回収部を、気水ドラムで
蒸気を発生せしめるための液体加熱器とし、他方の炉(
1′)の熱回収部を前記気水ドラムで発生した蒸気又は
タービン等より回収した低温の蒸気を通ずることにより
過熱蒸気を生成せしめるための蒸気過熱器及び/又は蒸
気再熱器とした複床式旋回流型流動床ボイラ。 2、特許請求の範囲第1項記載の複床式旋回流型流動床
ボイラにおいて、蒸気過熱器及び/又は蒸気再熱器の出
口蒸気温度を検出して該蒸気温度に相当する蒸気温度信
号を出力する蒸気温度検出手段と該蒸気温度信号に応答
して該蒸気過熱器及び/又は蒸気再熱器を備えたボイラ
(1′)の流動床燃焼部への可燃物供給量を制御する手
段を設け、且つ、気水ドラムの蒸気圧力を検出して該蒸
気圧力に相当する蒸気圧力信号を出力する蒸気圧力検出
手段と、該蒸気圧力信号に応答してボイラ(1)の流動
床燃焼部への可燃物供給量を制御する手段とを設けた複
床式旋回流型流動床ボイラ。 3、特許請求の範囲第1項記載の複床式旋回流型流動床
ボイラにおいて、蒸気過熱器及び/又は蒸気再熱器の出
口蒸気温度を検出して該蒸気温度に相当する蒸気温度信
号を出力する蒸気温度検出手段と、蒸気過熱器及び/又
は蒸気再熱器を備えたボイラ(1′)の流動床燃焼部の
流動媒体温度を検出して該流動媒体温度に相当する流動
媒体温度信号を出力する流動媒体温度検出手段とを具え
、前記蒸気温度信号に基いて前記ボイラ(1′)へ供給
する可燃物供給量並びにボイラ(1′)の流動媒体温度
設定器の設定温度を制御する手段並びに前記流動媒体温
度信号に基いてボイラ(1′)の熱回収部への散気用ガ
スの通気速度を制御する手段を備え、更に、気水ドラム
の蒸気圧力を検出して該蒸気圧力に相当する蒸気圧力信
号を出力する蒸気圧力検出手段と、蒸気発生器を備えた
ボイラ(1)の流動媒体温度を検出して流動媒体の温度
に相当する流動媒体温度信号を出力する流動媒体温度検
出手段を備え、更に、該蒸気圧力信号に基いてボイラ(
1)の流動媒体温度設定器の設定温度を制御する手段及
び該蒸気圧力信号に基いてボイラ(1)への可燃物供給
量を制御する手段を備えると共に、前記流動床媒体温度
信号に基いてボイラ(1)の熱回収部への散気用ガスの
通気量を制御する手段を備えた複床式旋回流型流動床ボ
イラ。 4、特許請求の範囲第2項又は第3項記載の複床式旋回
流型流動床ボイラにおいて、気水ドラムの蒸気圧力を検
出して該蒸気圧力に相当する蒸気圧力信号を出力する蒸
気圧力検出手段のほか、更に気水ドラムから供給される
蒸気流量を検知し、該蒸気量に応じた信号を出力する蒸
発量検知手段を設け、該蒸気圧力信号並びに蒸気量信号
に基いてボイラ(1)への可燃物供給量を制御する手段
を設けた複床式旋回流型流動床ボイラ。 5、特許請求の範囲第2項、第3項又は第4項記載の複
床式旋回流型流動床ボイラにおいて、更に、ボイラ(1
)及び/又は(1′)への可燃物供給量を検知し、該夫
々の供給量に応じた信号を出力する可燃物供給量信号に
基いて、ボイラ(1)及び/又は(1′)に供給する燃
焼用空気量を制御する手段を設けた複床式旋回流型流動
床ボイラ。
[Claims] 1. One set or two or more sets of air distribution plates are provided that eject fluidization gas upward from the bottom of the furnace, and above the ends of the air distribution plates, an upward direction of the fluidization gas is provided. By providing a reflective partition that blocks the flow path and reflects and diverts the fluidized gas toward the gas jet section where the upward flow path is not blocked, the gas jet section where the upward flow path is not blocked is At the top, the fluidized medium forms a fixed bed or a moving bed that settles in a fluidized bed state, and at the upper part near the spout where the upward flow path is blocked, the fluidized medium is actively fluidized, and due to the action of the reflective partition. A swirling fluidized bed is formed by swirling the fluidized medium in this portion toward the top of the moving bed, and a heat recovery chamber is formed between the back of the reflective partition and the furnace wall or between the back of the reflective partition and the back of the reflective partition. The structure is such that during operation, a part of the fluidized medium passes over the upper part of the reflective partition and enters the heat recovery chamber, and the fluidized medium in the heat recovery chamber is placed in a fixed layer at the lower part of the heat recovery chamber and on the back side of the reflective partition. In addition to providing a ventilation gas diffuser to change the state from low to weak fluidized bed conditions, an opening communicating above the furnace bottom is provided at the bottom of the heat recovery chamber, and a heat transfer surface through which the heat receiving fluid passes through the heat recovery chamber is provided. There are two swirling flow type fluidized bed boilers equipped with heat recovery chambers, the heat recovery section of one furnace (1) is used as a liquid heater for generating steam in a steam-water drum, and the heat recovery section of the other furnace (
1') A double bed in which the heat recovery section is a steam superheater and/or steam reheater for generating superheated steam by passing steam generated in the steam drum or low-temperature steam recovered from a turbine, etc. Swirling flow type fluidized bed boiler. 2. In the double-bed swirling flow type fluidized bed boiler according to claim 1, the outlet steam temperature of the steam superheater and/or steam reheater is detected and a steam temperature signal corresponding to the steam temperature is generated. output steam temperature detection means and means for controlling the amount of combustibles supplied to the fluidized bed combustion section of the boiler (1') equipped with the steam superheater and/or steam reheater in response to the steam temperature signal; a steam pressure detection means for detecting the steam pressure of the steam-water drum and outputting a steam pressure signal corresponding to the steam pressure; A double-bed swirling flow type fluidized bed boiler is provided with means for controlling the amount of combustible material supplied. 3. In the double-bed swirling flow type fluidized bed boiler according to claim 1, the outlet steam temperature of the steam superheater and/or steam reheater is detected and a steam temperature signal corresponding to the steam temperature is generated. A fluidized medium temperature signal corresponding to the fluidized medium temperature by detecting the fluidized medium temperature of the fluidized bed combustion section of the boiler (1') equipped with an output steam temperature detection means and a steam superheater and/or a steam reheater. and a fluidized medium temperature detection means for outputting the steam temperature signal, and controls the amount of combustible material supplied to the boiler (1') and the set temperature of the fluidized medium temperature setting device of the boiler (1') based on the steam temperature signal. and a means for controlling the ventilation rate of the aeration gas to the heat recovery section of the boiler (1') based on the temperature signal of the fluidized medium and the temperature signal of the fluidized medium; a steam pressure detection means for outputting a steam pressure signal corresponding to the temperature of the fluidized medium; The boiler (
1), comprising means for controlling the set temperature of the fluidized medium temperature setting device and means for controlling the amount of combustible material supplied to the boiler (1) based on the steam pressure signal, and based on the fluidized bed medium temperature signal. A double-bed swirling flow fluidized bed boiler equipped with means for controlling the amount of gas for aeration into the heat recovery section of the boiler (1). 4. In the double-bed swirling fluidized bed boiler according to claim 2 or 3, a steam pressure for detecting the steam pressure of the steam drum and outputting a steam pressure signal corresponding to the steam pressure. In addition to the detection means, an evaporation amount detection means is provided which detects the flow rate of steam supplied from the steam drum and outputs a signal corresponding to the steam amount. ) A double-bed swirling flow fluidized bed boiler equipped with means for controlling the amount of combustible material supplied to the boiler. 5. In the double-bed swirling flow fluidized bed boiler according to claim 2, 3 or 4, the boiler (1
) and/or (1'), and outputs a signal corresponding to the respective supply amount.Based on the combustible material supply amount signal, A double-bed swirling flow fluidized bed boiler equipped with means for controlling the amount of combustion air supplied to the boiler.
JP63023757A 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler Expired - Fee Related JPH0756363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023757A JPH0756363B2 (en) 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023757A JPH0756363B2 (en) 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH01200101A true JPH01200101A (en) 1989-08-11
JPH0756363B2 JPH0756363B2 (en) 1995-06-14

Family

ID=12119200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023757A Expired - Fee Related JPH0756363B2 (en) 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPH0756363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150029435A (en) * 2013-09-10 2015-03-18 한국전력공사 Circulating fluidized bed boiler equipped with heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150029435A (en) * 2013-09-10 2015-03-18 한국전력공사 Circulating fluidized bed boiler equipped with heat exchanger

Also Published As

Publication number Publication date
JPH0756363B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
CA1170915A (en) Power generation plant
JP3132662B2 (en) Circulating fluidized bed reactor and operating method thereof
US4473033A (en) Circulating fluidized bed steam generator having means for minimizing mass of solid materials recirculated
JP2818236B2 (en) Fluid bed cooler, fluid bed combustion reactor and method of operating the reactor
JPH0472122B2 (en)
US4442795A (en) Recirculating fluidized bed combustion system for a steam generator
CN204388046U (en) Biomass recirculating fluidized bed boiler
US5005528A (en) Bubbling fluid bed boiler with recycle
US4454838A (en) Steam generator having a circulating fluidized bed and a dense pack heat exchanger for cooling the recirculated solid materials
US4442796A (en) Migrating fluidized bed combustion system for a steam generator
BR112017002756B1 (en) Apparatus for burning solid fuel
US4453495A (en) Integrated control for a steam generator circulating fluidized bed firing system
CN103339442B (en) Method to enhance operation of circulating mass reactor and reactor to carry out such method
RU2059150C1 (en) Fluidized-bed boiler and its control method
US4462341A (en) Circulating fluidized bed combustion system for a steam generator with provision for staged firing
DK154916B (en) PROCEDURE FOR COOLING ASH FROM A FLUIDIZED RENTAL LIVING AND FIREPLACE FOR EXERCISING THE PROCEDURE
JPH01200101A (en) Double floor type fluidized bed boiler
JPS625242B2 (en)
JPS63187001A (en) Fluidized-bed heat recovery device
AU2547892A (en) Method and device in the cooling of the circulating material in a fluidized-bed boiler
JP5498434B2 (en) Biomass fired boiler
EP2933557B1 (en) Swirling type fluidized bed furnace
JP2000508750A (en) Combustion method and combustion plant for burning auxiliary fuel in high pressure fluidized bed freeboard
Bullinger et al. Coal drying improves performance and reduces emissions
US3171390A (en) Steam generating unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees