JPH01198678A - Absorbing solution for absorption refrigerator - Google Patents

Absorbing solution for absorption refrigerator

Info

Publication number
JPH01198678A
JPH01198678A JP62158873A JP15887387A JPH01198678A JP H01198678 A JPH01198678 A JP H01198678A JP 62158873 A JP62158873 A JP 62158873A JP 15887387 A JP15887387 A JP 15887387A JP H01198678 A JPH01198678 A JP H01198678A
Authority
JP
Japan
Prior art keywords
lithium
absorption liquid
aqueous solution
absorption
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62158873A
Other languages
Japanese (ja)
Other versions
JPH0528751B2 (en
Inventor
Hiroshi Iizuka
弘 飯塚
Akinori Nagamatsuya
長松谷 晃徳
Kenji Takahashi
健二 高橋
Jun Kuroda
純 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP62158873A priority Critical patent/JPH01198678A/en
Priority to AU18362/88A priority patent/AU623079B2/en
Publication of JPH01198678A publication Critical patent/JPH01198678A/en
Priority to US07/607,761 priority patent/US5108638A/en
Publication of JPH0528751B2 publication Critical patent/JPH0528751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To obtain the title absorbing solution for water of refrigerant, not causing crystallization at low temperature, comprising an aqueous solution of a mixture consisting of lithium bromide, lithium iodide, lithium chloride and lithium nitrate. CONSTITUTION:In an absorption refrigerator comprising a generator, condenser, evaporator and absorber, the aimed absorbing solution is an aqueous solution of a mixture consisting of 1 lithium bromide, preferably 0.05-1.0 lithium iodide, preferably 0.05-0.50 lithium chloride and preferably 0.05-0.50 lithium nitrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収冷凍機用吸収液に関し、特に冷媒として水
を使用する場合、低温度においても晶析を生じないハロ
ゲン化リチウム及び硝酸リチウムの混合物からなる吸収
冷凍機用吸収液に係わる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an absorption liquid for an absorption refrigerator, and in particular, when water is used as a refrigerant, lithium halides and lithium nitrate are used which do not crystallize even at low temperatures. It relates to an absorption liquid for absorption refrigerators consisting of a mixture.

〔従来の技術〕[Conventional technology]

吸収冷凍機は高温の熱エネルギーを直接消費して冷凍作
用を行なうもので、熱エネルギーの効率的、合理的利用
の面から広く使用されている。また吸収冷凍機が冷凍効
率に優れており、それについて以下に簡単に説明する。
Absorption refrigerators perform refrigeration by directly consuming high-temperature thermal energy, and are widely used because of their efficient and rational use of thermal energy. In addition, absorption refrigerators have excellent refrigeration efficiency, which will be briefly explained below.

吸収冷凍機の一例として概略図を第4図に示す。A schematic diagram is shown in FIG. 4 as an example of an absorption refrigerator.

蒸気冷媒を吸収した低濃度吸収液は高温発生器2で加熱
源1で加熱され、分離器4に送られ、冷媒は蒸発し吸収
液は濃縮されて高濃度吸収液になる。
The low concentration absorption liquid that has absorbed the vapor refrigerant is heated by the heat source 1 in the high temperature generator 2 and sent to the separator 4, where the refrigerant is evaporated and the absorption liquid is concentrated to become a high concentration absorption liquid.

次に高濃度吸収液は熱交換器6に送られ、低温度の吸収
器13から来る低濃度吸収液と熱交換し、冷却されて、
吸収器13に導入される。吸収器13において低温度の
高濃度吸収液は散布され、かつ冷却管17により冷却さ
れ、蒸発器16からの蒸気冷媒を吸収して低濃度吸収液
になる。その後循環ポンプ19により熱交換器6を経て
高温発生器2に送られ、このようにして再びリサイクル
される。一方、分離器4から蒸発した高温の蒸気冷媒は
凝縮器18に導入され、冷却管17により冷却され凝縮
して液体にされる。次に液体冷媒は蒸発器16に供給さ
れて蒸発され、低温度にされて冷水管15を通る室温の
水を冷凍して冷水にする。
Next, the high concentration absorption liquid is sent to the heat exchanger 6, where it exchanges heat with the low concentration absorption liquid coming from the low temperature absorber 13, and is cooled.
It is introduced into the absorber 13. In the absorber 13, the low-temperature high-concentration absorption liquid is dispersed, cooled by the cooling pipe 17, absorbs the vapor refrigerant from the evaporator 16, and becomes a low-concentration absorption liquid. It is then sent by the circulation pump 19 via the heat exchanger 6 to the high temperature generator 2, and is thus recycled again. On the other hand, the high-temperature vapor refrigerant evaporated from the separator 4 is introduced into the condenser 18, cooled by the cooling pipe 17, and condensed into liquid. The liquid refrigerant is then supplied to the evaporator 16 where it is evaporated and brought to a low temperature to freeze the room temperature water passing through the cold water pipe 15 into cold water.

冷凍に使用した蒸気冷媒は吸収器13で高濃度吸収液に
吸収される。また冷水は室内の冷房等に使用される。
The vapor refrigerant used for refrigeration is absorbed by the high concentration absorption liquid in the absorber 13. The cold water is also used for indoor cooling.

従来、冷媒として水、吸収液として臭化リチウムが用い
られていた。その運転リサイクルの一例を第2図に示す
臭化リチウム水溶液のデユーリング線図によって説明す
る。第2図は、リチウム塩濃度と水をパラメータとして
、温度と蒸気圧との関係を示し、吸収液のリサイクル運
転の状態をサイクルABCDで示す、−例として直線A
Dは濃度62.5重量%、直線BCは濃度63.5重量
%のパラメータを示す、高温発生器2において循環ポン
プ19により送られて来た臭化リチウムの低濃度吸収液
が加熱され、蒸気冷媒が追い出されて濃度の高い吸収液
になる。即ち吸収液は第2図の点A(濃度62.5重量
%)から点Bに濃縮される。また蒸気冷媒は凝縮器18
において冷却管17により冷却され、点Eの状態で液体
になる。そのとき発生した凝縮熱は水媒体を介して冷却
塔に棄てられるか、又は空気によって直接外気に棄てら
れる。一方、高濃度吸収液は点Bから冷却されて吸収器
13において点Cの状態になり、蒸発器16からの点F
の温度5℃の蒸気冷媒を吸収し希薄されて点D(濃度6
2.5重量%)の低濃度吸収液になる。この際、蒸発器
16においては冷水管15を流れる室温の水は冷凍され
て冷水になり、室内の冷房に使用される。更に吸収器1
3では高濃度吸収液が蒸気冷媒を吸収して熱を発生し、
その熱は冷却管17に水媒体又は空気を通して冷却塔酸
るいは外気に棄てられる。また希薄された低濃度吸収液
は熱交換器6で高濃度吸収液と熱交換されて、高温発生
器2に戻され、点りから点Aに加熱され再びリサイクル
される。
Conventionally, water has been used as a refrigerant and lithium bromide has been used as an absorption liquid. An example of such operational recycling will be explained with reference to a Duering diagram of a lithium bromide aqueous solution shown in FIG. Fig. 2 shows the relationship between temperature and vapor pressure using lithium salt concentration and water as parameters, and shows the state of the absorption liquid recycling operation in terms of cycles ABCD - as an example, a straight line A
D indicates a parameter with a concentration of 62.5% by weight, and straight line BC indicates a parameter with a concentration of 63.5% by weight. In the high temperature generator 2, the low concentration absorption liquid of lithium bromide sent by the circulation pump 19 is heated, and steam is generated. The refrigerant is expelled and becomes a highly concentrated absorbent liquid. That is, the absorption liquid is concentrated from point A (concentration 62.5% by weight) to point B in FIG. In addition, the vapor refrigerant is transferred to the condenser 18
It is cooled by the cooling pipe 17 at point E and becomes a liquid. The heat of condensation generated at that time is dissipated into a cooling tower via an aqueous medium or directly to the outside atmosphere via air. On the other hand, the high concentration absorption liquid is cooled from point B to point C in the absorber 13, and is then cooled from point B to point F from the evaporator 16.
It absorbs the vapor refrigerant at a temperature of 5°C and is diluted to point D (concentration 6
2.5% by weight), resulting in a low concentration absorption liquid. At this time, in the evaporator 16, the room temperature water flowing through the cold water pipe 15 is frozen and turned into cold water, which is used for cooling the room. Furthermore, absorber 1
In 3, the highly concentrated absorption liquid absorbs the vapor refrigerant and generates heat,
The heat is passed through the cooling pipe 17 through an aqueous medium or air and is disposed of in the cooling tower or outside air. Further, the diluted low-concentration absorption liquid undergoes heat exchange with the high-concentration absorption liquid in the heat exchanger 6, is returned to the high-temperature generator 2, is heated from point A to point A, and is recycled again.

しかしながら、このような従来の公知技術であっては、
蒸発器16で冷媒蒸発温度5℃(点F)のとき、吸収器
13で冷媒を吸収する吸収液を温度50℃に冷却する条
件、例えば空冷条件を満足させるには、低濃度吸収液の
濃度(点D)を62.5重量%にし、高濃度吸収液の状
態Cで晶析しないようにしなければならない、吸収液が
晶析しないようにする為には、高濃度吸収液の状態Cを
晶析線x−x’ と重らないようにする。そのためには
状態Cでは63.5重量%で濃度差(ΔC)を1重量%
にしなければならない。
However, with such conventional known technology,
When the refrigerant evaporation temperature in the evaporator 16 is 5 degrees Celsius (point F), in order to satisfy the conditions for cooling the absorption liquid that absorbs the refrigerant in the absorber 13 to a temperature of 50 degrees Celsius, for example, the air cooling condition, the concentration of the low concentration absorption liquid must be adjusted. (Point D) must be set to 62.5% by weight to prevent crystallization in state C of the high concentration absorption liquid.In order to prevent the absorption liquid from crystallizing, state C of the high concentration absorption liquid must be Make sure that it does not overlap with the crystallization line xx'. For that purpose, in state C, the concentration difference (ΔC) is 1% by weight at 63.5% by weight.
must be done.

このように濃度差1重量%にすると吸収液の循環量を多
くしなければならず、成績係数(蒸発器での吸熱量Qg
/発生器での加熱量Qa)の低下をもたらし、冷凍効率
が低下する。またこの濃度では冷凍機の運転を停止した
場合、その吸収液が外気温度までに低下するので、晶析
発生のおそれがある。そのためにこの条件で冷凍サイク
ルを作動させることは極めて危険である。
In this way, if the concentration difference is 1% by weight, the circulation amount of the absorption liquid must be increased, and the coefficient of performance (the amount of heat absorbed in the evaporator Qg
/The amount of heating Qa) in the generator decreases, resulting in a decrease in refrigeration efficiency. Furthermore, at this concentration, when the operation of the refrigerator is stopped, the temperature of the absorption liquid drops to the outside temperature, which may cause crystallization. Therefore, operating the refrigeration cycle under these conditions is extremely dangerous.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した如く、臭化リチウム水溶液を吸収冷凍機用吸収
液に使用すると、冷媒蒸発温度5℃において吸収液温度
50℃では臭化リチウム吸収液は高濃度63.5重量%
になると吸収器で晶析するので使用できない、また晶析
が発生しないように吸収液を低濃度にして蒸気冷媒を低
温度で吸収すると、低温度の吸収液を冷却するための空
冷は外気(35℃)との温度差が小さくなり、吸収液を
冷却する冷却効率が低下するか若しくは不可能になる。
As mentioned above, when an aqueous lithium bromide solution is used as an absorption liquid for an absorption refrigerator, at a refrigerant evaporation temperature of 5°C and an absorption liquid temperature of 50°C, the lithium bromide absorption liquid has a high concentration of 63.5% by weight.
If the absorption liquid reaches a low concentration and the vapor refrigerant is absorbed at a low temperature to prevent crystallization, the air cooling for cooling the low temperature absorption liquid is performed using outside air ( 35° C.) becomes small, and the cooling efficiency for cooling the absorption liquid decreases or becomes impossible.

水冷方式を用いる場合には、冷却水供給設備が必要とな
り、設備費用、設置場所に制約を受ける欠点がある。更
に冷却水の費用がかかり、水の節約という点から家庭空
調として不向きである。
When using a water cooling system, cooling water supply equipment is required, which has the disadvantage of being subject to restrictions on equipment cost and installation location. Furthermore, cooling water is expensive, making it unsuitable for home air conditioning from the point of view of saving water.

また、臭化リチウム−水系の欠点を改良し、蒸発器と吸
収器との温度差を大きくするために、他の吸収液の検討
をした。この系に臭化亜鉛、塩化亜鉛を加えた系では溶
液は酸性を呈し、極めて強い腐食性を示すと共に、希薄
溶液(10重量%以下)では水酸化亜鉛の生成により沈
澱物を生じる。
In addition, in order to improve the drawbacks of the lithium bromide-water system and increase the temperature difference between the evaporator and absorber, other absorbing liquids were investigated. In a system in which zinc bromide or zinc chloride is added to this system, the solution becomes acidic and exhibits extremely strong corrosive properties, and in a dilute solution (10% by weight or less), a precipitate is formed due to the formation of zinc hydroxide.

また臭化カルシウムの添加系では腐食性が強く、また腐
食抑制剤として水酸化リチウムの添加により沈澱物を生
じる欠点がある。その他、チオシアン酸リチウム、エチ
レングリコール等が研究されているが、耐熱性に劣るた
め実用に適さない。
Additionally, systems in which calcium bromide is added have strong corrosive properties, and the addition of lithium hydroxide as a corrosion inhibitor has the disadvantage of producing precipitates. Other materials being studied include lithium thiocyanate and ethylene glycol, but they are not suitable for practical use because of their poor heat resistance.

この様に水−臭化リチウム系吸収液は吸収冷凍機に満足
されていなかった。従って本発明の目的は、高濃度でか
つ晶析温度の低い吸収冷凍機用吸収液を提供することに
ある。
In this way, water-lithium bromide based absorption liquids have not been satisfactory for absorption refrigerators. Therefore, an object of the present invention is to provide an absorption liquid for an absorption refrigerator that has a high concentration and a low crystallization temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の吸収冷凍機用吸収剤は、発生器、凝縮器、蒸発
器及び吸収器よりなる吸収冷凍機において、冷媒として
水を用いるとき、吸収液が、臭化リチウム、沃化リチウ
ム、塩化リチウム及び硝酸リチウムの混合物からなる水
溶液である。更に好ましくは、前記吸収液の混合物は臭
化リチウム、沃化リチウム、及び塩化リチウムの4成分
からなり、それらの混合重量比が臭化リチウム1に対し
The absorbent for an absorption refrigerator of the present invention is such that when water is used as a refrigerant in an absorption refrigerator consisting of a generator, a condenser, an evaporator, and an absorber, the absorption liquid is lithium bromide, lithium iodide, or lithium chloride. and lithium nitrate. More preferably, the absorption liquid mixture consists of four components: lithium bromide, lithium iodide, and lithium chloride, and the weight ratio of these components is 1 to 1 of lithium bromide.

沃化リチウム0.1〜1.0、塩化リチウム0.05〜
0.50、硝酸リチウム0.05〜0.50の水溶液か
らなる吸収液である。更に好ましくは、臭化リチウム1
に対して沃化リチウム0.4〜0.6、塩化リチウム0
.1〜0.3、硝酸リチウム0.1〜0.3の水溶液で
ある。この範囲からはずれると、はずれるに従って同じ
蒸気圧を示す溶液の晶析温度は上昇し、吸収液として不
適になる。
Lithium iodide 0.1~1.0, lithium chloride 0.05~
0.50, and lithium nitrate 0.05 to 0.50. More preferably, lithium bromide 1
Lithium iodide 0.4-0.6, lithium chloride 0
.. 1 to 0.3, and lithium nitrate 0.1 to 0.3. If it deviates from this range, the crystallization temperature of a solution exhibiting the same vapor pressure increases as it deviates from this range, making it unsuitable as an absorption liquid.

〔作用〕[Effect]

本発明吸収液は臭化リチウム、沃化リチウム、塩化リチ
ウム及び硝酸リチウムの混合物の水溶液であり、晶析温
度が臭化リチウム単独水溶液よりも低い。水溶液が溶液
温度50℃のときの水溶液の蒸気圧と晶析温度との関係
を第3図に示す0曲線1は本発明の臭化リチウム、沃化
リチウム、塩化リチウム及び硝酸リチウムの混合系水溶
液、及び曲線2は従来の臭化リチウム単独の水溶液を示
す。冷媒の水の蒸発温度5℃における蒸気圧6.5wn
 Hgでの水溶液の晶析温度は1本発明水溶液は直線1
の点A、臭化リチウム単独水溶液は曲線2の点Bに相当
し、それぞれ晶析温度は9℃及び33℃である。即ち本
発明の水溶液を用いることにより、臭化リチウム単独の
水溶液と比較して晶析温度差を24℃下げることが可能
になる。
The absorption liquid of the present invention is an aqueous solution of a mixture of lithium bromide, lithium iodide, lithium chloride, and lithium nitrate, and has a crystallization temperature lower than that of an aqueous solution of lithium bromide alone. Figure 3 shows the relationship between the vapor pressure and crystallization temperature of an aqueous solution when the solution temperature is 50°C.Curve 1 is a mixed aqueous solution of lithium bromide, lithium iodide, lithium chloride, and lithium nitrate of the present invention. , and curve 2 represent a conventional aqueous solution of lithium bromide alone. Vapor pressure of refrigerant water at evaporation temperature of 5°C: 6.5wn
The crystallization temperature of an aqueous solution in Hg is 1. The aqueous solution of the present invention has a straight line 1
Point A and the aqueous solution of lithium bromide alone correspond to point B of curve 2, and the crystallization temperatures are 9°C and 33°C, respectively. That is, by using the aqueous solution of the present invention, it is possible to lower the crystallization temperature difference by 24° C. compared to an aqueous solution of lithium bromide alone.

上述の如く臭化リチウム単独水溶液では晶析温度が高く
、溶解度に限界がある。この臭化リチウム単独水溶液を
用いる場合、低濃度の臭化リチウム水溶液を用いて吸収
温度を低くする必要があり、吸収温度と外気温度との差
が小さく、吸収液を空冷することが困難である。
As mentioned above, an aqueous solution of lithium bromide alone has a high crystallization temperature and has a limited solubility. When using this aqueous solution of lithium bromide alone, it is necessary to lower the absorption temperature by using a low-concentration lithium bromide aqueous solution, and the difference between the absorption temperature and the outside air temperature is small, making it difficult to air-cool the absorption liquid. .

また、本発明の臭化リチウム、沃化リチウム。Also, lithium bromide and lithium iodide of the present invention.

塩化リチウム及び硝酸リチウムの混合水溶液の溶液特性
を第1表に示す、また比較例として臭化リチウム単独水
溶液の溶液特性を併記する。第1表から本発明水溶液は
比較例水溶液よりも濃度に対して晶析温度が明らかに低
い。
Table 1 shows the solution properties of a mixed aqueous solution of lithium chloride and lithium nitrate, and also shows the solution properties of a single aqueous solution of lithium bromide as a comparative example. From Table 1, the crystallization temperature of the aqueous solution of the present invention is clearly lower than that of the comparative aqueous solution relative to the concentration.

第1表 溶液特性 また、沃化リチウム単独水溶液、又は塩化リチウム単独
水溶液のそれぞれは、臭化リチウム単独水溶液と同様に
本発明水溶液に比して晶析温度が高い、また臭化リチウ
ム−沃化リチウムの2成分系混合水溶液は臭化リチウム
単独水溶液より晶析温度が低いが、本発明の臭化リチウ
ム−沃化リチウム−塩化リチウム−硝酸リチウムの4成
分混合系水溶液より晶析温度が高い。
Table 1 Solution characteristics In addition, lithium iodide alone aqueous solution and lithium chloride alone aqueous solution each have a higher crystallization temperature than the present invention aqueous solution as well as lithium bromide alone aqueous solution, and lithium bromide-iodide alone aqueous solution. A two-component mixed aqueous solution of lithium has a crystallization temperature lower than a single aqueous solution of lithium bromide, but a crystallization temperature higher than a four-component mixed aqueous solution of lithium bromide-lithium iodide-lithium chloride-lithium nitrate of the present invention.

また、勿論本発明の冷媒と吸収液との組合せは。Also, of course, the combination of the refrigerant and absorption liquid of the present invention.

従来の水−臭化リチウム系を使用する吸収冷凍機にも使
用でき、その場合には従来の吸収液よりも晶析温度が低
い為に非常に安全な運転が可能となり、冷却水温度と吸
収器温度との温度差を大きくとれる為に熱交換面積を小
さくできる等の経済的メリットがある。
It can also be used in absorption refrigerators that use conventional water-lithium bromide systems. Since the temperature difference between the heat exchanger and the heat exchanger can be large, there are economic advantages such as the ability to reduce the heat exchange area.

〔実施例〕〔Example〕

吸収液として臭化リチウム:沃化リチウム:塩化リチウ
ム:硝酸リチウムの混合重量比1:0.63: 0.2
5 : 0.25の水溶液を用い、前述の第4図に示す
吸収冷凍機に使用して冷凍運転する。第1図の混合水溶
液のデユーリング線図により臭化リチウム−沃化リチウ
ム−塩化リチウム−硝酸リチウムの混合系水溶液の用い
た運転リサイクル状態のサイクルGHIJを示す、第1
図は前述の第2図のデユーリング線図を用いて説明した
運転リサイクル状態と同様に温度と蒸気圧との関係を示
す、吸収液が蒸気冷媒(水蒸気)を吸収する条件は、蒸
気冷媒温度5℃、吸収液温度50℃、蒸気冷媒吸収の前
後における吸収液の濃度差(ΔC)を3重量%にし、前
述の臭化リチウム単独の場合と同様に操作する。
As an absorption liquid, a mixture weight ratio of lithium bromide: lithium iodide: lithium chloride: lithium nitrate was 1:0.63:0.2.
5: Using an aqueous solution of 0.25, the absorption refrigerator shown in FIG. 4 described above is used for refrigeration operation. The cycle GHIJ in the operational recycling state using a mixed aqueous solution of lithium bromide, lithium iodide, lithium chloride, and lithium nitrate is shown by the Dueling diagram of the mixed aqueous solution in FIG. 1.
The figure shows the relationship between temperature and vapor pressure in the same way as the operating recycle state explained using the Duering diagram in Fig. 2. The conditions for the absorption liquid to absorb vapor refrigerant (steam) are as follows: ℃, the absorption liquid temperature is 50°C, and the concentration difference (ΔC) of the absorption liquid before and after vapor refrigerant absorption is 3% by weight, and the same operation as in the case of using lithium bromide alone is performed.

高温発生器2において低濃度吸収液(62,5重量%)
は点Gから点Hに加熱され、水が蒸発して高濃度吸収液
(65,5重量%)になる6次に吸収器13において高
濃度吸収液は点工に冷却され、蒸発された水(点し、5
℃、蒸気圧6.5mHg)を吸収し、点Jに示される5
0℃の低濃度吸収液(62,5重量%)に希薄される。
Low concentration absorption liquid (62.5% by weight) in high temperature generator 2
is heated from point G to point H, and the water evaporates to become a highly concentrated absorbent liquid (65.5% by weight).Next, in the absorber 13, the highly concentrated absorbent liquid is cooled to a point where the evaporated water (Point, 5
℃, vapor pressure 6.5 mHg) and 5 shown at point J.
It is diluted to a low concentration absorption liquid (62.5% by weight) at 0°C.

更に低温度吸収液は点Jから点Kに加熱され、リサイク
ルされる。尚、このとき蒸発器16において低温度の蒸
気冷媒により、冷水管15内の室温の水を冷水に冷凍し
、冷房等に利用する。
Furthermore, the low temperature absorption liquid is heated from point J to point K and recycled. At this time, the water at room temperature in the cold water pipe 15 is frozen into cold water using a low-temperature vapor refrigerant in the evaporator 16, and is used for cooling or the like.

本発明の4成分混合系吸収液の吸収器内での温度は点I
、Jに示されるように晶析線Y−Y’に重さならず、吸
収液温度が晶析温度よりも高く、水溶液中のハロゲン化
リチウム及び硝酸リチウムが析出することがなく吸収液
は完全に水溶液状態である。これに反して前述の第2図
の臭化リチウム単独水溶液のリサイクル操作では、吸収
液は吸収器内で点C(濃度63.5重量%)をとり、晶
結線x−x’ と重さなり運転不可能であり、濃度幅1
重量%しかとれない。しかるに本発明吸収液を用いるこ
とにより、同じ条件で濃度幅3重量%にとることができ
、空冷条件で吸収冷凍機を全く支障なく運転可能にでき
る。
The temperature in the absorber of the four-component mixed absorption liquid of the present invention is at point I.
, J, there is no weight on the crystallization line Y-Y', the absorption liquid temperature is higher than the crystallization temperature, the lithium halide and lithium nitrate in the aqueous solution do not precipitate, and the absorption liquid is completely absorbed. It is in an aqueous solution state. On the other hand, in the above-mentioned recycling operation of an aqueous solution of lithium bromide alone as shown in Fig. 2, the absorbent takes a point C (concentration 63.5% by weight) in the absorber and overlaps the crystalline line x-x'. Unoperable, concentration range 1
Only the weight percentage can be taken. However, by using the absorption liquid of the present invention, the concentration range can be set to 3% by weight under the same conditions, and the absorption refrigerator can be operated under air cooling conditions without any trouble.

〔発明の効果〕〔Effect of the invention〕

本発明の吸収冷凍機用吸収液は、臭化リチウム、沃化リ
チウム、塩化リチウム及び硝酸リチウムの混合物の水溶
液からなるので、晶析温度が低くなり、冷凍機の運転リ
サイクル中に水溶液中のハロゲン化リチウム及び硝酸リ
チウムが晶析することなく、従来実用化が困難であった
空冷の吸収冷凍機を非常に安全に支障なく運転でき、効
率的に冷水を得て冷房、冷凍等に利用できる。また、本
発明吸収液は装置本体を腐食することなく、長期間の使
用でも沈澱物を生成せず、耐熱性、耐久性に優れる。
Since the absorption liquid for an absorption refrigerator of the present invention is composed of an aqueous solution of a mixture of lithium bromide, lithium iodide, lithium chloride, and lithium nitrate, the crystallization temperature is low, and halogens in the aqueous solution are removed during recycling of the refrigerator. Since lithium oxide and lithium nitrate do not crystallize, air-cooled absorption refrigerators, which have been difficult to put into practical use in the past, can be operated very safely and without any problems, and cold water can be efficiently obtained and used for cooling, freezing, etc. Furthermore, the absorbent liquid of the present invention does not corrode the main body of the device, does not generate precipitates even after long-term use, and has excellent heat resistance and durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の臭化リチウム−沃化リチウム−塩化リ
チウム−硝酸リチウム4成分混合系吸収液のデユーリン
グ線図、第2図は従来の臭化リチウム水吸収液のデユー
リング線図、第3図は吸収液の50℃における水溶液の
蒸気圧と晶析温度との相関曲線、及び第4図は吸収冷凍
機の概略図を示す。 2・・・高温発生器、  4・・・分離器、6・・・熱
交換器、   13・・・吸収器、15・・・冷水管、
    16・・・蒸発器、17・・・冷却管、   
18・・・凝縮器。
Figure 1 is a Duering diagram of the lithium bromide-lithium iodide-lithium chloride-lithium nitrate four-component mixed absorption liquid of the present invention; Figure 2 is a Duering diagram of a conventional lithium bromide water absorption liquid; The figure shows a correlation curve between the vapor pressure and crystallization temperature of an aqueous solution of an absorption liquid at 50° C., and FIG. 4 shows a schematic diagram of an absorption refrigerator. 2... High temperature generator, 4... Separator, 6... Heat exchanger, 13... Absorber, 15... Cold water pipe,
16... Evaporator, 17... Cooling pipe,
18... Condenser.

Claims (2)

【特許請求の範囲】[Claims] (1)発生器、凝縮器、蒸発器及び吸収器よりなる吸収
冷凍機において、冷媒の水に対する吸収液が、臭化リチ
ウム、沃化リチウム、塩化リチウム及び硝酸リチウムか
らなる混合物の水溶液であることを特徴とする吸収冷凍
機用吸収液。
(1) In an absorption refrigerator consisting of a generator, condenser, evaporator, and absorber, the absorption liquid for the refrigerant water is an aqueous solution of a mixture of lithium bromide, lithium iodide, lithium chloride, and lithium nitrate. An absorption liquid for absorption refrigerators characterized by:
(2)前記吸収液の各成分の混合重量比が臭化リチウム
1に対し、沃化リチウム0.1〜1.0、塩化リチウム
0.05〜0.50、硝酸リチウム0.05〜0.50
であることを特徴とする特許請求の範囲第1項に記載の
吸収冷凍機用吸収液。
(2) The mixing weight ratio of each component of the absorption liquid is 1 part of lithium bromide, 0.1 to 1.0 of lithium iodide, 0.05 to 0.50 of lithium chloride, and 0.05 to 0.0 of lithium nitrate. 50
An absorption liquid for an absorption refrigerator according to claim 1, characterized in that:
JP62158873A 1987-06-26 1987-06-26 Absorbing solution for absorption refrigerator Granted JPH01198678A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62158873A JPH01198678A (en) 1987-06-26 1987-06-26 Absorbing solution for absorption refrigerator
AU18362/88A AU623079B2 (en) 1987-06-26 1988-06-24 Absorbent solution for use with absorption refrigeration apparatus
US07/607,761 US5108638A (en) 1987-06-26 1990-10-30 Absorbent solution for use with absorption refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62158873A JPH01198678A (en) 1987-06-26 1987-06-26 Absorbing solution for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH01198678A true JPH01198678A (en) 1989-08-10
JPH0528751B2 JPH0528751B2 (en) 1993-04-27

Family

ID=15681266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62158873A Granted JPH01198678A (en) 1987-06-26 1987-06-26 Absorbing solution for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH01198678A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090589A (en) 2013-11-06 2015-05-11 ソニー株式会社 Authentication control system, authentication control method, and program

Also Published As

Publication number Publication date
JPH0528751B2 (en) 1993-04-27

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
Horuz A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems
US3478530A (en) Absorption refrigeration system
JPS592477B2 (en) Absorption liquid for absorption refrigerators
US5108638A (en) Absorbent solution for use with absorption refrigeration apparatus
US4487027A (en) Hyperabsorption space conditioning process and apparatus
JPH01198678A (en) Absorbing solution for absorption refrigerator
CN109099611B (en) Absorption type refrigeration method and device for reducing generation temperature
JP2950522B2 (en) Mixed absorption liquid and absorption heat conversion device using the same
JPH0528752B2 (en)
JPH0528750B2 (en)
US11466189B2 (en) Absorption cycle apparatus and related method
JPH0528749B2 (en)
EP0111905A2 (en) Air conditioning apparatus
JP2000319646A (en) Absorbing solution for absorption refrigerating machine and absorption refrigerating machine
JPS6356918B2 (en)
JP3801784B2 (en) Absorption-type heat pump aqueous solution composition
JP2748789B2 (en) Absorption solution for absorption refrigerator
KR100381373B1 (en) Absorbent solution composition for use with absorption refrigeration and heating apparatus
JP2668063B2 (en) Absorbent composition for absorption air conditioner
JPH0668425B2 (en) Solution for absorption refrigerator
JPS60104174A (en) Freezing composition for absorption refrigerator
JPS6356915B2 (en)
JPH04254166A (en) Method of operating absorption type refrigerating machine employing water as refrigerant
JPS58120063A (en) Absorption type refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees