JPH01199462A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01199462A
JPH01199462A JP2439288A JP2439288A JPH01199462A JP H01199462 A JPH01199462 A JP H01199462A JP 2439288 A JP2439288 A JP 2439288A JP 2439288 A JP2439288 A JP 2439288A JP H01199462 A JPH01199462 A JP H01199462A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon layer
insulating film
resistor
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2439288A
Other languages
Japanese (ja)
Inventor
Shoichi Kimura
木村 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2439288A priority Critical patent/JPH01199462A/en
Publication of JPH01199462A publication Critical patent/JPH01199462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance integration and improve reliability by a method wherein an impurity-containing first polycrystalline silicon layer to serve as a wire for a resistance element to be formed on an insulating film on a semiconductor substrate is formed on the insulating film and a second polycrystalline silicon layer is formed to extend from the first polycrystalline silicon layer to the insulating film. CONSTITUTION:An impurity-containing first polycrystalline silicon layer 103, which is to serve as a wire for a resistance element to be formed on an insulating layer 102 on a semiconductor substrate 101, is formed on the insulating film 102; and a second polycrystalline silicon layer 104, which is to serve as a resistor, is formed, extending from the first polycrystalline silicon layer 103 to land on the insulating film 102. The first polycrystalline silicon layer 103 should preferably be thicker than the second polycrystalline silicon layer 104. In such a design, with a wire and a resistor being connected not through the intermediary of a contact hole, overlap for a photoetching process may be dispensed with between the two, which enables miniaturization. There exists a stable contact resistance between the wire and the resistor in the presence of a larger area of contact between the two, which contributes to the improvement on reliability.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は半導体装置に関し、特に半導体装置の抵抗素子
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device, and particularly to a resistor element structure of a semiconductor device.

(従来の技術) LSIの集積度の向上につれて、多結晶シリコン抵抗技
術の重要性かますます高くなってきている。高抵抗負荷
型スタチックRAMの場合、非常に高い抵抗値を持つ抵
抗素子が必要である。
(Prior Art) As the degree of integration of LSIs improves, polycrystalline silicon resistor technology is becoming increasingly important. In the case of a high resistance load type static RAM, a resistance element with a very high resistance value is required.

最近の一例として、“高集積高速時代の幕開けを告げる
IMSRAMの登場”;日経マイクロデバイス、198
7年3月号、pp53〜65、に開示された技術がある
As a recent example, “The advent of IMSRAM heralds the beginning of the era of high integration and high speed”; Nikkei Micro Devices, 198.
There is a technique disclosed in the March 2007 issue, pp. 53-65.

PJJ2図はこの文献から抜き出した抵抗素子構造の断
面図である。この従来構造は、配線となる不純物を含ん
だ第1多結晶シリコン層と、抵抗となる不純物を含まな
いもしくは微量の不純物を含んだ第2多結晶シリコン層
とか、居間絶縁膜のコンタクトホールな介して結かれて
いた。
Figure PJJ2 is a cross-sectional view of the resistance element structure extracted from this document. This conventional structure consists of a first polycrystalline silicon layer containing impurities to serve as wiring, a second polycrystalline silicon layer containing no impurities or a trace amount of impurities to serve as resistance, and contact holes in the living room insulation film. It was tied together.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術の場合、以下の様な欠点がある。 The conventional technology has the following drawbacks.

配線である前記第1多結晶シリコン層201と前記第2
多結晶シリコン層202とが前記層間絶縁LI203に
コンタクトホールを介して接続されている、すなわち、
前記第1多結晶シリコン層201上に前記層間絶縁膜2
03のコンタクトホールを形成する必要がある。したが
って重ね合ねせの余裕をとらなければならないので、前
記第1多結晶シリコン201の面積を広くとらなければ
ならないので、微細化の大きな障壁になっている。
The first polycrystalline silicon layer 201, which is a wiring, and the second
The polycrystalline silicon layer 202 is connected to the interlayer insulating LI 203 via a contact hole, that is,
The interlayer insulating film 2 is formed on the first polycrystalline silicon layer 201.
It is necessary to form a contact hole 03. Therefore, since a margin for overlapping must be provided, the area of the first polycrystalline silicon 201 must be made large, which is a major barrier to miniaturization.

また前記第2多結晶シリコン202も前記コンタクトホ
ールとの重ね合わせ余裕が必要となり微細化が不可能で
あり、抵抗素子、しいてはチップ面積を大きくしなけれ
ばならない。
Further, the second polycrystalline silicon 202 also requires a margin for overlapping with the contact hole, making it impossible to miniaturize the resistor element and thus the chip area.

また前記第1多結晶シリコン201と前記第2多結晶シ
リコン202との接触面積か小さいので、接触抵抗か不
安定となり、しいては信頼性の低下につながる。
Furthermore, since the contact area between the first polycrystalline silicon 201 and the second polycrystalline silicon 202 is small, the contact resistance becomes unstable, which leads to a decrease in reliability.

以上より前述の従来技術では、高集積化が不可能であり
、信頼性が低いという問題点を有する。
As described above, the above-mentioned conventional technology has the problem that high integration is impossible and reliability is low.

(課題を解決するための手段) 本発明の半導体装置は、半導体基板上の絶縁膜上に形成
されている抵抗素子において、配線となる不純物を含ん
だ第1多結晶シリコン層は前記絶縁膜上に形成され、抵
抗となる第2多結晶シリコン層は、前記第1多結晶シリ
コン層上から前記絶縁膜上にかけて形成されていること
を特徴とする半導体装置てあり、前記第1多結晶シリコ
ン層の膜厚か前記第2多結晶シリコン層の膜厚よりも厚
いことを特徴とする。
(Means for Solving the Problems) In the semiconductor device of the present invention, in a resistive element formed on an insulating film on a semiconductor substrate, a first polycrystalline silicon layer containing impurities that becomes a wiring is formed on the insulating film. The semiconductor device is characterized in that a second polycrystalline silicon layer is formed on the first polycrystalline silicon layer and serves as a resistor, and the second polycrystalline silicon layer is formed on the first polycrystalline silicon layer and on the insulating film. The film thickness of the second polycrystalline silicon layer is thicker than the film thickness of the second polycrystalline silicon layer.

(実 施 例) 第1図は本発明の一実施例における半導体装置の断面図
である。101は半導体基板、102は絶縁膜、103
は配線である不純物を含んだ第1多結晶シリコン、10
4は抵抗体である不純物を含まないもしくは微量の不純
物を含んだ第2多結晶シリコンである。
(Embodiment) FIG. 1 is a sectional view of a semiconductor device in an embodiment of the present invention. 101 is a semiconductor substrate, 102 is an insulating film, 103
is the first polycrystalline silicon containing impurities which is a wiring, 10
4 is a second polycrystalline silicon which is a resistor and does not contain impurities or contains a trace amount of impurities.

以下、詳細は、工程をおいながら説明していく(第3図
)。まず第3図(a)の如く、半導体基板301上に他
の素子と分離するために絶縁膜302を4000 (オ
ングストローム)形成する。
The details will be explained step by step (Fig. 3). First, as shown in FIG. 3(a), an insulating film 302 with a thickness of 4000 angstroms is formed on a semiconductor substrate 301 to isolate it from other elements.

その上に配線となる第1多結晶シリコン303を250
0 (オングストローム)形成する0通常モノシランガ
スを620(”C)で熱分解させ、前記第1多結晶シリ
コン303を堆積する。560(”C)の低温で堆積さ
せたアモルフツスシリコンでも良い。
On top of that, the first polycrystalline silicon 303 that will become the wiring is placed at 250 mm.
The first polycrystalline silicon 303 is deposited by thermally decomposing the normal monosilane gas that forms 0 (angstroms) at 620 ("C). Amorphous silicon deposited at a low temperature of 560 ("C) may also be used.

次に第3図(b)の如く、前記第1多結晶シリコン30
3の抵抗値を下げるためにリンやボロンなどの不純物イ
オン打ち込みをする。十分抵抗値を下げる様にドーズ量
は5XIOIS(cm−”)以上か望ましい。
Next, as shown in FIG. 3(b), the first polycrystalline silicon 30
In order to lower the resistance value of 3, impurity ions such as phosphorus and boron are implanted. In order to sufficiently lower the resistance value, the dose is preferably 5XIOIS (cm-'') or more.

次に第3図(C)の如く、前記第1多結晶シリコン30
3の不要な部分以外に第2レジスト306を形成し、そ
れをマスクとして、前記第1多結晶シリコン303をエ
ツチングする。その後前記第ルジスト306を除去する
Next, as shown in FIG. 3(C), the first polycrystalline silicon 30
A second resist 306 is formed in areas other than unnecessary portions 3, and using this as a mask, the first polycrystalline silicon 303 is etched. After that, the first Lujist 306 is removed.

次に第3図(d)の如く、抵抗となる第2多結晶シリコ
ン305を前記第1多結晶シリコン303と同様な方法
で堆積する。前記第2多結晶シリコン305の膜厚は必
要な抵抗値に応じて決定する。なお3モルファスシリコ
ンでも良い。
Next, as shown in FIG. 3(d), second polycrystalline silicon 305, which will become a resistor, is deposited in the same manner as the first polycrystalline silicon 303. The thickness of the second polycrystalline silicon 305 is determined depending on the required resistance value. Note that 3-morphous silicon may also be used.

次に第3図(e)の如く、抵抗として必要な部分に前記
第1多結晶303上にもかかる様に第2レジストを形成
し、前記第2多結晶シリコンのみを等方性イオンエツチ
ングする。そして前記第2レジスト307を除去して、
前記第1多結晶シリコン303中の不純物を活性化され
るために1000(”C)30(秒)はどのアニールを
行なう。
Next, as shown in FIG. 3(e), a second resist is formed so as to cover the first polycrystalline silicon 303 in the area required as a resistor, and only the second polycrystalline silicon is isotropically etched. . Then, the second resist 307 is removed,
In order to activate the impurities in the first polycrystalline silicon 303, an annealing process of 1000C (30 seconds) is performed.

以上の工程を経て、本発明の抵抗素子が完成する。前記
第1多結晶シリコン303を形成し、その後、前記第1
多結晶シリコン303に金属シリサイドを形成して抵抗
値を下げても良い。
Through the above steps, the resistance element of the present invention is completed. forming the first polycrystalline silicon 303, and then forming the first polycrystalline silicon 303;
Metal silicide may be formed on the polycrystalline silicon 303 to lower the resistance value.

また、前記第1多結晶シリコン303と、第2多結晶シ
リコン305の膜厚を自由に変えることか可能である。
Further, it is possible to freely change the film thicknesses of the first polycrystalline silicon 303 and the second polycrystalline silicon 305.

すなわち前記第1多結晶シリコン304の膜厚を厚く、
前記第2多結晶シリコン305の膜厚を薄くすることに
より、低いシート抵抗値の配線を持ち、非常に高いシー
ト抵抗値を有する抵抗素子を作ることが可能である。
That is, the film thickness of the first polycrystalline silicon 304 is increased;
By reducing the thickness of the second polycrystalline silicon 305, it is possible to fabricate a resistance element having wiring with a low sheet resistance value and a very high sheet resistance value.

なお、本発明は上述の実施例に限定されず、その骨子を
脱しない範囲で種々変更が可能であることはいうまでも
ない。
It goes without saying that the present invention is not limited to the above-described embodiments, and that various changes can be made without departing from the gist thereof.

(発明の効果) 以上述べた様に発明によれば、下記に列挙する効果か得
られる。
(Effects of the Invention) As described above, according to the invention, the following effects can be obtained.

(1)配線と抵抗とがコンタクトホールを介して結がれ
ていないために、そのフォト・エツチングの重ね合せ余
裕が不要となり微細化が可能であり、しいてはチップ面
積の縮小が可能である。
(1) Since the wiring and the resistor are not connected through a contact hole, there is no need for overlapping allowance for photo-etching, making it possible to miniaturize the device and reduce the chip area. .

(2)配線と抵抗とがコンタクトホールな介して結がれ
ていないために、配線と抵抗との接解面積か大きくとれ
、その上つきまわりか良いので、接触面が安定すなわち
接解抵抗が安定するので信頼性か向上する。
(2) Since the wiring and the resistor are not connected through a contact hole, the contact area between the wiring and the resistor can be large, and the contact area is also good, so the contact surface is stable, that is, the contact resistance is low. Since it is stable, reliability is improved.

(3)配線と抵抗との間に層間絶縁膜かないので、その
分平坦化している。また工程数も少ない。
(3) Since there is no interlayer insulating film between the wiring and the resistor, the surface is planarized accordingly. Also, the number of steps is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一実施例を示す主要断面
図。 第2図は従来の半導体装置を示す主要断面図。 第3図(a)〜(e)は本発明の実施例を示す半導体装
置の製造工程毎の主要断面図。 101・・・半導体基板 102・・・絶縁膜 103・・・第1多結晶シリコン 104・・・第2多結晶シリコン 201・・・第1多結晶シリコン 202・・・第2多結晶シリコン 203・・・層間絶縁膜 204・・・絶縁膜 205・・・半導体基板 301・・・半導体基板 302・・・絶縁膜 303・・・第1多結晶シリコン 304・・・不h@物イオンビーム 305・・・第2多結晶シリコン 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 最 上  務(他1名)第 3 図
FIG. 1 is a main sectional view showing an embodiment of the semiconductor device of the present invention. FIG. 2 is a main sectional view showing a conventional semiconductor device. FIGS. 3(a) to 3(e) are main sectional views of each manufacturing process of a semiconductor device showing an embodiment of the present invention. 101... Semiconductor substrate 102... Insulating film 103... First polycrystalline silicon 104... Second polycrystalline silicon 201... First polycrystalline silicon 202... Second polycrystalline silicon 203... ...Interlayer insulating film 204...Insulating film 205...Semiconductor substrate 301...Semiconductor substrate 302...Insulating film 303...First polycrystalline silicon 304...Durium ion beam 305... ...Applicant for polycrystalline silicon and above Seiko Epson Co., Ltd. Patent attorney Tsutomu Mogami (1 other person) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上の絶縁膜上に形成されている抵抗素
子の配線となる不純物を含んだ第1多結晶シリコン層は
前記絶縁膜上に形成され、抵抗となる第2多結晶シリコ
ン層は、前記第1多結晶シリコン層上から前記絶縁膜上
にかけて形成されていることを特徴とする半導体装置。
(1) A first polycrystalline silicon layer containing impurities, which is formed on an insulating film on a semiconductor substrate and serves as wiring for a resistance element, is formed on the insulating film, and a second polycrystalline silicon layer, which serves as a resistor, is formed on the insulating film. . A semiconductor device, wherein the semiconductor device is formed from above the first polycrystalline silicon layer to above the insulating film.
(2)前記第1多結晶シリコン層の膜厚が、前記第2多
結晶シリコン層の膜厚よりも厚いことを特徴とする第1
項記載の半導体装置。
(2) The first polycrystalline silicon layer is thicker than the second polycrystalline silicon layer.
1. Semiconductor device described in Section 1.
JP2439288A 1988-02-04 1988-02-04 Semiconductor device Pending JPH01199462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2439288A JPH01199462A (en) 1988-02-04 1988-02-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2439288A JPH01199462A (en) 1988-02-04 1988-02-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01199462A true JPH01199462A (en) 1989-08-10

Family

ID=12136893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2439288A Pending JPH01199462A (en) 1988-02-04 1988-02-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01199462A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223297A (en) * 2004-02-09 2005-08-18 Nec Electronics Corp Integrated circuit device and manufacturing method therefor
JP2006515466A (en) * 2003-01-31 2006-05-25 フェアチャイルド セミコンダクター コーポレイション High standard resistance poly p resistor with low standard deviation
WO2009016989A1 (en) 2007-07-27 2009-02-05 Shiseido Company Ltd. Oil-in-water emulsion composition and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515466A (en) * 2003-01-31 2006-05-25 フェアチャイルド セミコンダクター コーポレイション High standard resistance poly p resistor with low standard deviation
JP2005223297A (en) * 2004-02-09 2005-08-18 Nec Electronics Corp Integrated circuit device and manufacturing method therefor
US7777288B2 (en) 2004-02-09 2010-08-17 Nec Electronics Corporation Integrated circuit device and fabrication method therefor
JP4541717B2 (en) * 2004-02-09 2010-09-08 ルネサスエレクトロニクス株式会社 Integrated circuit device and manufacturing method thereof
WO2009016989A1 (en) 2007-07-27 2009-02-05 Shiseido Company Ltd. Oil-in-water emulsion composition and method for producing the same

Similar Documents

Publication Publication Date Title
JPH07120653B2 (en) Manufacturing method of monolithic integrated circuit
JPH08130246A (en) Semiconductor device and fabrication thereof
JPH0697109A (en) Semiconductor device
JPH01199462A (en) Semiconductor device
JP2616706B2 (en) Semiconductor device and manufacturing method thereof
JPH05335306A (en) Semiconductor device
JP3235091B2 (en) Method for manufacturing MIS type semiconductor device
JP2950620B2 (en) Semiconductor device
JPH0282639A (en) Semiconductor device and manufacture thereof
JP2828014B2 (en) Semiconductor device and manufacturing method thereof
JPS6345865A (en) Floating gate type mos semiconductor device
JPH08172128A (en) Semiconductor device and its manufacture
JPH02276270A (en) Semiconductor device
JPS60214569A (en) Mos type semiconductor device
JPH01280352A (en) Manufacture of semiconductor device
JPH05218209A (en) Semiconductor device and manufacture thereof
JPH02110933A (en) Wiring structure and its formation
JPS61111573A (en) Semiconductor device
JPS6194368A (en) Manufacture of semiconductor device
JPH05275544A (en) Manufacture of semiconductor device
JPH02239646A (en) Semiconductor device and manufacture thereof
JPH01191465A (en) Semiconductor device
JPH0370144A (en) Manufacture of semiconductor device
JPH02117132A (en) Manufacture of semiconductor device
JPS58161362A (en) Semiconductor device