JPH0756363B2 - Multiple bed fluidized bed boiler - Google Patents

Multiple bed fluidized bed boiler

Info

Publication number
JPH0756363B2
JPH0756363B2 JP63023757A JP2375788A JPH0756363B2 JP H0756363 B2 JPH0756363 B2 JP H0756363B2 JP 63023757 A JP63023757 A JP 63023757A JP 2375788 A JP2375788 A JP 2375788A JP H0756363 B2 JPH0756363 B2 JP H0756363B2
Authority
JP
Japan
Prior art keywords
steam
temperature
boiler
amount
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63023757A
Other languages
Japanese (ja)
Other versions
JPH01200101A (en
Inventor
勉 肥後
孝裕 大下
一 川口
茂 小杉
直樹 犬丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP63023757A priority Critical patent/JPH0756363B2/en
Publication of JPH01200101A publication Critical patent/JPH01200101A/en
Publication of JPH0756363B2 publication Critical patent/JPH0756363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、旋回流型流動床ボイラを複数個設け、夫々の
ボイラの熱回収部を夫々独立して蒸気発生部並びに蒸気
加熱部及び/又は蒸気再熱部として利用する複床式旋回
流型流動床ボイラに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides a plurality of swirl-flow type fluidized-bed boilers, and the heat recovery parts of the respective boilers are independent of each other, and a steam generation part, a steam heating part, and / or Alternatively, the present invention relates to a multi-bed swirling flow type fluidized bed boiler used as a steam reheating section.

〔発明の技術的背景〕[Technical background of the invention]

本発明者らは、以前、流動媒体として径1mm程度の粒状
固体を用いる旋回流型流動床式焼却炉において、流動媒
体から熱を回収する方法について種々研究を行つていた
ところ、従来炉壁の一部を構成していた反射壁の代りに
反射仕切を炉内に独立して設け、且つ、該反射仕切背面
と炉壁の間を熱回収室とし、該熱回収室内に流動層から
の加熱媒体による移動層を形成させ、該熱回収室内に受
熱流体を加熱するための伝熱面を配置することにより、
伝熱面の摩耗を起すとなく、且つ効率良く流動媒体から
熱を回収し、また熱回収量をコントロールしうることを
見いだし特許を出願した(特願昭62−9057号)。
The present inventors have previously conducted various studies on a method for recovering heat from a fluidized medium in a swirling type fluidized bed incinerator that uses a granular solid having a diameter of about 1 mm as a fluidized medium. Independently of the reflective wall that formed a part of the above, a reflective partition is independently provided in the furnace, and the space between the back surface of the reflective partition and the furnace wall serves as a heat recovery chamber. By forming a moving layer of a heating medium and arranging a heat transfer surface for heating the heat receiving fluid in the heat recovery chamber,
The inventors have found that heat can be efficiently recovered from the fluidized medium without causing wear of the heat transfer surface and the amount of heat recovered can be controlled, and a patent has been filed (Japanese Patent Application No. 62-9057).

また、従来の焼却炉においては燃焼物の量が増加した場
合、或いは燃焼物の熱量が大となつた場合、流動媒体の
温度上昇にう伴う流動媒体の燃結や溶融によるトラブル
を防ぐため流動媒体に水を注入して流動媒体を冷却して
いたが、前述の如く炉内に熱回収室を設けることにより
流動媒体から効率良く熱を回収することができるように
なつたため、即ち熱を回収することにより流動媒体を冷
却することができるようになつたため、例えば石炭ボイ
ラの燃焼部として利用することも可能となつた。
In the conventional incinerator, when the amount of combustibles increases, or when the calorific value of the combustibles becomes large, fluidization is prevented in order to prevent problems due to burning or melting of the fluidizing medium due to the temperature rise of the fluidizing medium. Although the fluidized medium was cooled by injecting water into the medium, heat can be efficiently recovered from the fluidized medium by providing the heat recovery chamber in the furnace as described above, that is, the heat is recovered. By doing so, it became possible to cool the fluidized medium, so that it was possible to use it as a combustion part of a coal boiler, for example.

更に、熱回収部を燃焼部と区分し、かつ、燃焼部は旋回
流動床であるため、不燃物を含んだ燃焼物の専焼及び石
炭等との混焼もできるようになつた。即ち、あらゆる燃
焼物を燃料として用いることができるようになつた。
Furthermore, since the heat recovery section is separated from the combustion section, and the combustion section is a swirling fluidized bed, it is possible to perform exclusive combustion of the combustion material containing incombustibles and co-firing with coal or the like. That is, all combustible materials can be used as fuel.

以下、図面に基いて炉内に熱回収室を設けた旋回流型流
動層ボイラについて説明する。
Hereinafter, a swirling type fluidized bed boiler having a heat recovery chamber provided in a furnace will be described with reference to the drawings.

第5図は、炉内に熱回収室を設けた流動層ボイラの一実
施例を示すものであつて、特開昭57−124608号公報記載
の流動層炉に熱回収室を設けたものである。
FIG. 5 shows an embodiment of a fluidized bed boiler in which a heat recovery chamber is provided in the furnace, and the heat recovery chamber is provided in the fluidized bed furnace described in JP-A-57-124608. is there.

第5図において、炉51内底部にはブロワ57により流動用
ガス導入管53から導入される流動化ガスの分散板52が備
えられ、この分散板52は両側縁部が中央部より低く、炉
51の中心線に対してほぼ対称的な山形断面状(屋根状)
に形成されている。そして、ブロワ57から送られる流動
用ガスは、空気室54、55、56を経て分散板52から上方に
噴出せしめるようになつており、両側縁部の空気室54、
56から噴出する流動化ガスの質量速度は、炉51内の流動
媒体の流動層を形成するのに十分な速度とするが、中央
部の空気室55から噴出する流動化ガスの質量速度は前者
よりも小さく選ばれている。
In FIG. 5, the inner bottom of the furnace 51 is provided with a dispersion plate 52 for the fluidizing gas introduced from the flow gas introduction pipe 53 by the blower 57, and both side edges of the dispersion plate 52 are lower than the central part.
A mountain-shaped cross section (roof) that is almost symmetrical with respect to the center line of 51
Is formed in. The flowing gas sent from the blower 57 is adapted to be jetted upward from the dispersion plate 52 via the air chambers 54, 55, 56, and the air chambers 54 on both side edges,
The mass velocity of the fluidizing gas ejected from 56 is sufficient to form a fluidized bed of the fluidized medium in the furnace 51, but the mass velocity of the fluidizing gas ejected from the air chamber 55 in the central portion is the former. Is chosen smaller than.

両側縁部の空気室54、56の上部には、流動化ガスの上向
き流路をさえぎり、空気室54、56から噴出される流動化
ガスを炉51内中央に向けて反射転向させる反射壁とし
て、上部を内側に折りまげた板状の反射仕切58が設けら
れ、この反射仕切58と噴出する流動化ガスの質量速度の
差により図面中矢印で示す方向の旋回流が生ずる。一方
この反射仕切58の背面と炉壁間に熱回収室59が形成さ
れ、運転中に流動媒体の一部が反射仕切58の上部を越え
て熱回収室59に入り込むように構成されている。この傾
けられた反射仕切により、反射仕切上端近傍にて最も厳
しく流動化ガスが噴出する形となり、従つてそれに伴つ
て流動層から吹きあげられた流動媒体は容易に反射仕切
上端を越えて熱回収室側に入りこむことができる。
At the upper portions of the air chambers 54, 56 on both side edges, as a reflection wall that blocks the upward flow path of the fluidizing gas and reflects and turns the fluidizing gas ejected from the air chambers 54, 56 toward the center of the furnace 51. A plate-shaped reflective partition 58 whose upper part is folded inward is provided, and a swirl flow in the direction indicated by the arrow in the drawing is generated due to the difference in mass velocity between the reflective partition 58 and the fluidized gas jetted. On the other hand, a heat recovery chamber 59 is formed between the rear surface of the reflective partition 58 and the furnace wall, and a part of the fluidized medium is configured to enter the heat recovery chamber 59 over the upper portion of the reflective partition 58 during operation. Due to this tilted reflective partition, the fluidized gas is most severely ejected in the vicinity of the upper end of the reflective partition, so that the fluidized medium blown up from the fluidized bed is easily recovered over the upper end of the reflective partition. Can enter the room side.

また、熱回収室59の下部の炉底よりも高いレベルには、
ブロワ60から導入管61を経てガスを導入する散気装置62
が設けられ、熱回収室59の散気装置62を設置した近傍に
は開口部63が設けられ、熱回収室59に入り込んだ流動媒
体は、運転状態によつて固定層のまま保持され、あるい
は連続的又は断続的に移動層ないし弱い流動層を形成し
つつ沈降し、散気装置の間をすり抜けてその下方より燃
焼部へ循環する。
In addition, at a level higher than the bottom of the heat recovery chamber 59,
Air diffuser 62 that introduces gas from blower 60 through introduction pipe 61
Is provided, an opening 63 is provided in the vicinity of the heat recovery chamber 59 where the air diffuser 62 is installed, and the fluidized medium that has entered the heat recovery chamber 59 is retained as a fixed bed depending on the operating state, or It sediments continuously or intermittently while forming a moving bed or a weak fluidized bed, slips between the diffusers, and circulates from below to the combustion section.

この沈降量は、熱回収室への散気風量、燃焼部の流動化
ガス風量によつてある程度制御される。すなわち、流動
媒体が熱回収室59に入り込む量G1は、第8図に示すよう
に燃焼部を流動させるために分散板52から噴出する流動
化ガス、特に端部の空気室54、56から噴出する流動化ガ
スの量を増やすと、増加する。また、第9図に示すよう
に熱回収室吹込風量を0〜1Gmf未満の移動層の範囲で変
化させると、熱回収室内を沈降する流動媒体量は、ほぼ
比例して変化し、熱回収室風量が1Gmf以上の流動層の場
合にほぼ一定となる。この一定となる流動媒体量は熱回
収室に入り込む流動媒体量G1にほぼ等しい。なお、熱回
収室内を沈降する流動媒体量はG1に応じた量となる。こ
の両風量を調節することにより熱回収室59内を沈降する
流動媒体の沈降量は制御される。熱回収室において流動
ないし高速流動や噴流により上方に吹き飛ばすことなし
に流動媒体過熱抑制や熱回収に有効なG1を確保するため
には、極力流動層燃焼部より噴出するガス流が最大とな
る近傍において、落下する流動媒体を熱回収室に入れて
やる事が必要であり、このためには燃焼部側にせり出さ
れた反射仕切は燃焼部の上昇するガス流加速機能とせり
出して流動媒体を受ける機能を兼ねた最適形状を持つて
いる。
The amount of sedimentation is controlled to some extent by the amount of diffused air to the heat recovery chamber and the amount of fluidized gas in the combustion section. That is, the amount G 1 of the fluidized medium entering the heat recovery chamber 59 is determined by the fluidizing gas ejected from the dispersion plate 52 in order to fluidize the combustion section, particularly from the air chambers 54 and 56 at the ends as shown in FIG. It increases when the amount of fluidizing gas ejected is increased. Further, as shown in FIG. 9, when the amount of air blown into the heat recovery chamber is changed within the range of the moving bed of 0 to less than 1 Gmf, the amount of the fluidized medium settling in the heat recovery chamber changes in a substantially proportional manner. It becomes almost constant in the case of a fluidized bed with an air volume of 1 Gmf or more. This constant fluid medium amount is approximately equal to the fluid medium amount G 1 entering the heat recovery chamber. The amount of the fluidizing medium settled in the heat recovery chamber is the amount according to G 1 . By adjusting both the air volumes, the sedimentation amount of the fluid medium that sediments in the heat recovery chamber 59 is controlled. In order to secure effective G 1 for fluid medium overheating suppression and heat recovery without blowing upwards by flow or high-speed flow or jet in the heat recovery chamber, the gas flow ejected from the fluidized bed combustion section is maximized. In the vicinity, it is necessary to put the falling fluidized medium into the heat recovery chamber. For this purpose, the reflective partition protruding toward the combustion section side is the rising gas flow accelerating function of the combustion section and protrudes into the fluidized medium. It has an optimum shape that also has the function of receiving.

熱回収室59内には第6図に示すように配管64で廃熱ボイ
ラ67に連通された内部に受熱流体を通じた伝熱管65が配
置され、熱回収室を下方に移動する流動媒体と熱交換を
行なうことにより流動媒体から熱を回収するようになつ
ている。この熱回収部での伝熱係数は熱回収室散気風量
を0〜2Gmfまで変化させると第29図に示す1例のように
大きくなだらかに変化する。なお、第29図は第21図に示
す原理の散気装置で、流動媒体は平均粒径1.2mm、温度8
50℃前後における値である。
As shown in FIG. 6, in the heat recovery chamber 59, a heat transfer pipe 65 through which a heat receiving fluid is passed is arranged inside a pipe 64 which communicates with a waste heat boiler 67. By exchanging the heat, heat is recovered from the fluid medium. The heat transfer coefficient in the heat recovery section changes greatly and gently as shown in FIG. 29, when the diffused air volume of the heat recovery chamber is changed from 0 to 2 Gmf. Note that FIG. 29 shows an air diffuser of the principle shown in FIG. 21, in which the fluid medium has an average particle size of 1.2 mm and a temperature of 8
It is a value around 50 ° C.

熱回収量を制御するためには、前述のように、流動媒体
循環量を制御すると同時に伝熱係数を制御する。すなわ
ち、燃焼室の流動化ガス量を一定とすれば、熱回収室の
散気風量を増加させると、流動媒体循環量が増加すると
同時に伝熱係数が増加し、相乗効果として熱回収量は大
幅に増加する。この関係を示したのが第4図である。こ
のことは、流動層中の流動媒体の温度の面から考えれ
ば、流動媒体の温度が所定の温度以上に上昇するのを防
ぐ効果にあたる。
In order to control the heat recovery amount, as described above, the fluid medium circulation amount is controlled, and at the same time, the heat transfer coefficient is controlled. In other words, if the amount of fluidized gas in the combustion chamber is constant, increasing the amount of diffused air in the heat recovery chamber increases the circulating amount of the fluidized medium and at the same time increases the heat transfer coefficient, which has a synergistic effect on the heat recovery amount. Increase to. This relationship is shown in FIG. Considering the temperature of the fluidized medium in the fluidized bed, this has an effect of preventing the temperature of the fluidized medium from rising above a predetermined temperature.

熱回収室59にガスを導入する手段としては種々の装置が
考えられるが、一般的には第10図に示すように散気装置
を水平に設置する方法が採られる。第10図においては説
明を簡略とし、部分流動化を明示するために燃焼部との
流動媒体の循環を無視して移動層の現象を省いている。
この場合、ガスを導入するための開口を全炉床面に対し
均一に設けると、散気装置へのガス供給量に関係なく単
位面積当りの供給ガス量は炉床全面にわたつて均一とな
る。そして散気装置へのガス供給量を徐々に増やしてゆ
くと、最低流動化速度Gmfと呼ばれる或る供給ガス量を
境にして熱回収室内の流動媒体が固定層から流動層へと
変化する。
Various devices can be considered as a means for introducing gas into the heat recovery chamber 59, but generally, a method of horizontally installing an air diffuser as shown in FIG. 10 is adopted. In FIG. 10, the explanation is simplified, and in order to clearly show the partial fluidization, the circulation of the fluid medium with the combustion section is ignored and the phenomenon of the moving bed is omitted.
In this case, if the openings for introducing gas are provided uniformly over the entire hearth surface, the amount of gas supplied per unit area will be uniform over the entire hearth regardless of the amount of gas supplied to the diffuser. . Then, when the gas supply amount to the air diffuser is gradually increased, the fluidized medium in the heat recovery chamber changes from the fixed bed to the fluidized bed at a certain supply gas amount called the minimum fluidization rate Gmf as a boundary.

このような場合における熱回収室での伝熱量について考
えると、本発明に係る熱回収室においては、伝熱面と流
動媒体の間の伝熱係数は供給されるガスの流動化質量速
度1Gmfを越えた近傍で急激に変化するため、この流動化
質量速度を境にして流動媒体と接した面における伝熱係
数が著るしく変化し、従つて熱回収室における全伝熱量
も急激に変化することとなる。
Considering the heat transfer amount in the heat recovery chamber in such a case, in the heat recovery chamber according to the present invention, the heat transfer coefficient between the heat transfer surface and the fluidized medium is the fluidized mass velocity of 1 Gmf of the supplied gas. Since it rapidly changes in the vicinity of the fluidized mass velocity, the heat transfer coefficient on the surface in contact with the fluidizing medium changes remarkably at this fluidization mass velocity, and thus the total heat transfer amount in the heat recovery chamber also changes rapidly. It will be.

このような状況の下で散気装置へのガス供給量によつて
伝熱量の制御を行なう場合、実質的には流動化質量速度
が1Gmf近傍より大で伝熱量が大きい状態、流動化質量速
度が1Gmfより小で伝熱量が小さい状態、及び散気装置へ
のガス供給を止めて伝熱量が極端に小さい状態の何れか
の状態を選択する段階的な制御となつてしまう。
When the heat transfer amount is controlled by the gas supply amount to the air diffuser under such a situation, the fluidized mass velocity is substantially higher than around 1 Gmf and the heat transfer amount is large. Is less than 1 Gmf and the amount of heat transfer is small, or the state where the amount of heat transfer is extremely small by stopping the gas supply to the air diffuser is selected in a stepwise control.

これに対し、散気装置を第17図に示すように傾斜させて
設置したり、散気装置の熱回収室59へのガス噴出口の開
口径を場所により変化させることにより、或いは開口径
は同一であつてもその密度を変化させることにより通ガ
ス圧損に変化を与えたりすると、熱回収室中へ導入され
るガスの量は場所により異なる状態となるばかりでな
く、散気装置に供給されるガス量の大小によりこの状態
は助長されることになる。例えば散気装置に供給するガ
ス量を徐々に増やして行くと、相対的に通ガス圧損の小
さいガス噴出口(開口)から流動媒体層へ供給されるガ
ス量の増加率は相対的に大となり、逆に相対的に通ガス
圧損の大きいガス噴出口(開口)から流動媒体層へ供給
されるガス量の増加率は相対的に小となる。
On the other hand, the air diffuser is installed at an angle as shown in FIG. 17, or the opening diameter of the gas ejection port to the heat recovery chamber 59 of the air diffuser is changed depending on the location, or the opening diameter is Even if the density is the same, if the gas pressure loss is changed by changing its density, not only will the amount of gas introduced into the heat recovery chamber vary depending on the location, but it will also be supplied to the air diffuser. This condition will be promoted depending on the amount of gas that flows. For example, if the amount of gas supplied to the air diffuser is gradually increased, the rate of increase in the amount of gas supplied to the fluidized medium layer from the gas ejection port (opening) with a relatively small gas pressure loss becomes relatively large. Conversely, the rate of increase in the amount of gas supplied to the fluidized medium layer from the gas ejection port (opening) having a relatively large gas pressure loss is relatively small.

このため、相対的に通ガス圧損が小さいガス導入口上部
の流動媒体層のみ流動層となり、それ以外の部分は固定
層のままの状態、逆にいえば相対的に通ガス圧損が大き
いガス導入口近傍の流動媒体層のみが固定層であり、そ
れ以外の部分が流動層となる状態が生ずる。
For this reason, only the fluidized medium layer above the gas inlet with a relatively small gas flow pressure loss becomes a fluidized bed, and the other parts remain in the fixed bed, or conversely, gas with a relatively large gas flow pressure loss. A state occurs in which only the fluidized medium layer near the mouth is the fixed bed, and the other portions are fluidized beds.

すなわち、散気装置へ供給するガス量の増加に伴ない、
熱回収室中の流動媒体層が、導入ガスの流動化質量速度
1Gmf未満の場合における固定層の状態から、一部が流動
化質量速度1Gmf以上で形成される流動層の状態、他が固
定層の状態となり、これら両者の占める炉床面積の割合
は次第に流動層状態の部分が多くなり、遂に流動媒体層
全体が流動層状態へと移行する。
That is, as the amount of gas supplied to the diffuser increases,
The fluidized medium layer in the heat recovery chamber is the fluidized mass velocity of the introduced gas.
From the state of the fixed bed in the case of less than 1 Gmf, part of the fluidized bed is formed at a fluidization mass velocity of 1 Gmf or more, the other is the state of the fixed bed, the ratio of the hearth area occupied by these both gradually becomes the fluidized bed The number of states increases, and finally the entire fluidized medium layer transitions to the fluidized bed state.

この結果、熱回収室中における伝熱量についてみれば、
散気装置へ供給するガス量の増加に伴ない、当初熱回収
室中に吹きこまれる流動化質量速度1Gmf未満の伝熱量が
小さい状態から、一部が流動化質量速度1Gmf以上の伝熱
量が大きい状態で、他が1Gmf未満の伝熱量が小さい状態
のままとなり、両状態にある伝熱面の面積割合は次第に
伝熱量の大きい部分が増大し、遂には全体が流動化質量
速度1Gmf以上の伝熱量の大きい状態へと移行する。熱回
収室内における全体の伝熱量はこれら各部の伝熱量の和
であるため、散気装置へのガス供給量の増減に基く伝熱
量の増減はなだらかな増減を示すこととなり、伝熱量の
連続的な制御が容易にできることとなる。
As a result, regarding the amount of heat transfer in the heat recovery chamber,
As the amount of gas supplied to the air diffuser increased, the heat transfer amount initially less than the fluidization mass velocity of 1 Gmf blown into the heat recovery chamber was small. In the large state, the others remain in a state where the heat transfer amount less than 1 Gmf is small, the area ratio of the heat transfer surface in both states gradually increases in the part with a large heat transfer amount, and finally the whole fluidized mass velocity of 1 Gmf or more. Transition to a state where the amount of heat transfer is large. Since the total heat transfer amount in the heat recovery chamber is the sum of the heat transfer amounts of these parts, the increase or decrease in the heat transfer amount based on the increase or decrease in the gas supply amount to the air diffuser shows a smooth increase or decrease, and the continuous heat transfer amount. Various controls can be easily performed.

このような散気装置の例を第19図、第20図及び第21図に
示す。
An example of such an air diffuser is shown in FIG. 19, FIG. 20 and FIG.

第19図は、水平に設置した散気管に開口径の異なるガス
噴出口を複数個設けた例であり、噴出口をガスが通過す
る時の抵抗が異なるため、各噴出口の通ガス量が異な
る。すなわち、噴出口の開口径の大きさが、第19図に示
すようにA>B>Cであるとすると、通ガス量はA>B
>Cとなる。
FIG. 19 shows an example in which a plurality of gas ejection ports having different opening diameters are provided in a horizontally installed air diffusing pipe, and the resistance when the gas passes through the ejection ports is different, so the amount of gas passing through each ejection port is different. different. That is, assuming that the opening diameter of the ejection port is A>B> C as shown in FIG. 19, the gas flow rate is A> B.
> C.

第20図は、開口径が同一の噴出口を有する散気管を傾斜
させて設置した例であつて、流動媒体層に吹き出すため
の吐出圧力は流動媒体層の深さに比例するため、各噴出
口から噴出される通ガス量は異なる。すなわち、流動媒
体層の深さの深い順に噴出口をA、B、Cとすると、通
ガス量はA<B<Cの順となる。
FIG. 20 shows an example in which an air diffuser having jets with the same opening diameter is installed in a tilted manner, and the discharge pressure for blowing out to the fluidized medium layer is proportional to the depth of the fluidized medium layer. The amount of passing gas ejected from the outlet is different. That is, assuming that the jet outlets are A, B, and C in the order of increasing depth of the fluidized medium layer, the gas passing amounts are in the order of A <B <C.

第21図は開口径の異なる噴出口を備えた散気管を傾斜し
て設置した例であり、流動媒体層の深さの深い部分に位
置する噴気口径を大とし、流動媒体層の深さの浅い部分
に位置する噴出口の開口径を小として流動媒体層の深さ
による通ガス圧損の差を開口径により修正したものであ
る。
FIG. 21 is an example in which an air diffuser equipped with jets having different opening diameters is installed in a slanted manner, in which the diameter of the fumarole located in the deep portion of the fluidized medium layer is increased and the depth of the fluidized medium layer is increased. The opening diameter of the jet port located in the shallow portion is set to be small, and the difference in the gas pressure loss due to the depth of the fluidized medium layer is corrected by the opening diameter.

すなわち、開口径の大きさをA>B>Cとすることによ
り任意の設計点における各開口の通ガス量をA=B=C
とすることができ、この場合、該設計点以下で通ガス量
はA<B<Cと、設計点以上では通ガス量をA>B>C
とすることができる。
That is, by setting the size of the opening diameter to A>B> C, the amount of gas passing through each opening at any design point is A = B = C.
In this case, the gas flow rate is A <B <C below the design point, and the gas flow rate is A>B> C above the design point.
Can be

この以前に提案した発明は、今までに説明した流動層を
反射仕切58で仕切つて流動層主燃焼部(流動旋回層部)
と熱回収部(循環層部)59を設けた流動層ボイラにおけ
る循環層部(熱回収部)の熱回収量を無段階的にしかも
桁違いの大きな範囲で、循環層部の流動媒体内への吹込
風量(散気量)によつて容易に調節しうることに着目
し、循環層部(熱回収部)に挿入された伝熱管に蒸気を
通して蒸気過熱管とし、該蒸気の出口側温度を検知し、
該出口温度に基いて循環層部の散気管への供給風量調節
ダンパの開度を調節することにより得られる過熱蒸気温
度を所定の温度となるように制御するものである。
In the previously proposed invention, the fluidized bed described so far is partitioned by the reflective partition 58 so that the fluidized bed main combustion section (fluid swirling bed section) is formed.
And the heat recovery section (circulation layer section) 59 are provided in the fluidized bed boiler in a fluidized bed boiler in which the heat recovery amount of the circulation layer section (heat recovery section) is steplessly and within a large range in the order of magnitude. Paying attention to the fact that it can be easily adjusted by the blown air volume (aeration amount), steam is passed through the heat transfer tube inserted in the circulation layer section (heat recovery section) to form a steam superheater tube, and the temperature on the outlet side of the steam is adjusted. Detect
The superheated steam temperature obtained by adjusting the opening of the supply air amount adjusting damper to the diffuser pipe of the circulation layer based on the outlet temperature is controlled to be a predetermined temperature.

即ち、蒸気の出口側温度が設定値よりも低い側に変化し
た時はダンパを開き蒸気過熱管の挿入された部分の熱回
収室における散気ガス量を増加させて伝熱量を増加する
ことにより蒸気の出側温度を高め、設定値よりも高い側
に変化した時はその逆を行なう。このようにすることに
より過熱蒸気温度は容易に設定温度近傍の温度となる。
That is, when the temperature on the outlet side of the steam changes to a lower side than the set value, the damper is opened to increase the amount of diffused gas in the heat recovery chamber of the part where the steam superheater tube is inserted to increase the amount of heat transfer. When the steam outlet temperature is raised and the temperature rises above the set value, the opposite is done. By doing so, the superheated steam temperature easily becomes a temperature near the set temperature.

これらの散気装置を用いて散気装置に供給するガス量を
変化させた時の各噴出口から流動媒体層中に吹き出され
るガス量の1例を第22図、第23図及び第24図に示す。
One example of the amount of gas blown into the fluidized medium layer from each jet when the amount of gas supplied to the diffuser is changed by using these diffusers is shown in FIGS. 22, 23 and 24. Shown in the figure.

第22図は第19図に示す如き散気装置を用いた場合の図、
第23図は第20図に示す如き散気装置を用いた場合の図、
第24図は第21図に示す如き散気装置を用いた場合の図で
ある。
FIG. 22 is a diagram when an air diffuser as shown in FIG. 19 is used,
FIG. 23 is a diagram when an air diffuser as shown in FIG. 20 is used,
FIG. 24 is a diagram when the air diffuser as shown in FIG. 21 is used.

第22図、第23図及び第24図においては、横軸に噴出口B
から吹き出されるガスの質量速度を、縦軸に各噴出口か
ら吹出されるガスの質量速度を示す。
In FIG. 22, FIG. 23, and FIG. 24, the jet port B is shown on the horizontal axis.
The mass velocity of the gas blown out from the nozzle is shown, and the vertical axis shows the mass velocity of the gas blown out from each jet.

これらの図から、噴出口Bから吹き出るガスの質量速度
が1Gmf未満であつても他の噴出口から吹き出されるガス
の質量速度が1Gmf以上となる場合、あるいは噴出口Bか
ら吹き出されるガスの質量速度が1Gmf以上となつていて
も他の噴出口から吹き出されるガスの質量速度が1Gmf未
満となる場合があることが明らかである。
From these figures, even if the mass velocity of the gas blown from the jet B is less than 1 Gmf, the mass velocity of the gas blown from another jet becomes 1 Gmf or more, or the gas blown from the jet B is Even if the mass velocity is 1 Gmf or more, it is clear that the mass velocity of the gas blown out from another jet may be less than 1 Gmf.

第25図、第26図及び第27図は、夫々第22図、第23図及び
第24図に示した各噴出口から吹き出されるガスの質量速
度の関係を、横軸に噴出口を、縦軸に各噴出口から吹き
出されるガスの質量速度を示したものである。
FIGS. 25, 26 and 27 show the mass velocity relationships of the gas blown out from the respective ejection ports shown in FIGS. 22, 23 and 24, respectively, with the horizontal axis representing the ejection ports, The vertical axis shows the mass velocity of the gas blown from each jet.

第25図は第19図に示す如き散気装置を設けた場合に対応
する図、第26図は第20図に示す如き散気装置を設けた場
合に対応する図、第27図は第21図に示す如き散気装置を
設けた場合に対応する図である。
FIG. 25 is a diagram corresponding to the case where the air diffuser as shown in FIG. 19 is provided, FIG. 26 is a diagram corresponding to the case where the air diffuser as shown in FIG. 20 is provided, and FIG. It is a figure corresponding to the case where the air diffuser as shown in the figure is provided.

これらの図においては、散気装置への同一供給ガス量下
の各プロツトを折れ線で結んでいる。
In these figures, each plot under the same supply gas amount to the air diffuser is connected by a broken line.

この様に各噴出口によつて互いに異なるガス質量速度と
なる場合、総伝熱量は、それら各噴出口に対応する領域
での伝熱面積と各流動化質量速度に応じた伝熱係数の積
の和となる。例えば、第25図乃至第27図において流動化
質量速度が1Gmfとなる散気装置への供給ガス量は噴出口
により互いに異なり従つて総伝熱量では急激な伝熱係数
の変化に応じた変化は起こらない。
In this way, when the gas mass velocities are different from each other depending on each jet, the total heat transfer amount is the product of the heat transfer area in the region corresponding to each jet and the heat transfer coefficient corresponding to each fluidized mass velocity. Is the sum of For example, in FIGS. 25 to 27, the amount of gas supplied to the air diffuser having a fluidized mass velocity of 1 Gmf differs from each other depending on the jet outlets. It won't happen.

各噴出口に対応する領域の伝熱面は散気装置への供給ガ
ス量を増加する場合においては漸次1Gmf強における高い
伝熱量へと変化することになり、また供給ガス量を減少
する場合には逆の現象がおこる。従つて、第19図乃至第
21図に示す3つの例のいずれの方法を用いた場合にも前
述のように散気装置へ供給するガス量の増減に対する伝
熱量の増減の特性をなだらかにすることができる。第21
図に示した例では、例えば第24図に示すように質量速度
2Gmfで各ノズルから吹出されるガス量が均一となるよう
に設計できる。
When the amount of gas supplied to the diffuser is increased, the heat transfer surface in the area corresponding to each jet will gradually change to a high amount of heat transfer at a little over 1 Gmf, and when the amount of gas supplied is decreased. The opposite phenomenon occurs. Therefore, Figs. 19 to
When any of the three examples shown in FIG. 21 is used, the characteristic of the increase / decrease in the amount of heat transfer with respect to the increase / decrease in the amount of gas supplied to the diffuser can be made smooth as described above. 21st
In the example shown in the figure, for example, as shown in Fig. 24, the mass velocity
It can be designed so that the amount of gas blown out from each nozzle is uniform at 2 Gmf.

このようにすることにより、第4図に示すような質量速
度2Gmf以上の領域、即ち伝熱量に関してはかえつてマイ
ナスとなり、かつ伝熱面の摩耗速度が質量速度に応じて
急激に大きくなる部分の生じる運転点が生じないように
設計することができる。
By doing so, as shown in FIG. 4, the region where the mass velocity is 2 Gmf or more, that is, the amount of heat transfer becomes rather negative, and the wear rate of the heat transfer surface rapidly increases in accordance with the mass velocity. It can be designed so that no operating points occur.

すなわち、噴出口Bを例えば2Gmfとすると第22図の噴出
口A及び第23図の噴出口Cは2Gmf以上となるが、第24図
に示す例においては噴出口Bを2Gmfとすれば他の全ての
ノズルも2Gmfと均一な通ガス量となる。すなわち、熱回
収室の全ての伝熱面の摩耗速度が小さくて最高の熱回収
量を得ることができることとなる。
That is, if the ejection port B is, for example, 2 Gmf, the ejection port A in FIG. 22 and the ejection port C in FIG. 23 are 2 Gmf or more, but if the ejection port B is 2 Gmf in the example shown in FIG. All nozzles have a uniform gas flow rate of 2 Gmf. That is, the wear rate of all the heat transfer surfaces of the heat recovery chamber is low, and the maximum amount of heat recovery can be obtained.

なお、この通ガス量の合致点は、噴出口の口径、噴出口
密度並びに熱回収室の砂の表面からノズルまでの深さ等
により容易に設計できるものである。
The coincidence point of the gas flow amount can be easily designed depending on the diameter of the ejection port, the ejection port density, the depth from the surface of the sand in the heat recovery chamber to the nozzle, and the like.

この理由から、第21図に示すように散気装置を斜めに設
置すると共に、深い位置の噴出口ほど開口径乃至は噴出
口密度を大とするのが好ましい。
For this reason, it is preferable that the air diffuser is installed obliquely as shown in FIG. 21, and the opening diameter or the outlet density is made larger at the deeper the outlet.

このような散気装置を用いた場合の供給ガス質量速度と
伝熱量との関係を、散気装置を水平に設け、かつ噴出口
の開口を均一になるように設けた場合との比較において
第28図に示す。
The relationship between the mass velocity of the supplied gas and the amount of heat transfer in the case of using such an air diffuser is compared with the case where the air diffuser is provided horizontally and the openings of the ejection ports are evenly provided. Shown in Figure 28.

なお、第28図において曲線yは均一な噴出口を有する散
気装置を水平に設けた場合を、曲線xは第21図に示す如
き散気装置を設けた場合を示す。
In FIG. 28, the curve y shows the case where an air diffuser having a uniform jet is installed horizontally, and the curve x shows the case where the air diffuser as shown in FIG. 21 is provided.

第28図に示す曲線より、散気装置を斜めに設け、かつガ
ス導入部に近いもの程ノズルの開口径を大とすることに
より、供給ガス量の増減による伝熱量の増減の特性がな
だらかになり(曲線x)、従つて供給ガス量を調整する
ことにより伝熱量を容易にかつ連続的に制御できること
が明らかである。
From the curve shown in FIG. 28, the characteristics of the heat transfer amount increase / decrease due to the increase / decrease in the supply gas amount are gradually increased by providing the air diffuser obliquely and increasing the nozzle opening diameter toward the gas introduction part. Therefore, it is clear that the heat transfer amount can be controlled easily and continuously by adjusting the supply gas amount (curve x).

このような流動を不均一化する効果に加え、本発明の如
くガスの吹き込みにより、燃焼部から流入してくる流動
媒体G1の作用でズリ落ちる形で下降する移動層にあつて
は、平均散気ガス量1.5Gmf前後以下では移動層特有の効
果でさらになだらかなものとなる。
In addition to the effect of making the flow non-uniform, in the case of a moving bed which is slid down due to the action of the fluid medium G 1 flowing in from the combustion part by blowing gas as in the present invention, the average If the amount of diffused gas is around 1.5 Gmf or less, the effect becomes peculiar to the moving bed.

即ち、1Gmf以下における伝熱係数は固定層に対して数倍
と大きくかつ散気ガス量に比例して増加し、また、1Gmf
を越えた散気ガス量においても移動の効果で流動化しに
くくなる。1〜1.5Gmfにおいて漸次流動化する結果、第
29図の如く0〜2Gmfまで漸増する伝熱係数と熱回収室平
均散気ガス量の関係が得られる。
That is, the heat transfer coefficient below 1 Gmf is several times larger than that of the fixed bed and increases in proportion to the amount of diffused gas.
Even if the amount of diffused gas exceeds the range, it becomes difficult to fluidize due to the effect of movement. As a result of progressive fluidization at 1 to 1.5 Gmf,
As shown in Fig. 29, the relationship between the heat transfer coefficient that gradually increases from 0 to 2 Gmf and the average amount of diffused gas in the heat recovery chamber is obtained.

この熱回収室散気風量による熱回収量の制御は、後述の
ように急速に行なうことができる。
The control of the amount of heat recovery by the amount of diffused air in the heat recovery chamber can be performed rapidly as described later.

つぎに流動層高と流動媒体循環量の関係についてより詳
しく説明する。
Next, the relationship between the fluidized bed height and the circulating amount of the fluidized medium will be described in more detail.

流動層表面が反射仕切上端より低いかないしはほゞ同じ
位置にある場合反射仕切に沿つて下より上昇するガス流
は反射仕切によつて方向性を与えられ、反射仕切に沿つ
て流動層より噴出し、それに伴ない流動媒体も方向性を
与えられて主に反射仕切近傍の流動層表面より噴出す
る。噴出したガス流は流動層内と異なり流路内に充填さ
れていた流動媒体が無くなり流路断面が急激に広がると
ころから噴流も撹散し1m/秒以下の流速のゆるやかな流
れとなつて上方に排気され、従つて同伴されていた流動
媒体は、その流速によつて運ばれるには粒径が1mm前後
と大きいため、重力や排ガスとの摩擦により運動エネル
ギーを失ない落下する。そして一部の粒子は慣性により
燃焼部を飛びこえて熱回収部に飛び込むことになる。し
かしながら、流動層表面より噴出した流動媒体の飛距離
は、粒径あるいは比重との関係から1〜2m以下であり、
炉の幅が1〜2m以下の場合しか熱回収室において熱回収
や流動媒体過熱防止に必要な流動媒体量を確保できな
い。
When the surface of the fluidized bed is lower than the upper end of the reflective partition or at about the same position, the gas flow rising from below along the reflective partition is given a direction by the reflective partition, and along the reflective partition from the fluidized bed. Ejection, and the accompanying flow medium is also given directionality, and mainly ejects from the fluidized bed surface in the vicinity of the reflective partition. Unlike the fluidized bed, the jetted gas flow loses the fluidized medium that was filled in the flow path and the flow path cross-section rapidly expands, causing the jet flow to also scatter and form a gentle flow with a flow velocity of 1 m / sec or less. The fluidized medium exhausted to, and thus entrained in, has a large particle size of about 1 mm to be carried by its flow velocity, and therefore falls without losing kinetic energy due to gravity or friction with exhaust gas. Then, some of the particles will fly over the combustion section due to inertia and will jump into the heat recovery section. However, the flight distance of the fluidized medium ejected from the surface of the fluidized bed is 1 to 2 m or less in relation to the particle size or the specific gravity,
Only when the width of the furnace is 1 to 2 m or less, it is possible to secure the amount of fluid medium required for heat recovery and fluid medium overheating prevention in the heat recovery chamber.

ところで、流動層表面が、反射仕切の上端より上にある
場合には、流動層高が高ければ高い程仕切によつて寄せ
厚められた流動化ガスは反射仕切上端よりほぼ直上に噴
きあげる様にガス噴出方向が変化し、それに伴なう形で
流動媒体が主に反射仕切上端近傍の流動層表面より第5
図に矢印aで示すように吹き上げられた後落下すること
となり、容易に反射仕切の背面、即ち熱回収室へ大量に
はいりこむことになる。
By the way, when the surface of the fluidized bed is above the upper end of the reflective partition, the higher the fluidized bed height, the more the fluidized gas thickened by the partition is blown up almost directly above the upper end of the reflective partition. The direction in which the gas is ejected changes, and the fluidized medium is accompanied by a change in the direction from the fluidized bed surface near the upper end of the reflective partition to the fifth position.
As shown by the arrow a in the figure, it will be blown up and then dropped, and a large amount can easily be inserted into the back surface of the reflective partition, that is, the heat recovery chamber.

即ち、流動層高が大きい程反射仕切による噴出流動媒体
の方向性は真上方向に近くなり、流動層高が大きくなる
に従つて多くの流動媒体が熱回収室へはいり込むことに
なり、その増加割合は流動層高の反射仕切上端からの距
離が小さい程大である。
That is, as the height of the fluidized bed increases, the directionality of the ejected fluidized medium due to the reflective partition becomes closer to the direct upward direction, and as the height of the fluidized bed increases, more fluidized medium enters the heat recovery chamber. The rate of increase is larger as the distance of the fluidized bed height from the upper end of the reflective partition is smaller.

第5図において、66は炉51上部に設けられた燃焼物投入
口、67は排ガス出口68付近に設けられた気水ドラムで、
熱回収室59内の伝熱管65と循環路を形成している。ま
た、69は炉51底部の分散板52の両側縁部外側に接続され
た不燃物排出口で、70は逆ねじ方向に配設されたスクリ
ユー71を有するスクリユーコンベアである。
In FIG. 5, 66 is a combustion material inlet provided in the upper part of the furnace 51, 67 is a steam drum provided near the exhaust gas outlet 68,
A circulation path is formed with the heat transfer tube 65 in the heat recovery chamber 59. Further, 69 is an incombustible discharge port connected to the outside of both side edges of the dispersion plate 52 at the bottom of the furnace 51, and 70 is a screw conveyor having a screw 71 arranged in the reverse screw direction.

しかして、燃焼物投入口66より炉51内に投入された燃焼
物Fは、流動化ガスにより旋回流動している流動媒体と
共に流動しながら燃焼する。この時、空気室55の上方中
央部付近の流動媒体は激しい上下動は伴わず、弱い流動
ないし移動状態にある下降移動層を形成している。この
移動層の幅は、上方には狭いが裾の方は分散板52の傾斜
の作用も相俟つてやや広がつており、裾の一部は両側縁
部の空気室54、56の上方に達しているので、この両空気
室からの大きな質量速度の流動化ガスの噴射を受けて吹
き上げられる。すると、裾の一部の流動媒体が徐かれる
ので、空気室55の真上の層は自重で下降する。
Then, the combustion product F charged into the furnace 51 through the combustion product charging port 66 combusts while flowing together with the fluidizing medium that is swirling by the fluidizing gas. At this time, the fluid medium in the vicinity of the upper central portion of the air chamber 55 does not undergo a vigorous up-and-down motion, and forms a descending moving layer in a weakly flowing or moving state. The width of this moving layer is narrow in the upper part, but it is slightly wider in the hem part due to the effect of the inclination of the dispersion plate 52, and part of the hem part is located above the air chambers 54, 56 on both side edges. Since it has reached, it is blown up by the injection of fluidizing gas with a large mass velocity from both air chambers. Then, a part of the fluid medium at the skirt is slowed down, and the layer immediately above the air chamber 55 descends by its own weight.

この層の上方には、後述のように流動層からの流動媒体
が補給されて堆積し、これを繰り返して空気室55の上方
の流動媒体は徐々に連続的に下降する移動層を形成す
る。
The fluid medium from the fluidized bed is replenished and accumulated above this layer as described later, and by repeating this, the fluidized medium above the air chamber 55 forms a moving layer that gradually and continuously descends.

空気室54、56上に移動した流動媒体は上方に吹き上げら
れるが、反射仕切58に当つて反射転向して炉51の中央に
向かつて旋回せしめられ、中央部の移動層の頂部に落下
し、再び前述のように循環されると共に、流動媒体の一
部は反射仕切58の上部を越えて熱回収室59内に入り込
む。そして熱回収室59に堆積した流動媒体の沈降速度が
おそい場合には、熱回収室の上部には安息角を形成し余
剰の流動媒体は反射仕切上部から燃焼部に落下する。
The fluidized medium that has moved to the air chambers 54 and 56 is blown upward, but it is reflected and diverted toward the reflective partition 58 and swung toward the center of the furnace 51, and then falls onto the top of the moving layer in the central part. It is circulated again as described above, and at the same time, a part of the fluid medium crosses over the upper portion of the reflective partition 58 and enters the heat recovery chamber 59. Then, when the sedimentation velocity of the fluidized medium accumulated in the heat recovery chamber 59 is low, a repose angle is formed at the upper part of the heat recovery chamber and the surplus fluidized medium falls from the upper part of the reflective partition to the combustion part.

熱回収室59内に入り込んだ流動媒体は、散気装置62から
吹き込まれるガスによつて流動せずズリ落ちる形の移動
ないし緩やかな流動が行われつつ徐々に下降する流動媒
体の循環層が形成され、伝熱面との熱交換が行われたの
ち、反射仕切下端の開口部63から燃焼部へ還流される。
The fluidized medium that has flowed into the heat recovery chamber 59 does not flow due to the gas blown from the air diffuser 62 and moves in a slipping manner, or forms a circulation layer of the fluidized medium that gradually descends while performing a gentle flow. After the heat is exchanged with the heat transfer surface, it is returned to the combustion section through the opening 63 at the lower end of the reflective partition.

この熱回収室59内で散気装置62から導入される散気ガス
の質量速度は0〜3Gmf、好ましくは0.5〜2Gmfの範囲内
の値から選ばれる。
The mass velocity of the diffused gas introduced from the diffuser 62 in the heat recovery chamber 59 is selected from a value within the range of 0 to 3 Gmf, preferably 0.5 to 2 Gmf.

その理由は、第4図に示される如く3Gmf以下の場合、伝
熱係数も大きく、且つ、摩耗速度が小さいからである。
The reason is that, as shown in FIG. 4, in the case of 3 Gmf or less, the heat transfer coefficient is large and the wear rate is small.

また、熱回収室59内の散気ガスの質量速度を0〜1Gmfと
変化させると、第9図に示すように熱回収室内の移動層
の沈降速度がほぼ直線的に変化し、必要量の高温媒体の
量を任意にコントロールできる。しかし、蒸気等の不
要、あるいは燃焼物の発熱量が小さいために流動媒体か
ら熱回収を行うと流動層温度が低下して良好な燃焼がで
きなくなる時にはこの部分の流動化ガス量を0とすれ
ば、流動媒体からの熱回収をやめて運転を行うこともで
きる。また、熱回収部は炉51内の主燃焼領域外であり、
酸化還元を繰り返す雰囲気のような強い腐食性を持たな
いために、従来のものと比べて伝熱管65が腐食を受けに
くく、また、前述のようにこの部分では流動速度も低い
ため、伝熱管65の摩耗も極めて少ない。
When the mass velocity of the diffused gas in the heat recovery chamber 59 is changed to 0 to 1 Gmf, the sedimentation velocity of the moving bed in the heat recovery chamber changes substantially linearly as shown in FIG. The amount of high temperature medium can be controlled arbitrarily. However, when heat is recovered from the fluidized medium due to unnecessary use of steam or the calorific value of the combusted material is small and good combustion cannot be achieved, the fluidized gas amount in this part should be set to 0. For example, the operation can be performed without recovering the heat from the fluid medium. Further, the heat recovery section is outside the main combustion area inside the furnace 51,
Since the heat transfer tube 65 is less susceptible to corrosion than the conventional one because it does not have strong corrosiveness such as the atmosphere in which redox is repeated, and as mentioned above, the flow rate is low in this part, the heat transfer tube 65 Wear is extremely low.

流動化ガスの質量速度0.5〜2Gmfの範囲において実際に
は流動媒体温度例えば800℃において流動媒体の粒径に
もよるが、ガス速度は0.1〜0.4m/秒(空塔速度)と極め
て低速度である。
Although the mass velocity of the fluidizing gas is 0.5 to 2 Gmf, the gas velocity is 0.1 to 0.4 m / sec (superficial velocity), which is extremely low at the fluid medium temperature of 800 ° C, depending on the particle size of the fluid medium. Is.

燃焼物中に流動媒体より大きな径の不燃物がある場合に
は、燃焼残渣は一部の流動媒体と共に底部のスクリユ
ーコンベア70より排出される。
When there is an incombustible substance having a diameter larger than that of the fluidized medium in the combusted material, the combustion residue is discharged together with a part of the fluidized medium from the screw conveyor 70 at the bottom.

また、熱回収室59内の伝熱は、流動媒体と伝熱管65との
直接接触による伝熱に加えて、流動媒体の流動により激
しく不規則に振動しながら上昇するガスを媒体とした伝
熱がある。後者は、通常のガス−固体間の接触状態に対
し、伝熱の妨げとなる固体表面の境界層がほとんど存在
せず、また流動媒体同志が流動によつてよく撹拌される
ために、静止媒体と異なる粉体の中での伝熱が無視でき
るようになり、極めて大きな伝熱特性を示す。
Further, the heat transfer in the heat recovery chamber 59 includes heat transfer by direct contact between the fluid medium and the heat transfer tube 65, and also by gas that rises while vibrating violently and irregularly due to the flow of the fluid medium. There is. The latter is a stationary medium because there is almost no boundary layer on the surface of the solid which hinders heat transfer, and the fluid mediums are well agitated by the flow, as compared with the normal gas-solid contact state. The heat transfer in the powder different from the above becomes negligible and it shows extremely large heat transfer characteristics.

したがつて、本発明の熱回収室においては、通常の燃焼
ガスからの熱回収に比較して最大時には10倍近い伝熱係
数をとることができる。
Therefore, in the heat recovery chamber of the present invention, a heat transfer coefficient close to 10 times can be taken at the maximum when compared with heat recovery from ordinary combustion gas.

このように、流動媒体と伝熱面との伝熱現象は吹込ガス
量に大きく依存しており、散気装置62から導入するガス
量の調節により流動媒体循環量も調節でき、且つ、移動
層による熱回収室59を炉内において主燃焼室から独立さ
せることで、コンパクトでかつターンダウン比が大きく
て制御容易な流動層熱回収装置とすることができる。
As described above, the heat transfer phenomenon between the fluidized medium and the heat transfer surface largely depends on the amount of the blown gas, the circulating amount of the fluidized medium can be adjusted by adjusting the amount of gas introduced from the air diffuser 62, and the moving bed By making the heat recovery chamber 59 independent from the main combustion chamber in the furnace, a fluidized bed heat recovery device that is compact and has a large turndown ratio and is easy to control can be provided.

石炭や石油コークスのように燃焼速度の遅い燃焼物を燃
料として用いたボイラーにおいては、通常蒸発量を急に
変化させたくとも燃焼速度に見合った速度でしか変化で
きない場合が多く、一般流動床ボイラにおいては燃焼速
度自体は改善されているものの流動層を介して熱回収を
行なうためにそれより更に劣る。
In a boiler that uses a combustion product with a slow burning rate such as coal or petroleum coke as a fuel, it is often the case that even if it is desired to suddenly change the evaporation rate, it can only change at a rate commensurate with the burning rate. Although the burning rate itself is improved in, it is further inferior because of the heat recovery through the fluidized bed.

しかしながら、第5図に関し説明した方法においては熱
回収室における伝熱量を、ガス散気量を変化させること
により、瞬時に数倍ないし数分の一に変化させることが
できる。従つて、燃焼物供給量の変化による流動層への
入熱量変化は燃焼速度に左右されるため、時間遅れを生
じるけれども、本発明の熱回収室における流動媒体から
の熱回収量は熱回収室散気量で急速に変化させることが
でき、入熱量と熱回収量の応答速度の差を流動媒体の温
度の一時的な温度変化として、流動層を形成する流動媒
体の顕熱蓄熱能により吸収できる。このため熱を無駄な
く利用することができ、従来の石炭だきボイラーの類に
はなかつた追従性の高い蒸発量制御が可能となる。
However, in the method described with reference to FIG. 5, the heat transfer amount in the heat recovery chamber can be instantly changed to several times to several times by changing the gas diffusion amount. Therefore, a change in the amount of heat input to the fluidized bed due to a change in the amount of the combustion material supplied depends on the combustion speed, and thus a time delay occurs, but the amount of heat recovered from the fluid medium in the heat recovery chamber of the present invention is It can be rapidly changed by the amount of air diffused, and the difference in the response speed between the heat input amount and the heat recovery amount is absorbed by the sensible heat storage capacity of the fluidized medium forming the fluidized bed as a temporary temperature change of the fluidized medium temperature. it can. Therefore, the heat can be used without waste, and the evaporation amount control with high followability, which is not possible with the conventional coal-fired boiler, can be performed.

なお、前記の不燃物排出口69の位置は、例えば図示例の
ように熱回収室59の反射仕切58の下部の開口部63並びに
炉51内の空気分散板の両側縁部に接するように位置せし
めるのがよいが、これに限定されるものではない。
The position of the incombustibles discharge port 69 is positioned so as to be in contact with the opening 63 at the bottom of the reflective partition 58 of the heat recovery chamber 59 and both side edges of the air dispersion plate in the furnace 51 as shown in the illustrated example. It is preferable, but not limited to this.

また、熱回収室59から不燃物排出口69への流動媒体の短
絡による排出を防止し、伝熱後の媒体を有効に燃焼室で
ある流動層へ戻すために、仕切り50を設けることも好ま
しく、この仕切り50は第10図及び第11図に示すように散
気装置62を形成する散気管にバンドなどで取付けた板状
のものでもよく、あるいは第5図の図示例のように炉壁
を利用して形成させることもできる。
It is also preferable to provide a partition 50 in order to prevent discharge of the fluidized medium from the heat recovery chamber 59 to the incombustibles discharge port 69 due to a short circuit, and to effectively return the medium after heat transfer to the fluidized bed which is the combustion chamber. As shown in FIGS. 10 and 11, the partition 50 may be a plate-like member which is attached to a diffuser tube forming a diffuser 62 with a band or the like, or as shown in FIG. It can also be formed by utilizing.

第5図においては、空気分散板52を山形とし、空気室を
三室(54、55、56)とし、空気室54及び56から噴出する
流動化ガスの質量速度を空気室55から噴出する流動化ガ
スの質量速度よりも大とする場合について説明したが、
流動層下部より吹き込まれる空気の質量速度は同一であ
つても反射仕切の作用により、即ち、反射仕切に沿つた
部分の空気流速が中央部に比し大となり流動層に旋回流
を形成せしめることが可能であるので、各空気室から噴
出させる流動化ガスの質量速度は同一としてもよく、ま
た同じ理由から第7図に示すように空気分散板52は水平
にし、且つ、単一の空気室56′としてもよい。また、こ
の場合空気室56′は一つの室とすることなく、教室に区
分してもよい。空気室を教室に区分する場合、室毎に流
動化ガスの質量速度を第5図について説明したように異
なる速度としてもよいのは当然である。
In FIG. 5, the air distribution plate 52 has a mountain shape, the air chambers are three chambers (54, 55, 56), and the mass velocity of the fluidizing gas ejected from the air chambers 54 and 56 is the fluidizing gas ejected from the air chamber 55. I explained the case of making it larger than the mass velocity of gas,
Even if the mass velocity of the air blown from the lower part of the fluidized bed is the same, due to the action of the reflective partition, that is, the air velocity in the part along the reflective partition is higher than that in the central part, and a swirling flow is formed in the fluidized bed. Therefore, the mass velocity of the fluidizing gas ejected from each air chamber may be the same, and for the same reason, as shown in FIG. 7, the air dispersion plate 52 is horizontal and a single air chamber is used. May be 56 '. Further, in this case, the air chamber 56 'may be divided into classrooms instead of being a single chamber. When the air chambers are divided into classrooms, it is natural that the mass velocity of the fluidizing gas may be different for each chamber as described with reference to FIG.

また、石炭のような不燃物含有量の少ない燃焼物を燃焼
させる場合には不燃物排出口は第7図に示すように省略
できる。
Further, in the case of burning a combustion product such as coal having a low content of non-combustible substances, the non-combustible substance discharge port can be omitted as shown in FIG.

つぎに、他の実施例を第12図に示す。第12図に示す旋回
流動床式熱回収装置は、第5図に示す旋回流動層2つを
同一の炉中に設け、従つて、中央部の熱回収室59は中央
部の2つの反射仕切58の背面間に設けると共に中央部の
熱回収室59の下部仕切りを第11図に示す構造のものとし
た以外は全く同じである。
Next, another embodiment is shown in FIG. The swirling fluidized bed heat recovery apparatus shown in FIG. 12 is provided with two swirling fluidized beds shown in FIG. 5 in the same furnace, and accordingly, the heat recovery chamber 59 in the central part is provided with two reflective partitions in the central part. It is exactly the same except that it is provided between the rear surfaces of 58 and the lower partition of the heat recovery chamber 59 in the central part has the structure shown in FIG.

つぎに、更に他の実施例を第13図、第14図、第15図及び
第16図に示す。
Next, still another embodiment is shown in FIG. 13, FIG. 14, FIG. 15 and FIG.

これらの実施例においては、主として反射仕切58の形状
並びにその取り付け方が第5図、第7図及び第12図に示
す実施例とは相違するのみであり、また、第13図及び第
14図に示す実施例は、1つの旋回流動層を有する炉に熱
回収部を設けた場合の実施例を示す図面である。
In these embodiments, mainly the shape of the reflective partition 58 and its mounting method are different from those in the embodiments shown in FIGS. 5, 7 and 12, and FIGS.
The embodiment shown in FIG. 14 is a drawing showing an embodiment in which a heat recovery unit is provided in a furnace having one swirling fluidized bed.

なお、第14図は第13図に示す旋回流型流動床炉において
ガス分散板52を水平にし、且つ空気室56′を単一の部屋
とすると共に不燃物排出口を省略した例を示す図であつ
て、その作用は第7図に関し説明したのと同様である。
なお第14図において符号69′は流動媒体排出ノズルを示
す。
Incidentally, FIG. 14 is a diagram showing an example in which the gas dispersion plate 52 is horizontal, the air chamber 56 ′ is a single chamber and the incombustibles discharge port is omitted in the swirling type fluidized bed furnace shown in FIG. The operation is the same as that described with reference to FIG.
In FIG. 14, reference numeral 69 'denotes a fluidized medium discharge nozzle.

第13図、第14図、第15図及び第16図において符号50〜71
は第5図及び第12図で説明したのと同じ意味を有し、符
号80は水管、81、82は外壁に設けられた管寄せ、83、84
は炉中に設けられた管寄せを示す。
Reference numerals 50 to 71 in FIGS. 13, 14, 15, and 16
Has the same meaning as described in FIG. 5 and FIG. 12, reference numeral 80 is a water pipe, 81 and 82 are pipe heads provided on the outer wall, and 83 and 84.
Indicates a heading provided in the furnace.

第13図、第14図、第15図、第16図に示す例においては炉
壁がメンブレン外壁で構成されており、このメンブレン
外壁の上下に設けた管寄せ81、82及び炉中に設けた管寄
せ83、84(第16図に示す例のみ)から水管80を分岐し
て、夫々の下方斜めの部分にメンブレン壁の仕切を傾斜
させて設け反射仕切58としたものである。
In the example shown in FIG. 13, FIG. 14, FIG. 15, FIG. 16, the furnace wall is composed of a membrane outer wall, and the pipe headers 81, 82 provided above and below the membrane outer wall and provided in the furnace The water pipe 80 is branched from the pipe heads 83, 84 (only in the example shown in FIG. 16), and the partition walls of the membrane walls are inclined and provided as reflective partitions 58 in the respective oblique lower portions.

これらの図面に示す水管群は1ケ所又は2ケ所で曲げ加
工されており、熱膨張を吸収でき、また上下管寄せで固
定されているので流動媒体の激しい運動にも十分に耐え
ることができる。また水管80の垂直部分は、流動媒体の
頂部を貫いて十分に長くしてあるので、上部傾斜部に不
燃物が堆積することがなく、また、通過抵抗を小とし、
不燃物等による目詰りを防止するために、水管80の垂直
部分及び熱回収室59の下部開口部63の部分は、第18図に
示す如く、千鳥状に互違いに配列するのが好ましい。
The water pipe group shown in these drawings is bent at one place or two places so as to absorb thermal expansion, and since it is fixed by vertically moving pipes, it can sufficiently withstand the vigorous motion of the fluid medium. Further, since the vertical portion of the water pipe 80 is sufficiently long to penetrate the top of the fluidized medium, incombustibles will not be deposited on the upper inclined portion, and the passage resistance will be small,
In order to prevent clogging due to incombustibles and the like, it is preferable that the vertical portion of the water pipe 80 and the lower opening portion 63 of the heat recovery chamber 59 be staggered in a staggered manner as shown in FIG.

また、第17図に示すように、伝熱管65も同様に千鳥状に
配列するのが好ましく、また散気装置(散気管)62は、
伝熱管と平行に熱回収室の下部に配列するのではなく、
第13図乃至第16図に示すように熱回収室の下部に反射仕
切58の背面に沿つて設けるのが好ましい。散気管のガス
導入口に近い部分のガス噴出口を大きくし、先端に向い
漸次小さくすることにより、流動媒体の深さに関係な
く、ほぼ均一に散気することができる。
Further, as shown in FIG. 17, it is preferable that the heat transfer tubes 65 are similarly arranged in a staggered manner, and the air diffuser (air diffuser) 62 is
Instead of arranging in the lower part of the heat recovery chamber in parallel with the heat transfer tubes,
As shown in FIG. 13 to FIG. 16, it is preferable that the heat recovery chamber is provided in the lower part along the back surface of the reflective partition 58. By enlarging the gas ejection port near the gas introduction port of the air diffuser and gradually decreasing it toward the tip, it is possible to diffuse air substantially uniformly regardless of the depth of the fluid medium.

反射仕切58の下端部は、分散板52の端部より外側の流動
媒体が激しい流動状態にない部分に位置せしめるのが好
ましい。その理由は熱回収室が激しい流動層の影響を受
けるのを防ぎ、熱回収室内の流動媒体の沈降速度の制御
を容易にするためである。
The lower end of the reflective partition 58 is preferably positioned at a portion outside the end of the dispersion plate 52 where the fluid medium is not in a violently flowing state. The reason is to prevent the heat recovery chamber from being affected by a violent fluidized bed, and to facilitate control of the sedimentation velocity of the fluidized medium in the heat recovery chamber.

また、燃焼部の移動層下部からの流動化ガスの質量速度
は0.5〜3Gmf、好ましくは1〜2.5Gmfで且つ、流動層部
下部からの吹込み量の50%以下の量が好ましい。
Further, the mass velocity of the fluidizing gas from the lower part of the moving bed in the combustion section is 0.5 to 3 Gmf, preferably 1 to 2.5 Gmf, and 50% or less of the amount blown from the lower part of the fluidized bed is preferable.

また、第13図及び第14図に示す如く、燃焼物投入装置66
により燃焼物を直接下向きの移動層中に供給する場合、
燃焼物等に粉炭等の供給が流動媒体のかき取り作用によ
り連続的となり、また供給装置からの空気のリークが少
なく、また粉炭等の燃焼効率が大となり、且つ運転停止
時において炉中の流動媒体で空気のリークをしや断して
しまい、炉内の熱で供給部に残つた燃焼物が発火して供
給部が焼けてしまうようなことがないので、供給部と炉
の間をダンパで閉め切る必要はない。
Further, as shown in FIG. 13 and FIG.
When the combustion product is directly fed into the downward moving bed by
The supply of pulverized coal to the combustion products is continuous due to the scraping action of the fluidized medium, there is little air leakage from the supply device, the combustion efficiency of pulverized coal, etc. is high, and the flow in the furnace when the operation is stopped The medium does not leak or cut off the air, and the heat inside the furnace does not ignite the combustion products remaining in the supply section, which will burn the supply section. You don't have to close it with.

また、都市ごみや雑芥等粗大物を含む燃焼物は第5図、
第7図、第12図、第15図及び第16図に示す如く天井に設
けられた投入口から投入することで無理なく運転できる
が、石炭等数十ミリメートル程度以下の固体燃料を燃焼
せしめる場合には、天井部から投入せずに、燃焼部側壁
の流動層表面よりは高いが低目の位置から回転羽根によ
りばね飛ばす形式等スプレツダにより燃焼部に投入する
方法が好ましい。
In addition, combustion products including oversized materials such as municipal waste and garbage are shown in Fig. 5,
As shown in Fig. 7, Fig. 12, Fig. 15 and Fig. 16, it is possible to operate without difficulty by inserting from the inlet provided on the ceiling, but when burning solid fuel such as coal of several tens of millimeters or less It is preferable to use a sprayer such as a type in which springs are blown off by rotating blades from a position higher than the fluidized bed surface on the side wall of the combustion section but lower than the surface of the fluidized bed on the side wall of the combustion section.

従つて、石炭等固体燃料専焼炉として用いる場合には、
天井投入口は設けずに上述のスプレツダのみとしてもよ
く、また粗大物を含む燃焼物は天井の投入口から投入
し、固体燃料は上述のスプレツダから供給して混焼した
りすることも出来る。
Therefore, when it is used as a furnace for burning solid fuel such as coal,
It is possible to use only the above-mentioned spreader without providing the ceiling charging port, and it is also possible to charge the combustion products containing coarse particles from the charging port of the ceiling and to supply the solid fuel from the above-mentioned spreader for co-firing.

以上説明した熱回収室を備えた旋回流型流動層ボイラに
おいては、散気装置に通気する通気量をコントロールす
ることにより熱回収量をコントロールすることが出来る
ため、本発明者らは更にこのボイラの利用の一環とし
て、熱回収室を区分し、区分けされた該熱回収室の一部
において少くとも一部の伝熱管中に受熱流体として蒸気
を通し該蒸気の該熱回収室の後流側温度により当該散気
装置に供給するガス量を調節し、それ以外の散気装置に
供給されるガス量は、流動層温度に基いて当該散気装置
に供給するガス量を調節することにより所定の温度の過
熱蒸気を得ると共に流動層温度を一定の温度に制御する
流動層ボイラの蒸気温度昇温装置を提案した(特願昭62
−159707号)。
In the swirling-flow type fluidized bed boiler having the heat recovery chamber described above, the heat recovery amount can be controlled by controlling the ventilation amount of the air diffuser. As a part of the utilization of the heat recovery chamber, the steam is passed as a heat receiving fluid through at least a part of the heat transfer chambers in a part of the divided heat recovery chamber, and the downstream side of the heat recovery chamber of the steam. The amount of gas supplied to the air diffuser is adjusted according to the temperature, and the amount of gas supplied to other air diffusers is predetermined by adjusting the amount of gas supplied to the air diffuser based on the fluidized bed temperature. We proposed a steam temperature raising device for a fluidized bed boiler that obtains superheated steam at the temperature of 10 ℃ and controls the temperature of the fluidized bed at a constant temperature.
-159707).

即ち、この装置を第30図に基いて説明する。That is, this device will be described with reference to FIG.

第30図において、炉1の底部にはブロワ7により流動用
ガス導入管3から導入される流動化ガスの分散板2が備
えられ、この分散板2は第5図に示されているのと同
様、炉1の中心に対してほぼ対称的な屋根状に形成され
ている。そしてブロワ7から送られる流動用ガスは、空
気室4,5,6を経て分散板2から上方に噴出させるように
なつており、両側縁部の空気部4,6から噴出する流動化
ガスの質量ガス速度(質量ガス速度1は流動媒体を流動
化させるに必要な最少の風量)は炉1内の流動媒体の流
動層を形成するのに十分な速度とするが、中央部5から
噴出する流動化ガスの質量速度は前者より小さく選ばれ
る。
In FIG. 30, the bottom of the furnace 1 is provided with a dispersion plate 2 for fluidizing gas introduced from a flow gas introduction pipe 3 by a blower 7, and this dispersion plate 2 is shown in FIG. Similarly, it is formed in a roof shape that is substantially symmetrical with respect to the center of the furnace 1. The flowing gas sent from the blower 7 is adapted to be jetted upward from the dispersion plate 2 via the air chambers 4, 5 and 6, and the fluidizing gas of the jetted from the air portions 4 and 6 on both side edges is generated. The mass gas velocity (the mass gas velocity 1 is the minimum amount of air required to fluidize the fluidized medium) is a velocity sufficient to form a fluidized bed of the fluidized medium in the furnace 1, but is ejected from the central portion 5. The mass velocity of the fluidizing gas is chosen smaller than the former.

両側縁部の空気室4,6の上部には、流動化ガスの上向流
路をさえぎり、空気室4,6から吹出される流動化ガスを
炉1内の中央部に向けて反射転向させる反射壁仕切8が
設けられ、この反射壁仕切8と噴出する流動化ガスの質
量速度との差により第5図に矢印で示される方向と同じ
方向の旋回流が生ずる。一方この反射仕切8と炉壁間に
流動媒体の循環層部(熱回収部)9,9′が形成され、運
転中に流動媒体の一部が反射仕切8の上端部を越えて循
環層部9,9′に入り込む。また、循環層部9,9′の下部の
炉底よりも高いレベルにはブロワ10から導入管11,11′
を経てガスを導入する散気装置12,12′が反射仕切の背
面に沿って斜めに設けられ、導入管11,11′上には散気
装置へ導入される散気風量を制御するための流量調節ダ
ンパ24,24′が設けられている。また、循環層部9,9′の
散気装置12,12′を設置した近傍には、開口部13,13′が
設けられ、循環層部9,9′に入り込んだ流動媒体は運転
状態により連続的又断続的に移動層を形成しつつ沈降
し、開口部13,13′を経て燃焼部へ循環する。
At the upper portions of the air chambers 4 and 6 on both side edges, the upward passage of the fluidizing gas is blocked, and the fluidizing gas blown out from the air chambers 4 and 6 is reflected and diverted toward the center of the furnace 1. A reflection wall partition 8 is provided, and a swirl flow in the same direction as the direction shown by the arrow in FIG. 5 is generated due to the difference between the reflection wall partition 8 and the mass velocity of the fluidizing gas ejected. On the other hand, a circulating layer portion (heat recovery portion) 9, 9'for the fluidized medium is formed between the reflective partition 8 and the furnace wall, and a part of the fluidized medium exceeds the upper end portion of the reflective partition 8 during operation to circulate the circulating layer portion. Go into 9,9 '. Further, at a level higher than the bottom of the circulating layer section 9, 9 ', the blower 10 introduces the introduction pipes 11, 11'.
Air diffusers 12 and 12 'for introducing gas through the are installed obliquely along the back surface of the reflective partition, and on the introduction pipes 11 and 11' for controlling the amount of diffused air introduced into the diffuser. Flow control dampers 24, 24 'are provided. Further, openings 13 and 13 'are provided in the circulation layer portions 9 and 9'in the vicinity of the air diffusers 12 and 12', so that the fluidized medium that has entered the circulation layer portions 9 and 9'depends on the operating condition. The sediment continuously and intermittently forms a moving bed and circulates through the openings 13 and 13 'to the combustion section.

また、循環層部9,9′には配管14及び20で廃熱ボイラ17
に連通された内部に蒸気及び加熱ボイラ水を通じた伝熱
管15及び15′が配置され、循環層部を下方に移動する流
動媒体と熱交換を行なうことにより、配管14′より過熱
蒸気を得ると共に、配管20′よりはより加熱され発生し
た蒸気の混じつたボイラ水を廃熱ボイラ17へ循環させ熱
を回収するように構成されている。
In addition, the waste heat boiler 17 is connected to the circulation layer parts 9 and 9'through pipes 14 and 20.
Heat transfer tubes 15 and 15 'through which steam and heating boiler water pass are arranged inside the communicating with the above, and by exchanging heat with the flowing medium moving downward in the circulation layer part, superheated steam is obtained from the pipe 14'. The boiler water, which is more heated than the pipe 20 'and contains the generated steam, is circulated to the waste heat boiler 17 to recover heat.

そして、配管14′より抜き出される蒸気の温度を温度測
定器21で測定し、この温度に基いて温度制御器22により
流量調節ダンパ24の開度を調節して循環層部の流動化ガ
ス風量を調節することにより過熱蒸気の温度を所定の温
度に制御する。即ち、過熱蒸気の温度が所定の温度より
低い場合、流量調節ダンパ24の開度を大とし、循環層へ
の散気風量を通常、Gmf0.5〜3の範囲内で増加させるこ
とにより流動媒体循環量を増加させると共に伝熱係数を
増加させ熱回収量を大とすることにより過熱蒸気の温度
を所定の温度まで昇温せしめる。過熱蒸気の温度が所定
の温度より高い場合には上記と逆に制御される。
Then, the temperature of the steam extracted from the pipe 14 'is measured by the temperature measuring device 21, and the temperature controller 22 adjusts the opening of the flow rate adjusting damper 24 based on this temperature to adjust the flow rate of the fluidizing gas in the circulation layer. Is adjusted to control the temperature of the superheated steam to a predetermined temperature. That is, when the temperature of the superheated steam is lower than the predetermined temperature, the opening degree of the flow rate adjusting damper 24 is increased, and the amount of diffused air to the circulation layer is usually increased within the range of Gmf 0.5 to 3 to make the fluid medium. The temperature of the superheated steam can be raised to a predetermined temperature by increasing the circulation amount and the heat transfer coefficient to increase the heat recovery amount. When the temperature of the superheated steam is higher than the predetermined temperature, the control is reversed to the above.

一方、流動層主燃焼部の温度が該燃焼部の最適温度、例
えば都市ごみの場合600℃〜800℃、石炭やコークスの場
合800℃〜850℃の範囲内の一定の温度または一定巾の温
度範囲より低くなつた場合、流動層主燃焼部中の温度測
定器25で測定された温度に基いて温度制御器26により流
量調節ダンパ27の開度を小として循環層への散気量を小
とすることにより流量媒体循環量を減少させると共に伝
熱係数を小とすることにより、熱回収量を小として流動
層主燃焼部の温度が上昇するよう制御される。また、流
動層主燃焼部の温度が所定の温度より上昇した場合には
上記と逆に制御され、流動媒体の温度が所定の温度以上
に上昇し、流動媒体が焼結する等のトラブルを回避する
ものである。
On the other hand, the temperature of the main combustion part of the fluidized bed is an optimum temperature of the combustion part, for example, 600 ° C to 800 ° C in the case of municipal waste, 800 ° C to 850 ° C in the case of coal and coke, or a constant temperature within a certain range When the temperature is lower than the range, the temperature controller 26 reduces the opening of the flow rate adjustment damper 27 based on the temperature measured by the temperature measuring device 25 in the main combustion section of the fluidized bed to reduce the amount of air diffused into the circulating layer. As a result, the flow medium circulation amount is reduced and the heat transfer coefficient is reduced, so that the heat recovery amount is reduced and the temperature of the main combustion section of the fluidized bed is controlled to rise. Also, when the temperature of the main part of the fluidized bed rises above a predetermined temperature, it is controlled in the opposite way to avoid troubles such as the temperature of the fluidized medium rises above the prescribed temperature and the fluidized medium is sintered. To do.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第30図に示される蒸気昇温装置においては、 蒸気過熱器(又は蒸気再熱器)と蒸発器とを同一炉
内に設けているため、過熱器又は再熱器の回収熱量の変
化を蒸発器で吸収する必要があるため蒸発器の負荷が増
し、また回収熱量の調節を蒸発器で行わせるため回収熱
量の約半分程度しか蒸気の昇温(過熱や再熱)に使用で
きない。
In the steam temperature raising device shown in Fig. 30, since the steam superheater (or steam reheater) and the evaporator are installed in the same furnace, changes in the recovered heat of the superheater or reheater are evaporated. Since it needs to be absorbed by the evaporator, the load on the evaporator increases, and since the amount of recovered heat is adjusted by the evaporator, only about half of the amount of recovered heat can be used for raising the temperature of steam (overheating or reheating).

層内熱回収量には限度があり、蒸気過熱温度が高く
なつたり蒸気再熱温度が上昇したりすると熱量が不足
し、このため第30図に示されるガス式過熱装置18を併用
しなければならず、このガス式過熱装置を無くしようと
する利点を失うこととなる。
There is a limit to the amount of heat recovery in the formation, and if the steam superheat temperature rises or the steam reheat temperature rises, the amount of heat will be insufficient, so unless the gas superheater 18 shown in FIG. 30 is used together. However, the advantage of eliminating this gas type superheater is lost.

蒸気過熱器又は再熱器の伝熱面の温度は蒸発器の伝
熱面に比し大となり、蒸気出口温度を高温にする場合、
過熱器又は再熱器の伝熱面はCl,Na,K,SO4基等による高
温腐食域(第3図の約300℃以上の区域)に入つてしま
うため、これら成分を含む廃棄物を燃料とする場合、伝
熱面の材質としては耐高温腐食性の高ニツケル・クロム
合金等を用いる必要があつた。
The temperature of the heat transfer surface of the steam superheater or reheater is higher than that of the evaporator, and when the steam outlet temperature is high,
Since the heat transfer surface of the superheater or reheater enters the high temperature corrosion area due to Cl, Na, K, SO 4 groups, etc. (area of about 300 ° C or more in Fig. 3), waste containing these components should be collected. In the case of fuel, it was necessary to use high nickel-corrosion-resistant nickel-chromium alloy as the material of the heat transfer surface.

〔発明の構成〕[Structure of Invention]

本発明は、上記問題点を解決するためのボイラ及び該ボ
イラの運転を効率良く行うための制御装置を提供するも
のであつて、 1. 炉底部より上方に向けて流動化ガスを噴出させる空
気分散板を1組又は2組以上備えると共に、該空気分散
板端部上方に、該流動化ガスの上向流路をさえぎり、且
つ、該流動化ガスを、上向き流路をさえぎられていない
ガス噴出部上方に向けて、反射転向せしめる反射仕切を
設けることにより、上向流路をさえぎられていない噴出
部上部に流動媒体が固定層ないし流動層状態で沈降する
移動層を形成すると共に、上向流路をさえぎられた噴出
部近傍上部においては流動媒体が活発に流動化し、且つ
前記反射仕切の作用によりこの部分の流動媒体を前記移
動層上部に向つて旋回せしめることにより旋回型流動層
を形成し、且つ、該反射仕切背部と炉壁又は反射仕切背
部と反射仕切背部の間に熱回収室を形成せしめ、運転中
流動媒体の一部が前記反射仕切の上部を越えて熱回収室
に入り込むように構成し、該熱回収室下部で且つ反射仕
切の背面側に熱回収室内の流動媒体を固定層から弱い流
動層状態の範囲で変化させるための通気用ガス散気装置
を設けると共に、熱回収室の下部に炉底の上方に通ずる
開口を設けると共に熱回収室内に受熱流体を通じた伝熱
面を配備した熱回収室を備えた旋回流型流動床ボイラを
2箇設け、一方の炉1の熱回収部を、気水ドラムで蒸気
を発生せしめるための液体加熱器とし、他方の炉1′の
熱回収部を前記気水ドラムで発生した蒸気又はタービン
等より回収した低温の蒸気を通ずることにより過熱蒸気
を生成せしめるための蒸気過熱器及び/又は蒸気再熱器
とした複床式旋回流型流動床ボイラ。
The present invention provides a boiler for solving the above problems and a control device for efficiently operating the boiler, wherein: 1. Air for ejecting fluidizing gas upward from the furnace bottom. A gas which is provided with one or more sets of dispersion plates and which blocks the upward passage of the fluidizing gas above the end of the air dispersion plate and which does not block the upward passage of the fluidizing gas. By providing a reflective partition for diverting and reflecting toward the upper part of the jet part, a moving bed in which the fluidized medium settles in a fixed bed or fluidized bed state is formed at the upper part of the jet part where the upward flow path is not blocked, and The fluidized medium is actively fluidized in the upper portion in the vicinity of the jetting portion where the countercurrent flow path is blocked, and the fluidized medium in this portion is swirled toward the upper portion of the moving bed by the action of the reflective partitioning to form a swirl type fluidized bed. Formation In addition, a heat recovery chamber is formed between the reflective partition back and the furnace wall or between the reflective partition back and the reflective partition back, and part of the fluidized medium enters the heat recovery chamber beyond the upper part of the reflective partition during operation. And a ventilation gas diffuser for changing the fluidized medium in the heat recovery chamber in the range from a fixed bed to a weak fluidized bed in the lower part of the heat recovery chamber and on the back side of the reflective partition, Two swirl flow type fluidized bed boilers are provided with an opening communicating with the upper part of the furnace bottom at the bottom of the recovery chamber and a heat recovery chamber having a heat transfer surface for passing a heat receiving fluid inside the heat recovery chamber. The heat recovery part of is a liquid heater for generating steam in the steam drum, and the heat recovery part of the other furnace 1'passes the steam generated in the steam drum or the low temperature steam recovered from the turbine etc. Steam to generate superheated steam Superheater and / or double bed revolving flow-type fluidized-bed boiler and the steam reheater.

2. 前記第1項記載の複床式旋回流型流動床ボイラにお
いて、蒸気過熱器及び/又は蒸気再熱器の出口蒸気温度
を検出して該蒸気温度に相当する蒸気温度信号を出力す
る蒸気温度検出手段と該蒸気温度信号に応答して該蒸気
過熱器及び/又は蒸気再熱器を備えたボイラ1′の流動
床燃焼部への可燃物供給量を制御する手段を設け、且
つ、気水ドラムの蒸気圧力を検出して該蒸気圧力に相当
する蒸気圧力信号を出力する蒸気圧力検出手段と、該蒸
気圧力信号に応答してボイラ1の流動床燃焼部への可燃
物供給量を制御する手段とを設けた複床式旋回型流動床
ボイラ。
2. In the multi-bed swirl flow type fluidized bed boiler according to the above-mentioned item 1, the steam that detects the outlet steam temperature of the steam superheater and / or the steam reheater and outputs a steam temperature signal corresponding to the steam temperature. A temperature detecting means and means for controlling the amount of combustibles supplied to the fluidized bed combustion section of the boiler 1'having the steam superheater and / or the steam reheater in response to the steam temperature signal; Steam pressure detecting means for detecting the steam pressure of the water drum and outputting a steam pressure signal corresponding to the steam pressure, and controlling the amount of combustible material supplied to the fluidized bed combustion section of the boiler 1 in response to the steam pressure signal. And a fluidized bed swirl type fluidized bed boiler.

3. 前記第1項記載の複床式旋回流型流動床ボイラにお
いて、蒸気過熱器及び/又は蒸気再熱器の出口蒸気温度
を検出して該蒸気温度に相当する蒸気温度信号を出力す
る蒸気温度検出手段と、蒸気過熱器及び/又は蒸気再熱
器を備えたボイラ1′の流動床燃焼部の流動媒体温度を
検出して該流動媒体温度に相当する流動媒体温度信号を
出力する流動媒体温度検出手段とを具え、前記蒸気温度
信号に基いて前記ボイラ1′へ供給する可燃物供給量並
びにボイラ1′の流動媒体温度設定器の設定温度を制御
する手段並びに前記流動媒体温度信号に基いてボイラ
1′の熱回収部への散気用ガスの通気速度を制御する手
段を具え、更に、気水ドラムの蒸気圧力を検出して該蒸
気圧力に相当する蒸気圧力信号を出力する蒸気圧力検出
手段と、蒸気発生器を備えたボイラ1の流動媒体温度を
検出して流動媒体の温度に相当する流動媒体温度信号を
出力する流動媒体温度検出手段とを備え、更に、該蒸気
圧力信号に基いてボイラ1の流動媒体温度設定器の設定
温度を制御する手段及び該蒸気圧力信号に基いてボイラ
1への可燃物供給量を制御する手段を備えると共に、前
記流動床媒体温度信号に基いてボイラ1の熱回収部への
散気用ガスの通気量を制御する手段を備えた複床式旋回
流型流動床ボイラ。
3. In the multi-bed swirl flow type fluidized bed boiler according to the above-mentioned item 1, the steam that detects the outlet steam temperature of the steam superheater and / or the steam reheater and outputs a steam temperature signal corresponding to the steam temperature. A fluid medium which detects the fluid medium temperature of the fluidized bed combustion section of the boiler 1'having a temperature detecting means and a vapor superheater and / or a vapor reheater, and outputs a fluid medium temperature signal corresponding to the fluid medium temperature. Temperature detecting means, means for controlling the supply amount of combustible material supplied to the boiler 1'based on the steam temperature signal and the set temperature of the fluid medium temperature setting device of the boiler 1 ', and the fluid medium temperature signal based on the means. And a means for controlling the aeration rate of the diffused gas to the heat recovery section of the boiler 1 ', and further, a steam pressure for detecting the steam pressure of the steam drum and outputting a steam pressure signal corresponding to the steam pressure. The detection means and the steam generator And a fluid medium temperature detecting means for detecting a fluid medium temperature of the boiler 1 and outputting a fluid medium temperature signal corresponding to the temperature of the fluid medium, and further, based on the vapor pressure signal, fluid medium temperature setting of the boiler 1 And a means for controlling the amount of combustible material supplied to the boiler 1 based on the steam pressure signal, and a means for controlling the set temperature of the boiler to the heat recovery section of the boiler 1 based on the fluidized bed medium temperature signal. A multi-bed swirl type fluidized bed boiler equipped with a means for controlling the flow rate of the air gas.

4. 前記第1項又は第3項記載の複床式旋回流型流動床
ボイラにおいて、気水ドラムの蒸気圧力を検出して該蒸
気圧力に相当する蒸気圧力信号を出力する蒸気圧力検出
手段のほか、更に気水ドラムから供給される蒸気流量を
検知し、該蒸気量に応じた信号を出力する蒸発量検知手
段を設け、該蒸気圧力信号並びに蒸発量信号に基いてボ
イラ1への可燃物供給量を制御する手段を設けた複床式
旋回流型流動床ボイラ。
4. In the multi-bed swirl flow type fluidized bed boiler according to the first or third aspect, a steam pressure detecting means for detecting the steam pressure of the steam drum and outputting a steam pressure signal corresponding to the steam pressure. In addition, a vaporization amount detection means for detecting the flow rate of the vapor supplied from the steam drum and outputting a signal corresponding to the vapor amount is provided, and the combustible material to the boiler 1 is based on the vapor pressure signal and the vaporization amount signal. A multi-bed swirl type fluidized bed boiler equipped with means for controlling the supply amount.

及び、 5. 前記第1項、第2項、第3項又は第4項記載の複床
式旋回流型流動床ボイラにおいて、更に、ボイラ1及び
/又は1′への可燃物供給量を検知し、該夫々の供給量
に応じた信号を出力する可燃物供給量信号に基いて、ボ
イラ1及び/又は1′に供給する燃焼用空気量を制御す
る手段を設けた複床式旋回流型流動床ボイラ である。
And 5. In the compound bed swirl flow type fluidized bed boiler according to the above-mentioned item 1, item 2, item 3 or item 4, the amount of combustible material supplied to the boiler 1 and / or 1'is further detected. However, a multi-bed swirl flow type provided with means for controlling the amount of combustion air supplied to the boiler 1 and / or 1'on the basis of the combustible material supply amount signal which outputs a signal corresponding to each supply amount. It is a fluidized bed boiler.

つぎに図面に基いて本発明を詳しく説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の1実施例を示す概略図であつて、夫々
熱回収室9及び9′を有する旋回流型流動床ボイラ1及
び1′が設けられている。流動床の動き、熱回収室等に
関しては前に説明したとおりであるが、本発明において
は炉1の熱回収部9の伝熱管15中に気水ドラム19より配
管20を経て缶水が供給され、加熱された後配管20′を経
て気水ドラム19に循環され蒸気を発生する。該伝熱管15
中には前述の通り缶水が供給されているのでその伝熱面
が高温にさらされることはないため、炉1に燃料供給装
置17を経て供給される燃料としてはCl,Na,K,SO4基等の
含有量の多い都市ごみ等を供給しても差支えない。従つ
て炉1はごみ専焼炉或いはごみと石炭等との混焼炉とし
て用いうる。
FIG. 1 is a schematic view showing an embodiment of the present invention, in which swirl flow type fluidized bed boilers 1 and 1'having heat recovery chambers 9 and 9 ', respectively, are provided. The movement of the fluidized bed, the heat recovery chamber, etc. are as described above, but in the present invention, the can water is supplied from the water / water drum 19 through the pipe 20 into the heat transfer pipe 15 of the heat recovery unit 9 of the furnace 1. After being heated and heated, it is circulated to the steam / water drum 19 through the pipe 20 'to generate steam. The heat transfer tube 15
Since the canned water is supplied to the inside as described above, its heat transfer surface is not exposed to high temperatures. Therefore, the fuel supplied to the furnace 1 via the fuel supply device 17 is Cl, Na, K, SO. It does not matter if you supply municipal waste with high content such as 4 units. Therefore, the furnace 1 can be used as a refuse-only firing furnace or a mixed firing furnace for refuse and coal.

なお、熱回収部9の伝熱管へ供給される缶水の1部又は
全部をボイラ給水に替えてもよい。
In addition, part or all of the can water supplied to the heat transfer tube of the heat recovery unit 9 may be replaced with boiler water supply.

つぎに気水ドラム19において発生した蒸気は配管14を経
て炉1′の熱回収部9′の伝熱管15′に供給され、過熱
蒸気となり管14′を経て引出される。高温の蒸気を発生
させる場合伝熱管15′は比較的高温にさらされるので、
燃料供給装置17′から炉1′に供給される燃料としては
高温腐食の原因となるCl,Na,K,SO4基等の含有料の少な
い石炭等を供給するのが好ましい。このようにすること
により伝熱管15′の材質としてNi及びCrを含有する高価
な合金を用いる必要はない。
Next, the steam generated in the steam / water drum 19 is supplied to the heat transfer pipe 15 'of the heat recovery section 9'of the furnace 1'through the pipe 14, becomes superheated steam, and is drawn out via the pipe 14'. When generating high temperature steam, the heat transfer tube 15 'is exposed to relatively high temperature,
As the fuel supplied from the fuel supply device 17 'to the furnace 1', it is preferable to supply coal or the like having a low content of Cl, Na, K, SO 4 groups and the like that cause high temperature corrosion. By doing so, it is not necessary to use an expensive alloy containing Ni and Cr as the material of the heat transfer tube 15 '.

つぎに、第1図に示すボイラの制御方法について説明す
る。
Next, a method for controlling the boiler shown in FIG. 1 will be described.

先づ、ボイラ1に関しては、気水ドラム1の蒸気引出管
14上に蒸気圧力検出器23を設け該蒸気圧力検出器よりの
蒸気圧力信号を圧力制御器31において設定値と比較し、
該比較値及び蒸気引出管14上に設けられた蒸気流量検出
器14aよりの蒸気流量信号を演算器34に入力し、演算を
行ない蒸気出力及び蒸気流量が所定値より低い場合には
演算値に基いて燃焼物供給装置のモータ16の回転数を上
げ燃料供給量を増加するように制御し、蒸気圧力及び蒸
気流量が所定値より大きい場合には演算値に基いて燃料
供給量が小となるように制御する。この場合、求められ
る制御精度が低くてもよいときには、蒸気圧のみによる
制御を行なつもよい。
First, regarding the boiler 1, a steam withdrawal pipe of the steam drum 1
The steam pressure detector 23 is provided on 14 and the steam pressure signal from the steam pressure detector is compared with the set value in the pressure controller 31,
The comparison value and the steam flow rate signal from the steam flow rate detector 14a provided on the steam withdrawal pipe 14 are input to the calculator 34, and the calculation is performed when the steam output and the steam flow rate are lower than a predetermined value. Based on the control, the number of revolutions of the motor 16 of the combustion material supply device is increased to increase the fuel supply amount, and when the steam pressure and the steam flow rate are larger than a predetermined value, the fuel supply amount becomes small based on the calculated value. To control. In this case, when the required control accuracy may be low, the control may be performed only by the vapor pressure.

また、蒸気圧力検出器23は気水ドラム1上に直接設けて
もよい。
Further, the steam pressure detector 23 may be provided directly on the steam drum 1.

また、一方、圧力制御器31からの圧力の比較値を比較器
32に入力し、比較器32の設定値を変更する。即ち例えば
圧力検知器23で検知された圧力が所定値より高い場合比
較器32の設定値を大とすると共に、該流動層内の温度検
値器25よりの温度信号と比較し、該温度信号と設定値と
の比較を行ない、該比較信号に基いて熱回収部9への散
気風量制御器33により散気用空気送入管上のバルブ11a
を閉じる方向に制御し、散気管12よりの散気風量を小と
して熱回収部9における熱回収量を小とするように制御
する。また、圧力検知器23で検知された圧力が所定値よ
り低い場合には、上記高い場合と逆の制御を行ない熱回
収部9における熱回収量を大となるように制御し、水の
蒸発量を大として、気水ドラム1の蒸気引出管から引き
出される蒸気圧力が大となるように制御する。
On the other hand, the comparison value of the pressure from the pressure controller 31
Input to 32 and change the setting value of comparator 32. That is, for example, when the pressure detected by the pressure detector 23 is higher than a predetermined value, the set value of the comparator 32 is increased, and the temperature signal is compared with the temperature signal from the temperature detector 25 in the fluidized bed. And the set value are compared with each other, and based on the comparison signal, the diffuser air flow rate controller 33 to the heat recovery unit 9 controls the valve 11a on the diffuser air inlet pipe.
Is controlled so that the amount of diffused air from the diffuser pipe 12 is small and the amount of heat recovered in the heat recovery unit 9 is small. Further, when the pressure detected by the pressure detector 23 is lower than the predetermined value, the control opposite to the above case is performed to control the heat recovery amount in the heat recovery unit 9 to be large, and the evaporation amount of water. Is set to a large value, and the steam pressure drawn from the steam drawing pipe of the steam / water drum 1 is controlled to be large.

つぎに熱回収部を蒸気加熱器(又は蒸気再熱器)とした
旋回流型流動床ボイラ1′の制御について説明する。
Next, the control of the swirling type fluidized bed boiler 1'where the heat recovery unit is a steam heater (or a steam reheater) will be described.

該ボイラの制御においては、蒸気導入管14を経て流動床
ボイラ1′の熱回収部の伝熱管15′で加熱された蒸気の
引出管14′上に設けられた蒸気温度検出器21よりの温度
信号を温度制御器31′において設定値と比較し、該比較
値及び蒸気引出管14上に設けられた蒸気流量検知器14a
よりの蒸気流量信号を演算器34′に入力し、演算を行な
い、蒸気温度及び蒸気流量が所定値より低い場合には演
算値に基いて燃料供給装置17′のモータ16′の回転数を
制御して燃料例えば石炭の供給量を調節する。即ち、蒸
気温度及び蒸気流量が所定値より低い場合には演算値に
基いて燃料供給装置17′のモータ16′の回転数を上げ燃
料供給量を増加するように制御し、蒸気温度及び蒸気流
量が所定値より高い場合には、演算値に基いて燃料供給
装置17′のモータ16′の回転数を小とし、燃料供給量を
小とするように制御する。
In controlling the boiler, the temperature of the steam temperature detector 21 provided on the extraction pipe 14 'of the steam heated by the heat transfer pipe 15' of the heat recovery unit of the fluidized bed boiler 1'through the steam introduction pipe 14 The signal is compared with a set value in the temperature controller 31 ', and the comparison value and the steam flow rate detector 14a provided on the steam drawing pipe 14 are compared.
The steam flow rate signal is input to the calculator 34 'to perform the calculation, and when the steam temperature and the steam flow rate are lower than a predetermined value, the rotation speed of the motor 16' of the fuel supply device 17 'is controlled based on the calculated value. Then, the supply amount of fuel such as coal is adjusted. That is, when the steam temperature and the steam flow rate are lower than a predetermined value, the rotation speed of the motor 16 'of the fuel supply device 17' is increased to increase the fuel supply amount based on the calculated value. Is higher than a predetermined value, the number of revolutions of the motor 16 'of the fuel supply device 17' is reduced based on the calculated value, and the fuel supply amount is controlled to be small.

この場合、求められる制御精度が低くてもよいときに
は、蒸気温度のみに基いて制御してもよい。
In this case, when the required control accuracy may be low, the control may be performed based on only the steam temperature.

また一方、温度制御器31′からの比較値を比較器32′に
入力し、比較器32′の設定値を変更する。即ち、例えば
蒸気温度検知器21で検知された温度が所定値より高い場
合には、温度制御器31′からの信号に基いて比較器32′
の設定値を大とすると共に該流動層ボイラ1′の流動層
内の温度検知器25′よりの温度信号と比較し、該温度信
号と設定値との比較を行ない、該比較信号に基いて熱回
収部9′における散気風量制御器33′により散気用空気
導入管11′上のバルブ11a′を閉じる方向に制御して散
気管12′よりの散気風量を小として熱回収部9′におけ
る熱回収量を小として蒸気温度を下げるように制御す
る。また、蒸気温度検知器21により検知された温度が所
定値より低い場合には、上記高い場合と逆の制御を行な
い熱回収部9′における熱回収量を大となるように制御
し、蒸気温度が高くなるように制御する。
On the other hand, the comparison value from the temperature controller 31 'is input to the comparator 32' to change the set value of the comparator 32 '. That is, for example, when the temperature detected by the steam temperature detector 21 is higher than a predetermined value, the comparator 32 'based on the signal from the temperature controller 31'.
Is set to a large value and compared with the temperature signal from the temperature detector 25 'in the fluidized bed of the fluidized bed boiler 1', the temperature signal is compared with the set value, and based on the comparison signal. The diffuser air flow controller 33 'in the heat recovery unit 9'controls the valve 11a' on the diffuser air introduction pipe 11 'in the closing direction to reduce the diffused air flow from the diffuser pipe 12' to reduce the amount of diffused air. Control is performed so that the steam recovery temperature is lowered by reducing the heat recovery amount in ′. Further, when the temperature detected by the steam temperature detector 21 is lower than a predetermined value, the control opposite to the above case is performed to control the heat recovery amount in the heat recovery unit 9'to be large, and the steam temperature Control to be high.

本発明においては、流動床ボイラ1は気水ドラムから引
き出される蒸気の圧力に基いて制御を行なうので気水ド
ラムの圧力が所定値より大となるのを防止でき、また流
動床ボイラ1′は蒸気温度に基いて制御を行なうので、
ユーザーが要望する温度の蒸気の供給を行なうことが可
能である。
In the present invention, since the fluidized bed boiler 1 is controlled based on the pressure of the steam drawn from the steam / water drum, it is possible to prevent the pressure of the steam / water drum from exceeding a predetermined value, and the fluidized bed boiler 1'is Since control is performed based on the steam temperature,
It is possible to supply steam at the temperature desired by the user.

つぎに、第1図に示した制御機構に、更に燃料供給量に
応じて流動層下部から供給する燃焼用空気を制御する手
段について第2図に基いて説明する。
Next, a means for controlling the combustion air supplied from the lower part of the fluidized bed in accordance with the fuel supply amount in the control mechanism shown in FIG. 1 will be described with reference to FIG.

なお、燃焼用空気を制御する手段を設けた以外は第1図
に示す手段と全く同じであるので、燃焼用空気の制御手
段についてのみ説明する。
The means for controlling the combustion air is exactly the same as the means shown in FIG. 1 except that a means for controlling the combustion air is provided. Therefore, only the means for controlling the combustion air will be described.

前に説明したように、流動層ボイラ1の燃焼物供給量は
演算器34から出力される演算値に基いて制御されるが、
第2図に示す装置においては、更に、演算器35からの演
算値の信号に基いて燃焼用空気量制御器35により燃焼用
空気配管3上のバルブ37を制御することにより燃焼物供
給量に応じた量の燃焼用空気を供給するように制御す
る。
As described above, the combustion material supply amount of the fluidized bed boiler 1 is controlled based on the calculated value output from the calculator 34,
In the apparatus shown in FIG. 2, the combustion air supply controller 35 controls the valve 37 on the combustion air pipe 3 based on the signal of the operation value from the operation device 35 to control the combustion material supply amount. The control is performed so as to supply a combustible air of a corresponding amount.

即ち、蒸気圧力及び蒸気流量が所定値より低い場合には
演算器34から出力される演算値に基いて燃料供給装置の
モータ16の回転数を上げ燃料供給量を増加するように制
御すると共に、該演算値に基いて燃焼用空気量制御器35
により燃焼用空気配管上のバルブ36を開の方向に制御
し、燃料供給量に見合つた量の燃焼用空気を供給するよ
うに制御する。蒸気圧力及び蒸気流量が所定値より高い
場合には上記と逆の制御を行なうのは当然である。
That is, when the steam pressure and the steam flow rate are lower than a predetermined value, the rotation speed of the motor 16 of the fuel supply device is increased based on the calculated value output from the calculator 34, and the fuel supply amount is increased. A combustion air amount controller 35 based on the calculated value
Thus, the valve 36 on the combustion air pipe is controlled in the opening direction to supply the combustion air in an amount commensurate with the fuel supply amount. When the steam pressure and the steam flow rate are higher than the predetermined values, the control opposite to the above is naturally performed.

燃料供給量に応じて燃焼用空気を制御することにより、
流動床内の空気比を一定とする運転が可能となり、低空
気化運転、脱硫・脱硝効率の高い運転が可能となる。
By controlling the combustion air according to the fuel supply amount,
It is possible to operate with a constant air ratio in the fluidized bed, which enables low air operation and high desulfurization / denitration efficiency.

なお、流動床ボイラ1′への燃焼用空気の供給量も蒸気
引出管上の温度信号に基いて制御を行なう以外は流動床
ボイラ1の制御と全く同様に制御される。
The amount of combustion air supplied to the fluidized bed boiler 1'is also controlled in exactly the same manner as the fluidized bed boiler 1 except that the control is performed based on the temperature signal on the steam extraction tube.

なお、第5図、第7図、第12図、第13図、第14図、第15
図、第16図に示される旋回流型流動床ボイラも上記第1
図及び第2図に基いて説明した如く、ボイラを2個設け
ることにより同様に運転できる。なおこの場合、気水ド
ラム及び燃焼ガスからの熱回収装置は共用で1個設ける
とよい。
Incidentally, FIG. 5, FIG. 7, FIG. 12, FIG. 13, FIG. 14, and FIG.
The swirling type fluidized bed boiler shown in FIGS.
As described with reference to FIGS. 2 and 2, the same operation can be performed by providing two boilers. In this case, it is advisable to provide one steam recovery drum and one heat recovery device from the combustion gas.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の複床式旋回流型流動床ボイラ並びに燃
焼物(燃料)供給量及び散気用空気を制御する手段を示
す概略図、第2図は第1図に示す装置に更に燃焼物(燃
料)供給量に応じて燃焼用空気供給量制御手段を付加し
た本発明の複床式旋回流型流動床ボイラを示す概略図、
第3図は炉中の熱回収域における伝熱管の腐食速度の温
度による変化を示す図、第4図は流動化質量速度(Gm
f)と伝熱係数及び摩耗速度の関係を示す図、第5図及
び第7図は旋回流型流動床式熱回収装置と一実施例を示
す全体の縦断面図、第6図は第5図のボイラ室のA−A
線における矢視図、第8図は熱回収室の流動空気量(Gm
f)と熱回収室に循環される流動媒体循環量との関係を
示す図、第9図は熱回収室の散気ガス風量(Gmf)と下
降移動層沈降速度の関係を示す図、第10図は熱回収室下
部の開口部に設けた仕切りを説明するための断面図、第
11図は第10図のD−D線における矢視図、第12図、第13
図、第14図、第15図及び第16図は、夫々旋回流型流動床
式熱回収装置の他の実施例を示す全体の断面図、第17図
は第13図乃至第16図に示す実施例における熱回収室の伝
熱管並びに散気装置を説明するための図面、第18図は同
水管の垂直部分、及び開口部の配列を説明するための図
面、第19図、第20図及び第21図は、散気装置の設置状態
及び該散気装置に設けられたガス噴出口の開口の状態を
説明するための図面、第22図、第23図及び第24図は、夫
々第19図、第20図及び第21図に示す如き散気装置を設け
た場合における開口Bからのガス質量速度と開口A、
B、Cからのガス質量速度の関係を示す図面、第25図、
第26図及び第27図は、夫々第19図、第20図及び第21図に
示す如き散気装置を設けた場合における各噴出口から噴
出されるガスの質量速度の相関関係を示す図面、第28図
は散気装置を水平に設け、且つ噴出口を均一に設けた場
合と、第21図に示す如き散気装置を設けた場合における
平均散気ガス質量速度と平均伝熱量との関係を示す図
面、第29図は熱回収室平均散気ガス量と伝熱係数との関
係を示す図面、第30図は熱回収部を2つに区分して使用
する場合を説明するための図面である。 1,51……炉、2,52……分散板、4,5,6,54,55,56,56′…
…空気室、8,58……反射壁仕切、9,59……循環層部(熱
回収部)、12,12′,62……散気装置、13,63……開口
部、15,15′,65……伝熱管、19,67……気水ドラム、23
……圧力検知器、21,25,25′……温度検知器、23……蒸
気圧力検知器、31……圧力制御器、31′……温度制御
器、32,32′……比較器、33,33′……散気風量制御器、
34,34′……演算器、35,35′……燃焼用空気量制御器
FIG. 1 is a schematic view showing a multi-bed swirl flow type fluidized bed boiler of the present invention and a means for controlling a combustion product (fuel) supply amount and diffused air, and FIG. 2 is further shown in the apparatus shown in FIG. A schematic diagram showing a multi-bed type swirling flow type fluidized bed boiler of the present invention in which a combustion air supply amount control means is added according to a combustion product (fuel) supply amount,
Fig. 3 shows the change in corrosion rate of the heat transfer tube in the heat recovery zone of the furnace due to temperature, and Fig. 4 shows the fluidized mass velocity (Gm
f), heat transfer coefficient and wear rate, FIG. 5 and FIG. 7 are swirl flow type fluidized bed heat recovery apparatus and an overall longitudinal sectional view showing one embodiment, and FIG. A-A in the boiler room in the figure
Fig. 8 shows the flow of air in the heat recovery chamber (Gm
Fig. 9 is a diagram showing the relationship between f) and the circulating amount of the fluid medium circulated in the heat recovery chamber, Fig. 9 is a diagram showing the relationship between the diffused gas flow rate (Gmf) in the heat recovery chamber and the descending moving bed sedimentation velocity, The figure is a cross-sectional view for explaining the partition provided in the opening at the bottom of the heat recovery chamber.
FIG. 11 is a view taken along the line DD in FIG. 10, and FIGS.
FIG. 14, FIG. 15, FIG. 15 and FIG. 16 are overall sectional views showing other embodiments of the swirling type fluidized bed heat recovery apparatus, respectively, and FIG. 17 is shown in FIG. 13 to FIG. Drawing for explaining the heat transfer tube and the air diffuser of the heat recovery chamber in the embodiment, FIG. 18 is a drawing for explaining the vertical portion of the water tube, and the arrangement of the openings, FIG. 19, FIG. 20 and FIG. FIG. 21 is a drawing for explaining the installation state of the air diffuser and the state of the opening of the gas jet port provided in the air diffuser, and FIGS. 22, 23 and 24 are respectively 19th and 19th drawings. Gas mass velocity from opening B and opening A when an air diffuser as shown in FIGS. 20, 20 and 21 is provided,
Drawing showing the relationship of gas mass velocity from B and C, Fig. 25,
FIGS. 26 and 27 are drawings showing the correlation of the mass velocity of the gas ejected from each ejection port when the air diffuser as shown in FIG. 19, FIG. 20 and FIG. 21 is provided, respectively. FIG. 28 shows the relationship between the average air diffused gas mass velocity and the average heat transfer amount when the air diffuser is provided horizontally and the jet ports are evenly provided, and when the air diffuser as shown in FIG. 21 is provided. 29 is a drawing showing the relationship between the average diffused gas amount of the heat recovery chamber and the heat transfer coefficient, and FIG. 30 is a drawing for explaining the case where the heat recovery part is divided into two parts for use. Is. 1,51 …… Furnace, 2,52 …… Dispersion plate, 4,5,6,54,55,56,56 ′…
… Air chamber, 8,58 …… Reflection wall partition, 9,59 …… Circulation layer part (heat recovery part), 12,12 ′, 62 …… Aeration device, 13,63 …… Opening part, 15,15 ′, 65 …… Heat transfer tube, 19,67 …… Air-water drum, 23
...... Pressure detector, 21,25,25 '…… Temperature detector, 23 …… Steam pressure detector, 31 …… Pressure controller, 31 ′ …… Temperature controller, 32,32 ′ …… Comparator, 33,33 ′ …… Aeration air flow controller,
34,34 ′ …… Calculator, 35,35 ′ …… Combustion air flow controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小杉 茂 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 犬丸 直樹 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (56)参考文献 特開 昭53−31001(JP,A) 特開 昭62−196522(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Kosugi 11-1 Haneda-Asahicho, Ota-ku, Tokyo Ebara Corporation (72) Inventor Naoki Inumaru 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo (56) References JP-A-53-31001 (JP, A) JP-A-62-196522 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炉底部より上方に向けて流動化ガスを噴出
させる空気分散板を1組又は2組以上備えると共に、該
空気分散板端部上方に、該流動化ガスの上向流路をさえ
ぎり、且つ、該流動化ガスを、上向き流路をさえぎられ
ていないガス噴出部上方に向けて、反射転向せしめる反
射仕切を設けることにより、上向流路をさえぎられてい
ない噴出部上部に流動媒体が固定層ないし流動層状態で
沈降する移動層を形成すると共に、上向流路をさえぎら
れた噴出部近傍上部においては流動媒体が活発に流動化
し、且つ前記反射仕切の作用によりこの部分の流動媒体
を前記移動層上部に向つて旋回せしめることにより旋回
型流動層を形成し、且つ、該反射仕切背部と炉壁又は反
射仕切背部と反射仕切背部の間に熱回収室を形成せし
め、運転中流動媒体の一部が前記反射仕切の上部を越え
て熱回収室に入り込むように構成し、該熱回収室下部で
且つ反射仕切の背面側に熱回収室内の流動媒体を固定層
から弱い流動層状態の範囲で変化させるための通気用ガ
ス散気装置を設けると共に、熱回収室の下部に炉底の上
方に通ずる開口を設けると共に熱回収室内に受熱流体を
通じた伝熱面を配備した熱回収室を備えた旋回流型流動
床ボイラを2箇設け、一方の炉(1)の熱回収部を、気
水ドラムで蒸気を発生せしめるための液体加熱器とし、
他方の炉(1′)の熱回収部を前記気水ドラムで発生し
た蒸気又はタービン等より回収した低温の蒸気を通ずる
ことにより過熱蒸気を生成せしめるための蒸気過熱器及
び/又は蒸気再熱器とした複床式旋回流型流動床ボイ
ラ。
1. A single or two or more sets of air dispersion plates for ejecting the fluidizing gas upward from the bottom of the furnace are provided, and an upward passage of the fluidizing gas is provided above the end of the air dispersion plate. By blocking the fluidized gas, the upward flow path is directed to the upper part of the gas ejection part where the upward flow path is not obstructed, and a reflective partition is provided to turn the upward flow path to the upper part of the ejection part where the upward flow path is not obstructed. The medium forms a fixed bed or a moving bed that sinks in a fluidized bed state, and the fluidized medium is actively fluidized in the upper part in the vicinity of the jetting part that is blocked by the upward flow path, and due to the action of the reflective partition, A swirl type fluidized bed is formed by swirling a fluidized medium toward the upper part of the moving bed, and a heat recovery chamber is formed between the reflective partition back and the furnace wall or between the reflective partition back and the reflective partition back. Medium fluid medium A part is configured to enter the heat recovery chamber beyond the upper part of the reflective partition, and the fluidized medium in the heat recovery chamber is located in the lower part of the heat recovery chamber and on the rear side of the reflective partition in the range from the fixed bed to the weak fluidized bed state. In addition to providing a gas diffuser for ventilation for changing the temperature, a heat recovery chamber is provided in the lower part of the heat recovery chamber that opens above the furnace bottom, and a heat recovery chamber that has a heat transfer surface through the heat receiving fluid Two swirling flow type fluidized bed boilers are provided, and the heat recovery part of one of the furnaces (1) is a liquid heater for generating steam in a steam / water drum,
A steam superheater and / or a steam reheater for generating superheated steam by passing through the heat recovery section of the other furnace (1 ') through the steam generated in the steam / water drum or the low temperature steam recovered from a turbine or the like. A multi-bed swirl type fluidized bed boiler.
【請求項2】特許請求の範囲第1項記載の複床式旋回流
型流動床ボイラにおいて、蒸気過熱器及び/又は蒸気再
熱器の出口蒸気温度を検出して該蒸気温度に相当する蒸
気温度信号を出力する蒸気温度検出手段と該蒸気温度信
号に応答して該蒸気過熱器及び/又は蒸気再熱器を備え
たボイラ(1′)を流動床燃焼部への可燃物供給量を制
御する手段を設け、且つ、気水ドラムの蒸気圧力を検出
して該蒸気圧力に相当する蒸気圧力信号を出力する蒸気
圧力検出手段と、該蒸気圧力信号に応答してボイラ
(1)の流動床燃焼部への可燃物供給量を制御する手段
とを設けた複床式旋回流型流動床ボイラ。
2. A multi-bed swirling fluidized bed boiler according to claim 1, wherein the steam temperature corresponding to the steam temperature is detected by detecting the outlet steam temperature of the steam superheater and / or the steam reheater. A steam temperature detecting means for outputting a temperature signal and a boiler (1 ') equipped with the steam superheater and / or the steam reheater in response to the steam temperature signal are used to control the amount of combustibles supplied to the fluidized bed combustion section. Means for detecting the steam pressure of the steam drum and outputting a steam pressure signal corresponding to the steam pressure, and a fluidized bed of the boiler (1) in response to the steam pressure signal. A multi-bed type swirling flow type fluidized bed boiler provided with means for controlling the amount of combustibles supplied to the combustion section.
【請求項3】特許請求の範囲第1項記載の複床式旋回流
型流動床ボイラにおいて、蒸気過熱器及び/又は蒸気再
熱器の出口蒸気温度を検出して該蒸気温度に相当する蒸
気温度信号を出力する蒸気温度検出手段と、蒸気過熱器
及び/又は蒸気再熱器を備えたボイラ(1′)の流動床
燃焼部の流動媒体温度を検出して該流動媒体温度に相当
する流動媒体温度信号を出力する流動媒体温度検出手段
とを具え、前記蒸気温度信号に基いて前記ボイラ
(1′)へ供給する可燃物給量並びにボイラ(1′)の
流動媒体温度設定器の設定温度を制御する手段並びに前
記流動媒体温度信号に基いてボイラ(1′)の熱回収部
への散気用ガスの通気速度を制御する手段を備え、更
に、気水ドラムの蒸気圧力を検出して該蒸気圧力に相当
する蒸気圧力信号を出力する蒸気圧力検出手段と、蒸気
発生器を備えたボイラ(1)の流動媒体温度を検出して
流動媒体の温度に相当する流動媒体信号を出力する流動
媒体温度検出手段を備え、更に、該蒸気圧力信号に基い
てボイラ(1)の流動媒体温度設定器の設定温度を制御
する手段及び該蒸気圧力信号に基いてボイラ(1)への
可燃物供給量を制御する手段を備えると共に、前記流動
床媒体温度信号に基いてボイラ(1)の熱回収部への散
気用ガスの通気量を制御する手段を備えた複床式旋回流
型流動床ボイラ。
3. A multi-bed swirl type fluidized bed boiler according to claim 1, wherein the steam temperature corresponding to the steam temperature is detected by detecting the outlet steam temperature of the steam superheater and / or the steam reheater. A steam temperature detecting means for outputting a temperature signal and a fluid medium temperature of a fluidized bed combustion section of a boiler (1 ′) equipped with a steam superheater and / or a steam reheater are detected to detect a fluid flow corresponding to the fluid medium temperature. A fluid medium temperature detecting means for outputting a medium temperature signal, and based on the vapor temperature signal, a combustible material supply amount to be supplied to the boiler (1 ') and a set temperature of a fluid medium temperature setter of the boiler (1'). And a means for controlling the aeration rate of the gas for diffusion to the heat recovery section of the boiler (1 ′) based on the temperature signal of the fluidized medium, and further detecting the vapor pressure of the water-water drum. Outputs a steam pressure signal corresponding to the steam pressure The steam pressure detecting means and the fluid medium temperature detecting means for detecting the fluid medium temperature of the boiler (1) provided with the steam generator and outputting the fluid medium signal corresponding to the temperature of the fluid medium are further provided, and the vapor pressure is further provided. The fluidized bed is provided with means for controlling the set temperature of the fluid medium temperature setting device of the boiler (1) based on the signal, and means for controlling the supply amount of combustible material to the boiler (1) based on the steam pressure signal. A multi-bed swirl flow type fluidized bed boiler equipped with means for controlling the amount of gas diffused to the heat recovery section of the boiler (1) based on the medium temperature signal.
【請求項4】特許請求の範囲第2項又は第3項記載の複
床式旋回流型流動床ボイラにおいて、気水ドラムの蒸気
圧力を検出して該蒸気圧力に相当する蒸気圧力信号を出
力する蒸気圧力検出手段のほか、更に気水ドラムから供
給される蒸気流量を検知し、該蒸気量に応じた信号を出
力する蒸発量検知手段を設け、該蒸気圧力信号並びに蒸
気量信号に基いてボイラ(1)への可燃物供給量を制御
する手段を設けた複床式旋回流型流動床ボイラ。
4. A multi-bed swirl flow type fluidized bed boiler according to claim 2 or 3, wherein the steam pressure of a steam drum is detected and a steam pressure signal corresponding to the steam pressure is output. In addition to the steam pressure detecting means, the evaporation amount detecting means for detecting the flow rate of the steam supplied from the steam drum and outputting a signal according to the steam amount is provided, and based on the steam pressure signal and the steam amount signal. A multi-bed type swirling flow type fluidized bed boiler provided with means for controlling the amount of combustible material supplied to the boiler (1).
【請求項5】特許請求の範囲第2項、第3項又は第4項
記載の複床式旋回流型流動床ボイラにおいて、更に、ボ
イラ(1)及び/又は(1′)への可燃物供給量を検知
し、該夫々の供給量に応じた信号を出力する可燃物供給
量信号に基いて、ボイラ(1)及び/又は(1′)に供
給する燃焼用空気量を制御する手段を設けた複床式旋回
流型流動床ボイラ。
5. The multi-bed swirl flow type fluidized bed boiler according to claim 2, 3, or 4, further comprising a combustible material for the boiler (1) and / or (1 '). A means for controlling the amount of combustion air supplied to the boiler (1) and / or (1 ′) based on the combustible material supply amount signal which detects the supply amount and outputs a signal corresponding to each supply amount. Multi-bed swirl type fluidized bed boiler.
JP63023757A 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler Expired - Fee Related JPH0756363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023757A JPH0756363B2 (en) 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023757A JPH0756363B2 (en) 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH01200101A JPH01200101A (en) 1989-08-11
JPH0756363B2 true JPH0756363B2 (en) 1995-06-14

Family

ID=12119200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023757A Expired - Fee Related JPH0756363B2 (en) 1988-02-05 1988-02-05 Multiple bed fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPH0756363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108576B1 (en) * 2013-09-10 2020-05-07 한국전력공사 Circulating fluidized bed boiler equipped with heat exchanger

Also Published As

Publication number Publication date
JPH01200101A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
EP0247798B1 (en) Fluidised bed reactor and method of operating such a reactor
EP0667944B1 (en) Method and apparatus for operating a circulating fluidized bed system
US5156099A (en) Composite recycling type fluidized bed boiler
JPH0371601B2 (en)
US4442795A (en) Recirculating fluidized bed combustion system for a steam generator
EP0274254B1 (en) Segmented fluidized bed combustion method
US5005528A (en) Bubbling fluid bed boiler with recycle
US4809625A (en) Method of operating a fluidized bed reactor
US4442796A (en) Migrating fluidized bed combustion system for a steam generator
CA1332685C (en) Composite circulating fluidized bed boiler
RU2059150C1 (en) Fluidized-bed boiler and its control method
JP3015152B2 (en) Pressurized internal circulation type fluidized bed boiler
US5277151A (en) Integral water-cooled circulating fluidized bed boiler system
GB2049134A (en) Fluidized bed fuel burning
JPH0756361B2 (en) Fluidized bed heat recovery apparatus and control method thereof
JPH0756363B2 (en) Multiple bed fluidized bed boiler
JPH0756362B2 (en) Steam temperature raising device for fluidized bed boiler
JP3625817B2 (en) Composite fluidized bed furnace and method of operating composite fluidized bed furnace
JPS6131761B2 (en)
JP3625818B2 (en) Pressurized fluidized bed furnace
JPH0127334B2 (en)
JP2528711B2 (en) Double bed fluidized bed boiler
CS281591A3 (en) Fluidized bed furnace with a stationary fluidized bed
CN1204391A (en) Method and apparatus for controlling temp. of bed of bubbling bed boiler
JPH0399106A (en) Fuel supply for fluidized bed burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees